
Citation: Maitin, A.M.; Romero

Muñoz, J.P.; García-Tejedor, Á.J.

Survey of Machine Learning

Techniques in the Analysis of EEG

Signals for Parkinson’s Disease: A

Systematic Review. Appl. Sci. 2022,

12, 6967. https://doi.org/10.3390/

app12146967

Academic Editor: João M. F.

Rodrigues

Received: 10 June 2022

Accepted: 7 July 2022

Published: 9 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Survey of Machine Learning Techniques in the Analysis of EEG
Signals for Parkinson’s Disease: A Systematic Review
Ana M. Maitin 1 , Juan Pablo Romero Muñoz 2,3 and Álvaro José García-Tejedor 1,*

1 Centro de Innovación Experimental del Conocimiento (CEIEC), Universidad Francisco de Vitoria,
28223 Madrid, Spain; a.maitin@ceiec.es

2 Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
p.romero.prof@ufv.es

3 Brain Damage Unit, Hospital Beata María Ana, 28007 Madrid, Spain
* Correspondence: a.gtejedor@ceiec.es

Abstract: Background: Parkinson’s disease (PD) affects 7–10 million people worldwide. Its diagnosis
is clinical and can be supported by image-based tests, which are expensive and not always accessible.
Electroencephalograms (EEG) are non-invasive, widely accessible, low-cost tests. However, the
signals obtained are difficult to analyze visually, so advanced techniques, such as Machine Learning
(ML), need to be used. In this article, we review those studies that consider ML techniques to
study the EEG of patients with PD. Methods: The review process was conducted following the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, which
are used to provide quality standards for the objective evaluation of various studies. All publications
before February 2022 were included, and their main characteristics and results were evaluated
and documented through three key points associated with the development of ML techniques:
dataset quality, data preprocessing, and model evaluation. Results: 59 studies were included. The
predominating models were Support Vector Machine (SVM) and Artificial Neural Networks (ANNs).
In total, 31 articles diagnosed PD with a mean accuracy of 97.35 ± 3.46%. There was no standard
cleaning protocol for EEG and a great heterogeneity in EEG characteristics was shown, although
spectral features predominated by 88.37%. Conclusions: Neither the cleaning protocol nor the number
of EEG channels influenced the classification results. A baseline value was provided for the PD
diagnostic problem, although recent studies focus on the identification of cognitive impairment.

Keywords: machine learning; deep learning; artificial neural networks; electroencephalogram;
Parkinson’s disease; review

1. Introduction

Parkinson’s disease (PD) is one of the most common chronic progressive neurological
disorders, affecting between 7 million and 10 million people worldwide [1]. It is charac-
terized by the loss of dopaminergic neurons in the substantia nigra [2], and it is not until
advanced stages of neurodegeneration (when the patient has a 50–70% neuronal loss in the
substantia nigra [3,4]) that the characteristic motor symptoms of this disease (bradykinesia,
rigidity, and tremor at rest [5]) appear. Consequently, the first line of treatment includes
the administration of Levodopa [6,7], a drug that compensates for the loss of dopamine.
Regarding the diagnosis of PD, it is clinical and is based on motor symptoms, and thus
is carried out through clinical assessment of repetitive limb movements, resistance to
passive mobilization, spontaneous movements, balance, and gait pattern. The diagnosis
requires the evaluation of an experienced clinician and a high degree of suspiciousness for
the disease, and misdiagnosis in the early stages is not rare [8]. Hence, advances in new
diagnostic techniques in PD could help to detect this disease in earlier stages, allowing for
anticipating the administration of dopaminergic medication, which may favor the quality
of life of patients during a longer period.
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There is a wide variety of techniques in the field of neurology that could be used to
support Parkinson’s clinical diagnosis. These include image-based tests such as SPECT
and Cardiac MIBG, both revealing indirect physiological consequences of dopaminergic
denervation. EEG tests are non-invasive techniques, low-cost compared to the mentioned
image-based tests, and they are present in most health centers. This technique records the
electrical activity of pyramidal neurons of the brain cortex and has shown to be effective in
other neurological diseases such as in the diagnosis or prediction of epileptic seizures, in the
development of biomarkers of Alzheimer’s disease, or even experimentally in the detection
of abnormalities in schizophrenia [9–11]. Moreover, it has a high temporal resolution and a
high test-retest, that is, it is capable of reproducing results regardless of external aspects.

However, two main characteristics define the EEG signals and make their subsequent
analysis difficult: the low signal-to-noise ratio and their stochastic nature. A low signal-to-
noise ratio indicates a high level of noise in EEG signals, so pre-processing is required to
filter out the signal noise and remove possible artifacts and then analyze the signals and
obtain results. The main problem when filtering the signals is that there is no standard
protocol to perform the cleaning. Another problem comes from the fact that when the
signal noise is removed, relevant components in EEG signals can also be eliminated, which
may lead to misdiagnosis. Regarding the stochastic character, it indicates that the state
of occurrence of an event does not depend on the previous event. Hence, to extract the
essential characteristics of the signals, advanced techniques must be used for the study
of nonlinear dynamics, which require more expensive computational methods [12,13].
Artificial Intelligence (AI) models have shown to be some of the most suitable methods to
deal with these difficulties since their increasing development in recent years has made them
indispensable tools for analyzing and understanding the large amount of data generated
by today’s society.

As a discipline, AI encompasses many techniques but it is the field of Machine Learning
(ML) that currently provides the most promising results. ML is a scientific discipline
that studies and develops algorithms capable of generalizing behaviors and recognizing
hidden patterns in a large amount of data by way of examples. It was defined by Arthur
Samuel as: “field of study that gives computers the ability to learn without being explicitly
programmed” [14]. ML techniques can be classified into two categories depending on the
type of processing that is carried out: symbolic processing, which uses formal languages,
logical orders, and symbols, and subsymbolic processing, which is designed to estimate
functional relationships between data. These techniques are receiving increasing interest
from the medical domain, where they have been mostly used in image analysis [15],
although in recent years their application has spread to other areas [16,17].

Within ML techniques, Deep Learning (DL) has been a breakthrough in the last years.
DL is performed by Deep Neural Networks, a subset of Artificial Neural Networks (ANN)
that are biologically inspired by how human neurons work. It is defined in [18] as multiple-
layer, hierarchical models that can learn representations of data with multiple levels of
abstraction. ANN (and so DL networks) can learn from data using three different strategies:
supervised, unsupervised, or reinforced. However, all three require a large amount of input
data and a careful training process to learn, as ANNs are well-known to be as powerful as
their training data. Therefore, proper selection of the dataset is paramount as well as input
data transformation using mathematical operations. So, input dataset quality has also been
checked in the reviewed articles.

This review analyzes the current impact of the use of ML techniques for the study of
EEGs of patients with PD, with the aim of serving as a starting point for researchers in future
studies related to this disease, providing reference values obtained from a comprehensive
quality criterion, and discovering the current trend of this research topic so that it favors the
development of new applications in the clinical setting. Specifically, the process of selection
of the reviewed articles has followed the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines [19], a methodology based on a search in different
databases, and the application of significant exclusive criteria from the fields of medicine
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and computational sciences. Although numerous articles apply ML and DL techniques to
study different diseases through EEG analysis, such as epilepsy, schizophrenia, Alzheimer’s,
and sleep EEG [20–27], its use associated with Parkinson’s disease is not so widespread,
and it has not been until recently that the literature in this field has begun to be developed.
In a previous work [28] we reviewed, from a medical point of view, the literature in this
field with these same search terms, focuses the analysis on the clinical state of patients,
and the recording parameters, protocol, and test of the EEG, without delving into the
computational techniques used. Moreover, such work was restricted to EEG acquired
in the resting state and the motor activation tests. On the contrary, we widen the study
selection without restrictions on their objectives or the EEG tests performed, with a special
emphasis on computational development. Hence, it provides a summary of the current
state of use of ML methods in the EEGs of patients with PD, as it includes the analysis
of the techniques considered by the studies, their methodology, architectures developed
and the results obtained. The conclusions derived from this analysis may serve as an entry
point and a reference for future work on EEG markers search for Parkinson´s Disease.

This review is divided into the following sections: Methods, which includes the
methodology used, articles found, databases used, and the inclusion and exclusion criteria
that were applied to select the articles analyzed in this review; Results, which extracts,
from the selected articles, the types of tests carried out, number of patients, EEG cleaning
protocol, feature extraction, ML techniques used, validation methods, and results of each
model; and Discussion, which compares the information in the selected articles to draw the
conclusions of the review.

2. Methods
2.1. Search Strategy and PRISMA Methodology

The review process performed in this article followed the PRISMA guidelines, defined
in [19] as “an evidence-based minimum set of items aimed at helping authors to report a
wide array of systematic reviews and meta-analyses that assess the benefits and harms of
a health care intervention”. This methodology provides quality standards through items
related to the title, the abstract, the methods, the results, and the discussion, through which
the authors can make critical and objective evaluations of various studies.

The selection process was carried out in different phases. The first step consisted
in determining the keywords to perform the searches in the databases so that they fitted
the topic proposed for the review based on both medical and computational points of
view. From the medical point of view, the search topics were Parkinson’s disease and
electroencephalography. The specific terms chosen were: 1. Parkinson, 2. EEG, and 3.
electroencephalogram. Regarding computational terms, the analyzed publications should
use tools and techniques from the field of Artificial Intelligence. ML terminology does
not always appear within the articles in the same way, so some of the most widely used
generic terms were considered to cover as many works as possible. These were: 4. machine
learning, 5. deep learning, and 6. neural networks. The proposed search terms were
combined using logical operators as follows: 1 AND (4 OR 5 OR 6) AND (2 OR 3). This
combination was introduced in the following 5 databases: Web of Science, PUBMED,
Scopus, CINAHL, and Science Direct. The search was performed on 14 February 2022,
with no time limit, providing a total of 358 results, which were downloaded to the Zotero
platform for further analysis.

The second step consisted of the screening phase, in which, after the removal of
duplicate elements, contents based on academic books, book chapters, abstracts, and
posters were discarded as they were considered to be outside the scope of this review. Next,
in the eligibility phase, the exclusion criteria shown in Table 1 were applied, and ordered
according to the objectives proposed for this review. The reasons for which these criteria
were chosen are also included in Table 1. To determine whether or not a study satisfied a
criterion, its title, its abstract, and the full article, if necessary, were analyzed. Even though
all studies contained the specified search terms, some of the studies only used them as a
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reference to other works, or mention them without developing them. These cases were
classified as studies that did not use ML techniques, studies that did not consider EEG, or
studies that did not focus on PD.

Table 1. Exclusion criteria and reason for the exclusion.

Exclusion Criteria Reason for Exclusion

Studies focused on neurological diseases
different from PD Outside the objectives of this review

Studies not using ML techniques Outside the objectives of this review

Studies not considering EEG Outside the objectives of this review

Studies with invasive EEG

Invasive EEG signals are not comparable with
non-invasive EEG ones. Moreover, non-invasive

EEG was chosen for being low-cost, widely
available, and easy to acquire, which are properties

not shared by invasive EEG.

Studies on animals
The results obtained in studies with animals may
not be always extrapolated to humans. Moreover,
EEG of animals and humans are not comparable.

Pharmacological studies
The studies focused on the development and

analysis of the components of medications are
outside the objectives of this review.

Review articles Outside the objectives of this review

After the eligibility process, the inclusion phase was the last step of the selection
procedure. This phase received, on the one hand, the studies that passed the exclusion
criteria, and on the other hand, the studies that were not found or were retracted and thus
could not go through the eligibility step. This last group of studies was discarded and, as a
result, the inclusion phase provided us with the articles that constituted this review and
that were considered for further analysis.

2.2. Data Extraction and Analysis

After the previous selection process, for each selected article, the information associ-
ated with the following topics was extracted in Table 2:

Table 2. Description of the items considered for the analysis of the articles.

Item Description

1. Dataset quality

Through clinical and technical parameters such as
the number of patients in the study, the stage of the
disease, the administration of medication, and the

type of EEG tests performed

2. Pre-processing of data Through the EEG cleaning protocol and feature
extraction methods

3. Analysis of ML techniques
Through the types of models, model architecture,

evaluation of the quality of the training/validation
process, metrics used, and results of each model

These topics were chosen to synthesize the most relevant information within each of
the articles, to analyze each item, and provide a starting point for future studies.

The conclusions derived in this review were obtained, on the one hand, by com-
paring, for each of these points, the information collected in the different articles, and,
on the other hand, by evaluating the results obtained by each article about the parame-
ters used. To perform this analysis, the Matplotlib (https://matplotlib.org (accessed on

https://matplotlib.org
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14 February 2022)) library in Python has been used to make the figures, and the Numpy
(https://numpy.org (accessed on 14 February 2022)) and Scipy (https://scipy.org (accessed
on 14 February 2022)) libraries in Python have been used to develop the algorithms that
provide the statistical results.

3. Results
3.1. PRISMA Flow Diagram

As shown in the PRISMA flow diagram displayed in Figure 1, the search process in
the databases yielded 358 results, 132 of which were duplicates, and thus, were eliminated.
The remaining 226 results were then submitted to the screening process, where 25 academic
books, one abstract, and one poster, were rejected. As a consequence, 27 studies were
removed, leaving a total of 199 articles for the eligibility phase, where the exclusion criteria
described in Table 1 were applied. To implement this process, the title and abstract of the
research articles were reviewed first, and, if doubts about the exclusion criteria arose, a
complete read was carried out. As a result of this phase, 24 articles were found to not use
ML techniques, 27 articles did not focus their study on PD, 29 articles did not use EEG
techniques, two articles considered animal studies, seven articles were pharmacological,
43 articles were reviews with a different purpose, and six studies considered invasive EEG.
As detailed in the PRISMA diagram in Figure 1, the sum of all these types of excluded
articles resulted in a total of 138 rejections, leaving 61 articles for the inclusion phase. Finally,
one article obtained from the previous process was retracted, and one article could not
be found, so both were excluded from the final result. Therefore, 59 articles were finally
obtained for their subsequent analysis.
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3.2. Statistical Analysis

ML techniques have been a growing development in recent years, increasing their
use in different areas. This growth, particularized in the application of ML techniques on
EEG associated with PD, was captured by the articles selected in this review, as displayed
in Figure 2A, which shows an increase in publications, and so a growing interest in this
topic in the last 5 years, whereas in previous years, the development was intermittent. A
decrease in the production of the number of studies in 2022 compared to the previous year
can be appreciated, although it must be taken into account that 2022 was not fully included
in the review due to the search date (14 February). So 2022 results are not comparable with
previous years. It should also be remarked that in Figure 2A, the last publication date has
been considered.
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Figure 2. (A) Bar plot of number of selected articles per year taking into account their issue publication.
(B) Pie-chart with the distribution of the selected articles according to the country and continent
associated with the first affiliation of the first author.

Figure 2B shows the distribution of the articles according to the (first) affiliation country
of the first author, as well as the continent to which such country belongs. The continent
that contributed the most to the development of new investigations of PD by means of
EEG using ML techniques was Asia (49.2%), followed by Europe (23.7%). Although the
contributions from North America (16.9%) and Australia (8.5%) were smaller in proportion,
it is worth emphasizing the fact that there was global scientific interest in this topic in the
last few years. Regarding the country, it can be appreciated that both the USA and India
contributed the largest number of publications within their respective continent in similar
proportions. Both China and Australia had a similar contribution, whereas in Europe, the
distribution was homogeneous.

Delving into the content of the articles selected for this review, it was necessary to fix a
common framework to extract the most relevant information. In Table 3, this information
was summarized according to three key points chosen by their importance within the area
of ML. These were:
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Table 3. Summary of the objectives, participants, state of PD, EEG pre-processing, features, models used, model parameters, training and validation methods, and
best results for each article included in this review.

Objective Evaluation of the Quality of the Dataset Data Pre-Processing Evaluation of the Models Used Results

Ref. Objective Participants Stage PD EEG Pre-Processing Features Models Model Parameters Validation Best Results

[29]

Classification
of PD

patients
vs. controls.

Subjects:
20 PD and
21 controls

Age:
PD: 67.6 ± 7.0
HC: 67.5 ± 6.4

HY scale:
1–2

UPDRS:
23.5 ± 9.8

Disease Duration:
7.6 ± 4.3

Medication:
ON and OFF

Sixty-four-channel EEG recorded
during 1 min in resting state at 1 kHz.

In total, 27 electrodes were
considered. Impedances were kept
below 15 kΩ. The EEG was divided
into non-overlapping 3 s segments.

The segments of EEG
were introduced

as input.
CNN + RNN

Two 1D-conv layers with 64 each,
LSTM with 80 cells and a fully

connected layer with 50 units. The
activation function was sigmoid,

the loss function was “binary
crossentropy” and the optimizer

was Adam with learning
rate = 0.001.

Data were split into
80% for training and

20% for test sets.

Results without
medication:

Accuracy = 96.9
Precision = 100

Recall = 93.4

[30]

Classification
of PD

patients
vs. controls.

Subjects:
20 PD and
21 controls

Age:
PD: 67.6 ± 7.0
HC: 67.5 ± 6.4

HY scale:
1–2

UPDRS:
23.5 ± 9.8

Disease Duration:
7.6 ± 4.3

Medication:
ON and OFF

Sixty-four-channel EEG recorded
during 1 min in resting state at 1 kHz.

In total, 27 electrodes were
considered. Impedances were kept
below 15 kΩ. A band-pass filtered

was used at 1–55 Hz, and
re-referenced to average reference.
Artifacts were removed using ICA.

The data were standardized and
segmented into 1 s or 2 s epochs.

For the CNN/CRNN
models, 1 s segments
without overlapping
were introduced. For

the others, two
datasets were

considered. First, with
2 s epochs and 13
features of HOS.

Second, 794 time-series
features in 1 s epochs
using the bands theta,

alpha beta, and
gamma. Top

significant features
were selected

through ANOVA.

CNN + RNN,
CNN,
KNN,
SVM,

RF

The final architecture for KNN,
SVM, and RF were not specified.
CNN + RNN: 2 1D-conv (kernel

size 3, filters 32 and 64),
max-pooling, a GRU cells with 35
units, and 2 fully connected layers
(time distributed and dense with

35 units). Dropout were used.
Activation function was ReLU and

a softmax for the final layer.
Optimizer Adam

(learning rate = 0.001) and a binary
cross-entropy as loss.

CNN: 4 consecutive blocks, with 8,
12, 12, and 16 filters in each

1D-conv layer (kernel size = 9).
Max-pooling layer. Three fully
connected layers with 30 and 5
units, activation function ReLU,

and softmax for the last one.
Adam optimizer (learning rate =

0.001), and binary cross-entropy as
loss function.

Nested
cross-validation
(inner 5-fold for
hyperparameter

tunning and outer
10 fold)

The CNN + RNN
model obtained:
Accuracy = 99.2
Precision = 98.9

Recall = 99.4
F1-score = 99.2

AUC = 99.2

[31]

Classification
of PD

patients vs.
controls.

Subjects:
20 PD and 20

controls.
Age:

PD: (45–65)
HC: 58.1 ± 2.95

HY scale:
1: n = 2; 2: n = 11;

3: n = 7
UPDRS:

Not specified
Disease Duration:

5.75 ± 3.52
Medication:

ON

Fourteen-channel EEG recorded
during 5 min in resting state at 128
Hz. Epochs of 2 s were segmented

and a threshold technique was
applied at ±100 µV. A band-pass

filter was used at 1–49 Hz.

The EEG signals were
the input. CNN

Thirteen layers with 4 1D-conv
layers, 4 max-pooling layers, and 3

fully connected layers. Adam
optimizer (learning rate = 10−4).
Activation function Relu and the
last one softmax. Dropout of 0.5.

Ten-fold
cross-validation with

stratified data. In
total, 20% of the

training data was
also used for

validation at the end
of each epoch.

The results were:
Accuracy = 88.25
Sensitivity = 84.71
Specificity = 91.77
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Table 3. Cont.

Objective Evaluation of the Quality of the Dataset Data Pre-Processing Evaluation of the Models Used Results

Ref. Objective Participants Stage PD EEG Pre-Processing Features Models Model Parameters Validation Best Results

[32]

Classification
of PD

patients
with MCI

vs. patients
without MCI.

Subjects:
27 PD with MCI

and 43 PD
without MCI

Age:
MCI: (53–84)

Non-MCI: (46–82)

HY scale:
MCI: 0–5

Non-MCI: 0–4
UPDRS:

MCI: 0–41
Non-MCI: 0–36

Disease Duration:
MCI: 0–23

Non-MCI: 0–17
Medication:

Not specified

Two-hundre-fifty-six-channel EEG
recorded during 12 min in resting
state with eyes-closed at 1 kHz. In

total, 214 electrodes were associated
with 10 ROI. Signals were filtered at
0.5–70 Hz, with a 50 Hz notch, and
an inverse Hanning window was

used to stitch together segments to
get 3 min of EEG data. Artifacts were
removed. The average of all “good”
channels was used to reference the

signals to an average value.

The spectral power
was calculated in

10 ROI and globally for
6 frequency intervals

resulting in 66 spectral
features. The PLI was
calculated between all

pairs of ROI
resulting in

330 connectivity features.

RF The standard implementation in R
was applied.

Data were split into
70% for training and

30% for test sets.
20 runs of 5-fold
cross-validation.

The results with the
combination of both

features.
ROI

Train
AUC = 0.73 ± 0.16

Test AUC = 0.71
Without ROI:

Train
AUC = 0.7 ± 0.14
Test AUC = 0.875

[33]

Selection of
the QEEG

parameters
that best

distinguish
between
controls
and PD
patients.

Subjects:
50 PD and 41

controls.
Age:

PD: 68.8 ± 7
HC: 71 ± 7

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
5.3 ± 5.1

Medication:
Not specified

Two-hundred-fifty-six-channel EEG
recorded during 12 min in resting
state with eyes-closed at 500 Hz.

Three min were constructed with
segments of at least 30 s without

artifacts, and a 0.5–70 Hz filter was
applied. An inverse Hanning

window was used to join segments.
It was referenced with respect to
mean and defective channels that

were interpolated with the spherical
spline method. Artifacts were

removed.

Ten brain regions were
considered with

79 different
measurements. All

features were extracted
from the

frequency spectrum.

RF,
SVM,

DT,
LR,

LR with LASSO

SVM: RBF kernel.
Optimization was carried out for

tuning parameters.

Ten-fold
cross-validation.

The most significant
models were:

RF:
Accuracy = 78

AUC = 0.8
LR with LASSO:

AUC = 0.76

[34]

Cognition
classifica-

tion of
patients
with PD

Subjects:
20 PD H-COG, 20
PD L-COG and 72

inter-COG
Age:

H-COG: 59.5
(54.6–66.4)

L-COG: 67.8
(60.1–72.1)

Inter-COG: 63.5
(57.7–68.0)

HY scale:
Not specified

UPDRS:
H-COG: 18.5
L-COG: 23

Inter-COG: 20.5
Disease Duration:

H-COG: 11.2 ± 4.5,
L-COG: 10.9 ± 5.1,

Inter-COG:
11.8 ± 8.0

Medication:
ON

Twenty-one-channel EEG recorded in
resting state with eyes-closed. Data

were re-referenced. After visual
confirmation of artefact-free signals,

5 consecutive non-overlapping
4096-point (8.192 s) epochs were

selected. Recordings with less than
five epochs were excluded.

In total, 16,674 features
were extracted per

patient.
Feature-selection was

performed using a
Boruta algorithm.

Small feature sets were
considered as input.

RF

The hyperparameters were
optimized with a variant of

Bayesian Optimization technique
called Mixed Integer Parallel
Efficient Global Optimization
(MIP-EGO) for mixed-integer

categorical search spaces.

Ten-fold
cross-validation.

Additional
assessment with a

combination of
cross-validation and

split-sample
validation.

Using all features
from all

cross-validation runs
in L-COG vs.

H-COG:
Accuracy: 92
Sensitivity: 90
Specificity: 94
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[35]
Prediction

of FOG
episodes

Subjects:
16 PD
Age:

PD: 70.88 ± 6.92

HY scale:
2.75 ± 0.61

UPDRS:
42.50 ± 14.25

Disease Duration:
8.63 ± 6.58
Medication:

Not specified

Four-channel EEG during 404
FOG episodes in structured
series of Timed Up and Go

tasks at 500 Hz, with a
duration between 1 and 220 s.
Segments with artefacts were

rejected using visual
inspection. In total, 1902

selected samples of data were
filtered using band-pass

(0.5–60 Hz) and band-stop (50
Hz) Butterworth IIR filters
with zero phase shift. The
data were normalized and

ICA was applied.

DTF was applied. The
non-parametric

Wilcoxon Sum Rank
Test was used to select

the most significant
feature. A p-value <

0.05 and r-value > 0.25
were chosen for further

processing.

BNN

Three layers Back Propagation BNN
was used as a classifier with Bayesian

regularisation and
Levenberg-Marquardt optimization.

Eleven patients were
randomly chosen. Fifty

runs of random
training/validation
(50%) and test (50%).
Remaining 5 patients

were considered
for test.

In train set:
Sensitivity: 82.65
Specificity: 86.60

In test set:
Sensitivity: 85.86
Specificity: 80.25

[36]

Clasification
of

early-stage
PD patients

vs. HC

Subjects:
19 PD and 30 HC

Age:
PD: 63.7 ± 7.8
HC: 64.4 ± 6.2

HY scale:
1.8 ± 0.6
UPDRS:

20.1 ± 8.8
Disease Duration

1.1 ± 0.9
Medication:

OFF

Sixty-four-channel EEG
recorded at 250 Hz while

performing visual Go/No-Go
and AOB during 15 min in

cognitive tasks. Signals were
referenced to average mastoid

electrodes and band-pass
filtered in 4 bands with

overlap. Then they were cut
into epochs based on stimulus

onset and response, and
averaged across trials of the

same condition.

In total, 199 features
extracted by the BNA
analysis from the HC
and PD groups were

used. In each iteration,
the FPR feature

selection method
was applied.

LR Not specified
Ten-fold

cross-validation with
stratified data.

Cross validation
results in

discriminating HC
vs. early stage PD:

AUC: 79
Sensitivity: 74
Specificity: 73

[37]

Classification
of PD

patients vs.
controls
using 6

emotional
stimuli.

Subjects:
20 PD and 20

controls
Age:

PD: (40–65)
HC: (40–65)

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Fourteen-channel EEG
recorded during 6 emotional

stimuli. The signals were
segmented into 10 s epochs

with overlapping of 75%.
Then, pass-band elliptic filters
were used to obtain the alpha,

beta, and gamma bands.

Three spectral features
were calculated, that is,

Spectral Entropy
(SEN), Spectral
Energy-Entropy

(SEEN), and
SpectralTeager

Energy-Entropy
(STEEN) for each band.

PNN, KNN,
SVM

KNN: k between 1 and 10.
PNN: A multilayer feed-forward

network with 4 layers was considered.
It used an exponential activation
function with σ ranged from 0.55

to 0.65.

Not specified

The best accuracy for
each emotion:

Happiness: 96.8 with
PNN and SEEN

Sadness: 90.2 with
KNN and SEN
Fear: 95.07 with
KNN and SEEN
Anger: 91.4 with
SVM and SEEN

Surprise: 94.53 with
KNN and SEEN

Disgust: 88.18 with
SVM and SEEN.



Appl. Sci. 2022, 12, 6967 10 of 33

Table 3. Cont.

Objective Evaluation of the Quality of the Dataset Data Pre-Processing Evaluation of the Models Used Results
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[38]

Classification
of PD

patients
vs. controls

Subjects:
Dataset1: 15 PD

and 16 HC
Dataset2: 20 PD

and 20 HC
Age:

Dataset1:
PD: 63.5 ± 9.6
HC: 63.2 ± 8.2

Dataset2:
PD: 58.1 ± 2.95
HC: 59.05 ± 5.94

HY scale:
Dataset1: 2 and 3

Dataset2: 1–3
UPDRS:

Not spedified
Disease Duration:
Dataset1: 4.5 ± 3.5

Dataset2: 5.75 ± 3.52
Medication:

Dataset1: ON
and OFF

Dataset1: 32-channel EEG recorded
during 3 min in resting state at 512

Hz. Artifacts were manually
removed and a highpass filter at 0.5

Hz was used.
Dataset2: 14-channel EEG during 5

min in resting state at 128 Hz. Signals
were segmented into 2 s windows.

Eye blinking artifacts were removed
with a threshold at ±100 V and a

forward and reverse filtering
technique using sixth-order

Butterworth filter at 1–49 Hz
was used.

EEG signals are
subjected to SPWVD to

obtain TFR. After
Kaiser window

selection and resizing,
the two-dimensional
plots are fed to the

model. Experiments
are carried out by

maintaining the same
setup for both datasets.

CNN

Four 2D-Conv Layers, 2
MaxPooling layers, 2 Fully

Connected Layers (50 and 32
neurons), and a Softmax layer. The
number of filters selected were 96,
32, 16, and 8. A filter size of 7 × 7,
5 × 5, and 3 × 3 with a stride of 2
was used. A dropout of 0.5 was

considered. Adam optimizer was
used with learning rate = 10−4.

Ten-fold
cross validation

The best results were
for dataset1

HC vs. PD ON
medication:

Accuracy: 100
Specificity: 100
Sensitivity: 100
Precision: 100
F1 Score: 100

[39]

Classification
of controls

vs. PD
patients

with ON and
OFF medication

Subjects:
15 PD and 16 HC

Age:
PD: 63.2 ± 8.2
HC: 63.5 ± 9.6

HY scale:
2 or 3

UPDRS:
ON: 33.7 ± 10.9
OFF: 45.5 ± 13.0

Disease Duration:
Not specified
Medication

ON and OFF

Thirty-two-channel EEG during 3
min focusing on an image at 512 H.

EEG recordings were
split in half and then

converted into
spectrograms using

Gabor transform.

CNN

Two-dimensional-Conv (16 filters
kernel 5 × 5, ReLu), Dropout (0.2),
2D-Conv (32 filters, kernel 3 × 3,

ReLu), MaxPooling, Flatten, Dense
(unit size of 512, ReLu), Dropout

(0.7), Dense (unit size of 3 for
Softmax and 1 for sigmoid). Adam

optimizer was used with a
learning rate = 0.001 and a decay

rate of 0.01.

10-fold
cross validation

Results for 3 class
classification:

Accuracy:
99.46 ± 0.73

Precision:
99.48 ± 0.01
Sensitivity:

99.46 ± 0.01
F1 Score:

99.46 ± 0.01

[40]

Determine
the optimal
montage to
detect FOG.

Subjects:
7 PD
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

DiseaseDuration:
Not specified
Medication:

OFF

Thirty-two-channel EEG in main
cortical regions at 512 Hz during a
structured series of Timed Up and

Go tasks.
Average of 2 ear lobes electrodes was

taken as reference. Data were
segmented into 1 s windows and

filtered at 0.5–50 Hz. 343 s of EW and
343 s of FOG samples were collected.

Division in bands was
implemented.

Z-transformation was
applied to normalize

EEG data. Power
spectral density,

centroid frequency and
power spectral entropy

were extracted.

Feed-forward
neural network

Six hidden nodes. Levenberg
Marquardt’s algorithm with early

stopping was used.

Fifty times runs.
Data was divided
into training 34%,

validation 33%, and
testing 33%.

Results with only 2
channels C4-O2:
Sensitivity: 72.54
Accuracy: 69.71

[41]

Classification
of PD

patients
vs. controls.

Subjects:
100 PD and 100

controls.
Age:

PD: (50–70)
HC: (50–70)

HY scale:
1–1.5

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Two-channel EEG recorded for 30
min for the flexion and extension of
the wrist. 5–50 Hz band-pass filter

was applied.

EEG: Lyapunov and
inverse Lyapunov

exponent, Shannon
Entropy

EMG: power, standard
deviation, root mean

square, variance,
waveform length,

modified median, and
mean frequency.

MLP

Three algorithms were tested. 1.
Gradient Descent algorithms

(traingd, traingdm), 2. Conjugate
Gradient algorithms (traininscg,
traincgp), and 3. Quasi-Newton
algorithms (trainbfg, trainlm).

Sigmoid function was used in the
hidden layer. The number of

hidden neurons was checked for 5,
7, 9, 10, 20, and 30.

The dataset was
divided into training
70%, validation 15%,

and testing 15%.

ANN with trainlm
and 10 neurons:
Accuracy = 100

RMSE = 4.03 × 10−3

R value = 0.9998
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[42]

Classification
of PD

patients
vs. controls.

Subjects:
40 PD and 30

controls
Age:

PD: 63.53 ± 4.95
HC: 64.72 ± 5.74

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Sixty-four-channel EEG recorded
during 40 vocalizations of 5–6 s of
the vowel /u/ with 5 pitch shifts
each. The impedances were kept

below 50 kΩ. A band-pass filter at
1–20 Hz was applied. The signals

were segmented in epochs of 700 ms
that contained the pitch shift.

Referenced to the average of the
mastoid electrodes. Trials with

artifacts were rejected.

The epochs were the
input data.

CNN, RNN,
2D-CNN-RNN,
3D-CNN-RNN

CNN: 8 layers. 2 -Conv,
max-pooling, Conv, max-pooling,

Conv, 2 fully connected layers with
1000 and 500 units.

RNN: GRU layer with 6 units and
2 fully connected layers with 1280

and 300 units.
2D-CNN-RNN: Conv, GRU with 6
units and 2 fully connected layers

with 2000 and 300 units.
3D-CNN-RNN: 2 Conv,

max-pooling, GRU with 6 units
and 2 fully connected layers with

2000 and 300 units.
All models shared Adam

optimizer with learning rate 0.001,
ReLU activation, and softmax for
the output layer. Filters, strides,

and depths were specified.

Five-fold
cross-validation. The
trials from the same

patient were
involved in either

training or test.

The best model was
3D-CNN-RNN:

Accuracy = 82.89 ± 9.60

[43]

Classification
of PD

patients
vs. controls.

Subjects:
27 PD and 30

controls
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Two-hundred-fifty-six-channel EEG
recorded during 2 types of visual

stimuli (Stim and No-Stim) of 2.4 s.
185 electrodes were selected

removing the channels located on the
face and neck. Cleaning was not

specified.

For each trial, the FFT
of the last 2.24 s was

computed. The
features consisted of

the spectral
amplitudes. Six

channels over the
occipital area were

selected providing a
total of 162 patient data

and 180 control data.

LR,
DT,
RF

DT: Gini index measure of entropy
was used, maximum depth of 5,
minimum of 2 samples for split,

and a minimum number of 1
sample per leaf as stopping

criterion.
RF: 100 trees of a max depth of 30.

For each stimulus
1000 runs of random

train (70%) and
validation (30%).
The models were
tested using the
other stimulus.

For both
methodologies, the
best model was RF.

Stim for train:
AUC_val = 0.994
AUC_test = 0.71

No-Stim for train:
AUC_val = 0.998
AUC_test = 0.66

[44]

Classification
of PD

patients
vs. controls.

Subjects:
21 PD and 25

controls.
Age:

PD: 62.7 ± 7.32
HC: 54.6 ± 10.5

HY scale:
2.07 ± 0.39

UPDRS:
PD: 31.00 ± 10.37
HC: 0.83 ± 1.27

Disease Duration:
Not specified
Medication:

OFF

Twenty-channel EEG recorded
during 5 min in resting state with
eyes-closed. Two recordings were

performed per patient. Cleaning was
not specified.

Coherence analysis
with 2 s windows with

50% overlap was
carried out. Pearson’s

correlation was
calculated to assess the
relationships between
coherence and disease
severity. The relative

and absolute PSD were
calculated at 1–40 Hz.
Only 14 EEG-based
features were used.

DFA

A linear DFA was used. The
classifier input was selected by

utilizing the step-wise
discriminant analysis procedure in

the SPSS software package.

Cross-validation.

Accuracy = 95.24
Sensitivity = 94.74
Specificity = 95.65

PPV = 94.74
NPV = 95.65
An excessive

coherence was
observed in the beta
and gamma bands

for PD.
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[45]

Clasification
of PD

patients
with MCI

vs. NC

Subjets:
36 PD with MCI
and 35 PD with

NC
Age:

PD-MCI: 61.1 ±
8.2)

PD-NC: 57.0 ±
11.9

HY scale:
PD-MCI: 2.1 ± 0.7
PD-NC: 1.9 ± 0.7

UPDRS:
PD-MCI: 21.9 ± 8.7
PD-NC: 21.7 ± 9.4
Disease Duration:
PD-MCI: 2.8 ± 2.3
PD-NC: 3.6 ± 3.6

Medication:
ON

Sixteen-channel EEG recorded
during 30 min at 250 Hz. The

impedances were set to Z > 100 MΩ.
High-pass filter at 0.16 Hz and
low-pass filter at 500 Hz were

applied before pre-amplification.
Wavelet

decomposition and reconstruction
were made. Within 60 s segments,

epochs with eyes-open without any
obvious artefacts were selected.

Artefacts were further eliminated by
ICA.

Sixty-four features
were calculated from
power spectrum for 4
bands. Other features

from MR were
calculated. The feature
importance method of

Mean Impact Value
was used to categorize
the contribution of all

features.

SVM
RBF kernel was applied. The

regularization parameters were
identified using a “grid search”.

Five-fold
cross-validation on

80% of patients. 20%
for test. Additional

LOO
cross-validation.

Only features from
EEG Train:

Accuracy: 64
Sensitivity: 68
Specificity: 62

PPV: 54
NPV: 75
AUC: 66

LOO-CV: 66
In test:

Accuracy: 67
Sensitivity: 67
Specificity: 67

PPV: 75
NPV: 57
AUC: 71

[46]

Classification
of HC vs.
patients

with
different
types of

psychologi-
cal

disorders.

Subjets:
25 PD and 25

controls
Age:

PD: 69.68 ± 8.73
HC: 69.32 ± 9.58

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Sixty-channel EEG in Oddball task at
500 Hz. A band-pass filter at 0.1–60

Hz was applied. Low variance
electrodes are dropped, so 30

electrodes were selected.

Pre-processed data were
segmented into 4 s

epochs in case of non
ERP data and original
trial length is kept in
case of ERP data. In

total, 26 linear and non
linear features including

time and frequency
domain features were
calculated using linear

SVM classifier.

SVM, LR, KNN,
DT

SVM: RBF kernel. Grid search
technique is used to tune the

hyper-parameters

Five-fold cross
validation

On PD patients vs.
HC the best results
for the selection of

electrodes:
Accuracy: 82
F1 Score: 80
Precision: 85

Recall: 82
Model not specified.

[47]

Selection of
the best
QEEG

features to
identify
different
levels of
cognitive
impair-
ment in

PD.

Subjects:
118 PD classified

into 5 groups
according to the
severity of the

disease.
G1: n = 28,
G2: n = 33,
G3: n = 43,
G4: n = 5,
G5: n = 9.

Age:
G1 = 60.54 ± 8.75
G2 = 66.09 ± 6.65
G3 = 67.04 ± 7.94
G4 = 73.19 ± 5.29
G5 = 67.56 ± 5.51

HY scale:
G1 = 1.93 ± 0.4
G2 = 2.14 ± 0.55
G3 = 2.21 ± 0.59
G4 = 2.40 ± 0.55
G5 = 2.00 ± 0.97

UPDRS:
G1 = 26.00 ± 11.73
G2 = 29.55 ± 12.22
G3 = 28.74 ± 11.44
G4 = 31.00 ± 12.79
G5 = 29.00 ± 18.87
Disease Duration:
G1 = 7.75 ± 5.29
G2 = 8.36 ± 7.49
G3 = 8.81 ± 5.02
G4 = 6.60 ± 3.58
G5 = 12.00 ± 6.56

Medication:
ON

One-hundre-twenty-two-channel
EEG recorded during 10 min in

resting state. Average reference and
0.1–100 Hz bandwidth filter. Ocular
artifacts were corrected and a 50 Hz

filter was applied. Periods of
drowsiness were removed, and the
semi-automatic rejection of artifacts
was performed to eliminate muscle
activity. Each channel was divided

into 4 s epochs. At least 20 segments
were used for the analysis.

The relative and
absolute spectral power
were obtained for each
epoch using a FFT and
a 50% overlap for the

delta, theta, alpha, and
beta bands. A division

into 5 ROI was
performed. For each
case, high and low

electrode density were
considered. A statistical
dependency study with
an analysis of variance

and the selection of
characteristics with

Pearson’s correlation
method was
carried out.

SVM,
KNN

SVM: Gaussian kernel
KNN: k = 9 and the Euclidean

distance as a metric.

Data were split into
a training set (n =

100) and a test set (n
= 18).

The training set was
used for 5-fold

cross-validation.

SVM:
Accuracy = 87 ± 3.5

KNN:
Accuracy = 88 ± 2.8
Both were achieved

for the relative
power with

low-electrode
density.

Groups with few
patients had worse

results.
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[48]

Identify
patients

with
early PD.

Subjets:
29 drug-off early
PD, 12 drug-on
early PD and 22

controls
Age:

PD-OFF:
62.4 ± 6.3

PD-ON: 65.3 ± 5.4
HC: 63.8 ± 5.5

HY scale:
1

UPDRS:
PD-OFF: 15.8 ± 7.5
PD-ON: 14.3 ± 6.2
Disease Duration:

Not specified
Medication:

ON and OFF

Nineteen-channel EEG
recorded in resting state with

eyes-closed at 500 Hz with
additional channels for ECG,
EMG, and EOG. Impedances

were kept below 5 kΩ.
Fast-ICA was applied to

remove artifacts. Epochs with
amplitude > 80 µV were
rejected. More than 5 min
signals were kept for each

subject. A band-pass FIR filter
at 0.5–45 Hz was used.

Signals were segmented into
2 s non-overlapping epochs.

EEG signals were
decomposed into two
bands through the FIR

filter. The P-Welch
function was used to
calculate the PSD of
each channel within
each epoch at 0.5–45

Hz with step size of 0.5
Hz. Models were fed

with
channel-frequency PSD
and structured PSD. A

personalized
characteristic index of
frequency domain was

calculated for
statistical anlysis.

CNN, SVM,
MLP

SVM: linear kernel
CNN: 3 2D-convolutional layers (with 3
× 3 filters and 8, 16 and 32 neurons

respectively), with layer normalization
after each of them, and 2 full-connect

layers (with 4576 and 40 neurons)
before the ‘Softmax’ layer. Nadam

optimizer with learning rate of 0.001
was used.

The dataset was
obtained shuffling
drug-off early PD

group and HC group.
It was divided into

training (80%) and test
(20%). The training set

was used for 8-fold
cross-validation.

The CNN model on
the test set of

structured PSD
yielded:

Accuracy:
99.87 ± 0.03

AUC: 99.88 ± 0.05.

[49]
Classification

of HC vs.
PD patients.

Subjects:
15 PD and 18 HC

Age:
PD: 67.3 ± 6.5
HC: 67.6 ± 8.9

HY scale:
1.3

UPDRS:
23.3 ± 9.1

Disease Duration:
7.4 ± 4.3

Medication
OFF

Twenty-seven-channel EEG
recorded during 60 s in

resting-state with eyes-open
at 1000 Hz. The noise

was removed.

Signals were filtered
into four frequency

bands, by a two-way
FIR filter. A general

orthogonalized
directed coherence was

used in each band to
compute directional
connectivity maps,

which were
normalized and

converted into 2D
images, resized to fed

the VGG-16 model.
LASSO regression

models were
computed for 30 runs
separately on latent
and non-latent cases.

In each run, data were
ramdomly divided in
train (25) and test (8)

sets. In total, 30 results
with least MSE at each
run were considered as
the LASSO coefficients.

VGG-16

VGG-16 with modifications: functional
VGG-16, maxpooling layer (512 units),
fully connected layer (512 units), fully
connected layer (64 units) with ReLU

activation function, and fully connected
layer (2 units) with Softmax activation
function. Optimizer: SGD. Learning
rate: 0.01. Decay: 0.001. Batch size: 8.
Loss function: binary cross entropy.

The model was tested
10 times on randomly

chosen train/test
partitions.

The test data set was
25% of data that had

been randomly
selected.

After 10 random
repetitions with

deep transfer
learning

Accuracy: 99.62
Precision: 100
Recall: 99.17

F1-score: 0.996
AUC: 0.996

Latent features were
correlated with five

clinical indices.
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[50]
Classification

of HC vs.
PD patients.

Subjects:
9 PD and 9 HC

Age:
PD: 55.22 ± 6.25
HC: 52.11 ± 4.98

HY scale:
2.28 ± 0.71

UPDRS:
25.89 ± 7.32

Disease Duration:
Not specified
Medication:

Not specified

Thirty-two-channels EEG
recorded in resting state with
eyes-open during 15 min at
1000 Hz. Impedances were
kept below 5 kΩ. An online
bandpass filter at 0.1–100 Hz
and an offline bandpass filter

at 0.1–45 Hz were used.
Artifacts were removed with
ICA. Segments exceeding 150
µV were removed. ECG, PPG

and RA signals were
synchronously recorded. In

total, 14 epochs of 60 s
without artifacts were selected

per subject.

Absolute and relative
powers, were

computed for each
electrode for 4

frequency bands, as
well as sensory-motor
rhythm, and the ratio

of alpha to theta
spectrums. For feature

selection, the elastic
network was

employed with
optimal norm
regularization

parameters L1 and L2.

SVM A linear kernel was used.

Nine-fold cross
validation.

Experiments were
randomly repeated 10
times. In each one, the
model parameters and
feature selection were

determined by
inner iterations

For only EEG:
Accuracy:

87.54 ± 13.46
Sensitivity:

86.19 ± 15.14
Specificity:

88.89 ± 19.75
The EEG of PD
patients had a

significant decrease
in high-

frequency power.

[51]

Classification
of 3

diseases
between
them and

vs. controls.

Subjects:
16 PD and mached

controls Age:
Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

ON

Eight-channel EEG during 10
s in a CNV trial. Some

artifacts were removed and a
low-pass filter at 30 Hz was

applied. Mean level and
baseline corrections were

performed. For each trial, 2
epochs of 512 ms
were extracted.

Sixteen amplitude
measures and a time

measure were
generated. The time

measure included the
post-imperative

negative variation.

MLP

Input layer with 17 nodes, 1 hidden
layer with 40 nodes, and 1 node for the

output layer. The parameters were:
gain = 1, momentum = 0.6 and learning
rate = 0.9. Back-propagation was used.

LOO cross-validation.

For PD vs. controls:
Sensitivity = 100
Specificity = 94

False-ve = 0
False+ve = 6

PPV = 94
NPV = 100

FAR = 6
FRR = 0

[52]

Clasification
of HC vs.

PD patients
with and
without
medica-

tion.

Subjects:
15 PD and 16 HC

Age:
PD: 63.2 ± 8.2
HC: 63.5 ± 9.6

HY scale:
2–3

UPDRS
Not specified

Disease Duration:
4.5 ± 3.5

Medication:
ON and OFF

Thirty-two-channel EEG
during 3 min in resting state

with eyes-open at 512 Hz. The
mean of the data was

removed and were
re-referenced to the common
average. A highpass filtering

at 0.5 Hz was used. The
artifacts were manually

examined and removed. Data
were segmented into

2 s epochs.

An automated tunable
Q wavelet transform
was used to extract

representative
subbands. Five

features were extracted
from the subbands.

The clinical
significance of features

are tested using the
Kruskal–Wallis test.

SVM, ANN,
KNN, RF,
LSSVM

LSSVM: polynomial (d = 10), RBF
(sigma = 0.05), Morlet (ai = 0.01), Sinc
and Mexican Hat (ai = 22 and constant

omega = 0.5) were tested.
KNN: k = 10.

RF: total number of learner was 10.
SVM: Fine Gaussian kernel with

automatic boxconstraint level.
ANN: 10 hidden neurons.

Ten-fold
cross-validation.

The results with
LSSVM were:

HC vs. PD OFF
Accuracy: 96.13

AUC: 97
HC vs. PD ON
Accuracy: 97.65

AUC: 98.56
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[53]

Identification
of the

cognitive
decline in

PD patients.

Subjects:
20 PD patients

with good
cognition and 20
PD patients with
poor cognition

Age:
Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Twenty-one-channel EEG
recorded during 15–20 min in
resting state with eyes-closed.
The signals were band-pass
filtered at 0.16–70 Hz. For

each patient, 5 visually
inspected artifact-free epochs

of 8.192 s were extracted.

Seven-hundred-ninety-
four-time features were

extracted from each
channel. In addition,
several clinical and

spectral features were
considered. The boruta
algorithm was used for

feature selection.

RF

The Bayesian algorithm was chosen for
hyperparameter optimization. The

depth of each tree and the number of
trees were 1 to 100. The minimum

number of samples in the leaf node and
to split a node were 1 to 10 and 2 to

20, respectively.

Five runs of 10-fold
cross-validation

The modeling
approach (4) had the

best performance.
The boruta

algorithm selected 1
to 3 features. None

of them were clinical.
Accuracy = 84.0 ±
4.2 F1 = 85.6 ± 3.2
Precision = 88.3 ±

6.9 Sensitivity = 83.0
± 2.7

AUC = 86.8 ± 6.0

[54]

Classification
of PD

patients
vs. HC.

Subjects:
25 PD and 25 HC

Age:
PD: 58.7 ± 7.7
HC: 54.6 ± 7.7

HY scale:
1–2

UPDRS:
Not specified

Disease Duration:
5.6 ± 3.5

Medication:
Not specified

Seventeen-channel EEG
recorded during 5 min in

resting state with eyes-colsed
at 200 Hz. Impedances were

kept below 5 kΩ. Signals were
amplified, a notch filter at 50
Hz, and a bandpass filter at

0.5–30 Hz were applied. ICA
was used. The data were

re-referenced to the average
reference. Signals were

segmented into 5 s windows
with 2.5 s overlap.

EEG segments were
decomposed, using

dynamic mode
decomposition, into
stable and unstable
components at four
frequency band. By
Pearson correlation,

stable brain network,
unstable brain
network, and

inter-connected brain
network were

constructed and
thresholded separately.

Traditional brain
network was also

constructed.
Topological attributes

were extracted.

SVM,
BN,
RF,

SGD,
KNN,

Adaboost,
RT,

bagging,
SL,

vote methods

Not specified Ten-fold
cross-validation

The average results
for all classifiers:
Using the stable
brain network

attributes
Precision: 89.6

Recall: 89.5
AUC: 90.8

Using traditional
brain network

attributes
Precision: 85.4

Recall: 85.0
AUC: 85.4

[55]

Detection
of

Turning
Freezing in
PD patients.

Subjects:
6 PD
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

OFF

Fifteen-channel EEG recorded
during Timed Up and Go

tasks. The EEG was
segmented to 1 s epochs
associated with normal

turning or turning freezing,
which resulted in 204 s of each
of them. A band-pass filter at
0.5–40 Hz was used. Artifacts

were removed.
Z-transformation was applied

to normalize the signals.

Two parameters were
extracted from the

theta, alpha, low beta,
and high beta spectral

bands using
S-transform. These
were the maximum
amplitude for each

band and the sum of
amplitude of each

band. ICA-EBM was
considered for

source separation.

BNN

Three-layer (input, hidden, and output
layers) feed-forward structure. Either 4
(for 15 channels) or 7 (for 4 channels)

hidden nodes were considered.

Data were randomly
split into 50% for

training and 50% for
test sets.

Best results with
ICA, 4-channels and

7 hidden nodes.
Train:

Accuracy = 86.8
Sensitivity = 85.8
Specificity = 88.0

Test:
Accuracy = 86.2
Sensitivity = 84.2
Specificity = 88.0

AUC = 0.9296
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[56]

Detecting
the

occurrence
of GIF

Subjects:
4 PD
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

OFF

Thirty-two-channel EEG
during a structured series of

Timed Up and Go tasks at 512
Hz.

Only data from 9 electrodes
positioned in locations of
interest were processed.
Average of 2 ear lobes

electrodes was taken as
reference. Data were

segmented into 1 s windows
and filtered using a nonlinear

IIR band-pass filter with a
cut-off frequency lower than 1
Hz and higher than 50 Hz to
remove artifacts. In total, 122
EEG samples were collected,
associated to Good Start (61)

and Gait Initiation Failure
(61).

Welch’s method with a
256 points FFT with

55% overlapping was
used to analyze four
frequency sub-bands.
Power spectra density
and centroid frequency

of each band were
calculated.

BP-NN

Two-layer feed-forward neural network
with 10 hidden nodes. Activation

function of the hidden layer was tan sig.
Levenberg Marquardt’s algorithm with

early stopping was used.

In total, 50 times runs.
Data was randomly

divided into training
34%, validation 33%,

and testing 33%.

The best
performance of the

classification system
was achieved with a

combination of
nine channels:

Sensitivity: 84.27
Specificity: 85.02
Accuracy: 84.80

[57]

Classification
of PD

patients
with

medication,
without

medication,
and controls.

Subjects:
10 PD and 12

controls
Age:

PD: (40–80)
HC: (40–80)

HY scale:
1–2

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

ON and OFF

Sixty-one-channel EEG
recorded during 2 min in

resting state followed by 140 s
of intermittent photic

stimulation with eyes-closed.
In total, 10 electrodes were
selected. Band-pass filter at
0.5–50 Hz and a 60 Hz notch
filter were applied. Average

reference was used. The
artifacts were removed. The
impedance remained below

5 kΩ.

The last 10 s stretch of
stimulation was
divided into 20

segments of 0.5 s
which were used to
calculate the partial

directed coherence for
6 bands (delta, theta,
alpha, beta, gamma1,
and gamma2). A total

of 60 features were
calculated. In total, 19
features were selected

using GA with a
population of 20
individuals, 20
generations, a

crossover probability
of 0.6, and a mutation

probability of 0.03.
Both approaches were
considered as inputs.

BN,
NB,

MLP,
SVM,
J48,
RT,
RF,

ELM,
mELM

MLP: hidden layers 1 and 2, learning
rate 0.3, momentum 0.2, iterations 500.
SVM: polynomial kernel (exponent = 1

to 5) RBF kernel (gamma = 0.25 and 0.5).
RF: Trees 10 and 50.

ELM: 100 neurons in the hidden layer
and sigmoid kernel.

mELM: 100 neurons in the hidden layer,
dilatation, and erosion kernels.

K-fold
cross-validation.

The best model was
RF with 50 trees.

All features:
Accuracy = 99.22

19 features:
Accuracy = 98.09
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[58]

Classification
of PD

patients vs.
controls
using 6

emotional
stimuli.

Subjects:
20 PD and 20

controls
Age:

PD: (40–65)
HC: (40–65)

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Fourteen-channel EEG
recorded during emotional
stimuli. The signals were

segmented into 10 s epochs
with overlapping of 75%.

Then, pass-band elliptic filters
were used to obtain the alpha,

beta, and gamma bands.

For each band, 6
features were

calculated: Entropy
(EN), Energy-Entropy

(EEN), Teager
Energy-Entropy
(TEEN), Spectral
Entropy (SEN),

Spectral
Energy-Entropy

(SEEN), and Spectral
Teager Energy-Entropy

(STEEN).

PNN, KNN,
SVM

KNN: k in the range 1 to 10.
PNN: used exponential activation

function with σ ranged from 0.55 to
0.65.

Not specified.

The best accuracy for
each emotion:

Happiness: 99.59
with SVM and TEEN
Sadness: 90.81 with

KNN and EN
Fear: 95.07 with
KNN and SEEN

Anger: 91.42 with
SVM and SEEN

Surprise: 94.53 with
KNN and SEEN

Disgust: 88.18 with
SVM and SEEN.

[59]

Classification
of PD

patients vs.
controls
using 6

emotional
stimuli.

Subjects:
20 PD and 20

controls
Age:

PD: (40–65)
HC: (40–65)

HY scale:
Not specified

UPDRS:
Not specified

Disease duration:
Not specified
Medication:

Not specified

Fourteen-channel EEG
recorded during emotional
stimuli. The signals were

segmented into 10 s epochs
with overlapping of 75%.

Then, pass-band elliptic filters
were used to obtain the alpha,

beta, and gamma bands.

For each band, 4
features were

calculated: Entropy
(EN), Energy-Entropy

(EEN), Spectral
Entropy (SEN), and

Spectral
Energy-Entropy

(SEEN).

PNN,
KNN

KNN: k in the range 1 to 10.
PNN: exponential activation function

with σ ranged from 0.55 to 0.65.
Not specified.

The best accuracy for
each emotion:

Happiness: 96.8 with
PNN and SEEN

Sadness: 90.81 with
KNN and EN

Fear: 95.07 with
KNN and SEEN

Anger: 88.65 with
KNN and EN

Surprise: 94.53 with
KNN and SEEN

Disgust: 87.43 with
KNN and EN.

[60]

Classification
of 3

diseases
and

controls
through 4

methodolo-
gies.

Subjects:
15 PD and 16

controls
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Twelve-channel EEG recorded
during approximately 250 ms.

Cleaning and task were not
specified.

Features selected
through 4

methodologies: 1. The
maximum amplitude
and frequency of the

FFT in alpha, beta,
theta, and gamma

bands. 2. Amplitudes
of the first 8 peaks of

the FFT and their
frequency values up to

30 Hz. 3. The FFT of
the EEG signal below

30 Hz. 4. The
maximum amplitude
and frequency of the

FFT in each band were
applied to the

combination of the 12
electrodes.

ANN

Feed-forward architecture with 16
nodes in the hidden layer. Activation
functions were logsig and tansig. The

training algorithm was
Levenberg-Marquardt.

In total, 75% training,
12.5% validation and
12.5% test. The sets

were balanced in terms
of pathologies that
contained each one.

Bad results were
expressed in terms
of the correlation

coefficient between
target and predicted

values.
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[61]

Classification
of RBD

patients vs.
controls.

Some
patients

were
eventually
diagnosed
with PD

and dementia.

Subjects:
118 RBD and 74

controls.
14 RBD became

PD.
No direct patient

data.
Age:

Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Fourteen-channel EEG
recorded in resting state with
open-eyes periods followed

by closed-eyes periods. Only
eyes-closed sequences were
considered. The EEG was

recorded when the patients
were RBD. A band-pass filter

at 0.3–100 Hz and a notch
filter at 60 Hz were applied.

Artifacts were removed.

Using a sliding
window of 1 s, 148
spectrograms per

subjet were generated
(of 20 s of duration

each) using only the
FFT amplitude bins in
the band 4–44 Hz. The

spectrograms were
centered and

normalized to unit
variance for each

frequency and channel.

CNN,
RNN

CNN: 4 hidden-layer convolutional.
Dropout, max-pooling layers, and

cross-entropy loss function were used.
RNN: with LSTM and GRU, with 3 cells
which 32 units each. Dropout was used.

LOO cross-validation.
For training, the

dataset was balanced
by random replication

preserving the
distribution of
the subjects.

The results for
controls vs. PD:

CNN:
Accuracy = 79 ± 1
AUC = 0.87 ± 0.1

RNN:
Accuracy = 81 ± 1
AUC = 0.87 ± 0.1

In RNN, there was
no difference

between LSTM
and GRU.

[62]

Classification
of PD

patients
with RBD

vs. controls.

Subjects:
14 RBD with PD
and 14 controls.

Age:
Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Fourteen-channel EEG
recorded in resting state with
open-eyes periods followed

by closed-eyes periods. Only
eyes-closed sequences were
considered. The EEG was

recorded when the patients
were RBD. A band-pass filter

at 0.3–100 Hz and a notch
filter at 60 Hz were applied.

Artifacts were removed.

Several spectrograms
were computed to

extract temporal series
of power for each

electrode and band (10
bands in total). The use

of 4 s and 1 s
spectrogram
windowing

was explored.

RNN
ESN layer with 3000 nodes,

least-squares regularization. Spectral
radius ranged from 0.5 to 2.

For each parameter set,
50 runs were carried
out with random and

balanced training (90%)
and test (10%) sets.

The best
performance was
obtained with 1 s.

Test set:
Average_

accuracy = 85

[63]

Classification
of PD

patients vs.
controls.

Subjects:
30 PD and 30

controls.
Age:

PD: (50–70)
HC: (50–70)

HY scale:
1–1.5

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Two-channel EEG recorded
for 30 min for the flexion and

extension of the wrist.
Cleaning was not specified.

EEG: Shannon entropy,
Lyapunov, and inverse

Lyapunov exponent
were calculated.

EMG: power, standard
deviation, root mean

square, variance,
waveform length,

modified median, and
mean frequency.

MLP

Back Propagation was used as the
learning algorithm and “trainlm” was
used as the training function. Sigmoid

transfer function was used for the
hidden layer.

The dataset was
divided into training
70%, validation 15%,

and testing 15%.

MLP with inputs:
EEG: accuracy = 62
EMG: accuracy = 73

EEG + EMG:
accuracy = 98.8

[64] Classification
PD and HC

Subjects:
16 PD and 15

controls
Age:

PD: 62.6 ± 8.3
HC: 63.5 ± 9.6

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not especified

Medication:
OFF

Forty-channel EEG during 2
min in resting state at 512 Hz.
Signals were segmented into
patches of 512 time samples.

EEG patches of 512
samples were used as
input. Channels were

considered independently.

ANN

Twelve layers with 512, 512, 128, 128,
64, 64, 32, 32, 16, 16, 8, and 2 (output)

units. The conjugate gradient
backpropagation with Polak-Ribiére
updates was used for updating the
weights, and biases of the network.

Grid search was used for
hyper-parameters selection.

In total, 20% for testing
and the rest was used

for training
and validation.

The Oz/P8/FC2
channels were

selected and used
with majority voting.

Results on test set
were:

Accuracy: 98
Sensitivity: 97
Specificity: 100
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[65]

Classification
of PD

patients
with ON

medication
vs. OFF
medica-

tion.

Subjects:
28 PD
Age:

69.75 ± 8.43

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

ON and OFF

Sixty-four-channel EEG
recorded during 12 min in the

oddball task. In total, 60
electrodes were selected

during the period without
stimuli. A band-pass filter at

13–30 Hz was applied.
Non-brain activities

were subtracted.

The average spectral
power over all the

frequency ranges was
calculated and added

together. The
differences between

OFF and ON
medication data were
compared. In total, 12

channels were selected.
A preprocess with
delay (τ = 12) and

embedding dimension
(m = 3) were applied.

Three sets of 12
time-series

(non-delayed,
τ-delayed and

2τ-delayed)
were generated.

EEGNet,
HNet,

DGHNet

ADAM optimizer with learning rate =
10−4 for 500 epochs was used.

HNet: 3 layers (Convolutional, LSTM,
LSTM) with 28 filters, 14 and 2 neurons,

with sigmoid, sigmoid, and Softmax
activation.

DGHNet: 2Dconvolutional as input
layer with 4 filters and exponential

linear activation. Values of m = 4 and τ
= 3, 6, 9, 12, and 17 were trained.

1Dconvolutional with exponential
linear activation. LSTM with 2 outputs

and softmax activation.

Intra-patient: the data
was randomly shuffled

and split into 90%
training and 10% test.
The training dataset

was divided into 85%
training and

15% validation.
Inter-patient: 2

patients with ON and
OFF medication were
randomly left out for

the test. The remaining
patients were

partitioned at 85%
training and 15%

validation.

The results of HNet
and DGHNet were
similar (accuracy:
99.74 vs. 99.22).
DGHNet was

considered better for
containing fewer

parameters.
Test:

Accuracy = 99.22
Sensitivity = 98.98
Specificity = 99.46

MCC = 98.44
F1 = 99.24

[66]

Classification
of PD

patients
vs. HC

Subjects:
9 PD and 9 HC

Age:
Not specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Twenty-channel EEG
recorded in 3 epochs of 1 min

during externally paced
bilateral, cyclical foot in the
sitting position at 1200 Hz.

Kolmogorov
Complexity, Sample

Entropy, and
Approximate Entropy

were extracted for each
channel. Different

subsets of electrodes
were considered, and

their associated
features were used

as input.

MLP Five hidden layers chosen by trial and
error method.

Ten-fold
cross validation

The best results were
obtained for the
channels Fz, F1,

and F2:
Accuracy: 97.5
Precision: 100

Sensitivity: 96.7
Specificity: 100

AUC: 0.978

[67]

Selection of
the best

classifier of
PD vs.

controls
using the
minimum
number of

HOS features.

Subjects:
20 PD and 20

controls.
All right-handed.

Age:
PD: 59.05 ± 5.64
HC: 58.10 ± 2.95

HY scale:
1: n = 2; 2: n = 11;

3: n = 7
UPDRS:

Not specified
Disease Duration:

5.75 ± 3.52
Medication:

ON

Fourteen-channel EEG
recorded during 5 min in

resting state with eyes-closed.
Threshold technique at 80 µV.
A band-pass filter at 1–49 Hz
was applied. 2 s epochs with
50% overlap were considered.

For each epoch, a total
of 13 HOS

characteristics were
calculated. The

Student’s t-test was
also obtained to
determine the
importance of

the characteristics.

DT,
KNN,

FKNN,
NB,

PNN,
SVM

FKNN: Euclidean distance, m = 1.24
and k = 3.

KNN: k = 2 and Euclidean distance.
PNN: exponential activation and

σ = 0.284.
SVM: polynomial (orders 2 and 3), RBF,

and linear kernels.

Ten-fold
cross-validation. The
characteristics were
added one by one to
each classifier until
maximum precision

was achieved.

The best model was
SVM with RBF

kernel:
Accuracy = 99.62 ± 0.58
Sensitivity = 100 ± 0.0
Specificity = 99.25 ± 0.53
Precision = 99.38 ± 0.47
F1 Score = 0.98 ± 0.05



Appl. Sci. 2022, 12, 6967 20 of 33

Table 3. Cont.

Objective Evaluation of the Quality of the Dataset Data Pre-Processing Evaluation of the Models Used Results

Ref. Objective Participants Stage PD EEG Pre-Processing Features Models Model Parameters Validation Best Results

[68]

Identifica-
tion of the

onset of
freezing of
PD patients
during walking

Subjects:
26 PD
Age:

69.8 ± 8.41

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Four-channel EEG recorded in
periods of 1–2 h per patient at

500 Hz during a structured
series of video-recorded

Timed Up and Go tasks. Only
data from 10 patients and

differential channels O1-T4
and P4-T3 were used. Epochs
of 1 s from individual freezing
events were taken. Band-pass

at 0.5–60 Hz, and
band-stop at 50 Hz

butterworth IIR filters were
applied. An additional

threshold filter was applied.

Data were divided into
normal, onset, and

freezing with 40
samples per subject
and group. Discrete

wavelet transform was
used to calculate

waveled entropy for 5
frequency bands, and
total waveled entropy.

The model was fed
with the wavelet

entropy of 3 bands an
total for channel O1-T4,
and all bands and total

for channel P4-T3,
separately and
in combination.

BP-NN

Three layers with 4–7 hidden nodes
depending on the number of inputs

dimension and the number of training
pairs. Levenberg Marquardt algorithm

was used. Activation function was
Tangent Sigmoid.

Twenty runs for each
feature. Data was

divided in training
56%, validation 25%,

and test 19%.

The results for
Normal vs. Onset for

P4-T3 were:
Accuracy: 76.6 ± 3.4

Sensitivity:
74.2 ± 6.8
Specificity:
78.9 ± 7.3

Normal vs. Freezing
for O1-T4 and P4-T3:
Accuracy: 73.9 ± 2.8

Sensitivity:
71.2 ± 6.1
Specificity:
77.2 ± 4.7

[69]

Predicting
transition

to FOG
from

normal walking

Subjects:
26 PD
Age:

69.8 ± 8.41

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

Four-channel EEG recorded in
periods of 1–2 h per patient at

500 Hz during a structured
series of video-recorded

Timed Up and Go tasks. Data
from 10 patients without
significant artifacts were
selected and differential

channels O1-T4 and P4-T3
were used. Epochs of 1 s were
taken. Band-pass at 0.5–60 Hz,

and band-stop at 50 Hz
butterworth IIR filters were

applied. Ocular and muscular
artifacts were removed.

Data were divided into
normal, transition, and

freezing with 40
samples per subject

and group.
Discrete wavelet

transform was used to
calculate total, global

and centroid frequency
wavelet cross spectrum

for 5 bands, wavelet
cross frequency energy
ratios por specific pairs

of bands. Other
statistical features were
computed. In total, 131
features were selected

to feed the model
separately and
in combination.

MLP, KNN

MLP: 3 layers with 8 to 12 hidden layer
neurons. The Levernberg Marquardt

algorithm was used. Error goal of 0.01.
KNN: 15 to 40 nearest neighbors based

on the Euclidian distance.

Twenty runs for each
feature and their

combination. Data was
divided into training
56%, validation 25%,

and test 19%.

Using MLP with
statistical features:

Sensitivity: 75.47
Specificity: 71.47
Accuracy: 73.47

For kNN with all
features were:

Sensitivity: 87.25
Specificity: 70.00
Accuracy: 52.75
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[70]

Classification
of HC vs.

PD patients
through different
emotional states.

Subjects:
5 PD and 5

controls
Age:

PD: 45–65
HC: 20–25

Age for each
subject were

specified

HY scale:
Not specified

UPDRS:
Not specified

Disease Duration:
Not specified
Medication:

Not specified

One-channel EEG recorded
while watching happy, sad,

and neutral videos, and
during meditation in resting
state with eyes-closed. The

EEG collecting device
produced power values for
eight frequency bands, and

attention values.

Benjamini-Hochberg
corrected F-tests and

t-tests were applied on
attention level, average

power of frequency
bands, and on absolute

value of first and second
order derivatives. An
initial model was fed
with first and second
order derivatives for

each pair emotion-band.
Meditation was not used.
The three best pairs were

combined in the final
model. Input features
were preprocessed to
have zero mean and

unit variance.

MLP

Initial model: 1 hidden layer with
4 neurons.

Final model: 2 hidden layers with 4 and
2 neurons, respectively.

Adam optimizer, Log-loss loss function,
and activation function tanh were used

in both.

Five-fold cross
validation

The results of the
final model were:
Accuracy: 0.965
F1 score: 0.976
Recall: 0.970

Precision: 0.955

[71]

Classification
of patients
with neuro-

logical
diseases

vs. controls.

Subjects:
31 PD and 264

controls.
Age:

PD: 56.62 ± 12.32
HC: 49.51 ± 12.54

HY scale:
1–3

UPDRS:
43.44 ± 15.53

Disease Duration:
Not specified
Medication:

Not specified

Nineteen-channel EEG
recorded during 5 min in

resting state with eyes-closed.
The impedances were kept

below 5 kΩ. A high-pass filter
at 0.15 Hz and a low-pass

filter at 200 Hz were used. A
band-pass filter at 2–44 Hz
was applied. Artifacts were

manually removed. Channels
were divided into ROI.

The power spectrum
was calculated for each
subject and 5 frequency

bands (delta, theta,
alpha, beta, and
gamma) were
considered for

each ROI.

SVM The default settings were used as the
running parameters.

Ten-fold
cross-validation. The

distribution of the
patients was kept.

Controls with obesity
were used to validate

the model.

The results for
controls vs. PD:

Accuracy = 94.34 ± 1.81
Sensitivity = 0.93 ± 0.02

FPR = 0.11 ± 0.01
ROC = 0.95 ± 0.02
MAE = 0.07 ± 0.02
RMSE = 0.16 ± 0.02

Acronyms: QEEG—Quantitative Electroencephalogram, EEG—Electroencephalogram, PD—Parkinson’s disease, HY—Hoehn-Yahr scale, UPDRS—Unified Parkinson’s Disease Rating Scale,
EEG—electroencephalogram, FOG—freezing of gait, DTF—directed transfer function, H-COG—high cognition, L-COG—low cognition, inter-COG—intermediated cognition, AOB—auditory
Oddball, BNA—Brain Network Analytics, SPWVD—smoothed pseudo-Wigner Ville distribution, TFR—time-frequency representation, NC—normal cognition, ERP—event-related potential,
ECG—electrocardiogram, PPG—photoplethysmography, RA—respiratory, LSSVM—least square support vector machine, EW—Effective walking, SGD—steepest gradient descent, SL—simple
logistic, GIF—Gait Initiation Failure, BP-NN—Back Propagation Neural Networks, FFT—Fast Fourier Transform, ROI—regions of interest, SVM—Support Vector Machine with C regularization
constant and σ width of the kernel, KNN K—Nearest Neighbors with k being the number of nearest neighbors considered, HC—healthy controls, LOO—leave-one-out, RBD—REM behavior disorder,
REM—Rapid eye movement, EOG—electrooculogram, RF—Random Forest, MCI—mild cognitive impairment, PLI—Phase lag index, DT—decision tree, LR—logistic regression, LASSO—Least
Absolute Shrinkage and Selection Operator, RBF—radial basis function, AUC—Area Under the Curve, MLP—Multilayer Perceptron, PPV—positive predictive value, NPV—negative predictive
value, FAR—false alarm rate, FRR—False reassurance rate, CNV—contingent negative variation, SFAM—Simplified Fuzzy ARTMAP, PSFAM—Probabilistic SFAM, IPSFAM—integrated PSFAM,
PNN—Probabilistic neural network with σ being the smoothing parameter, CNN—Convolutional Neural Network, RNN—Recurrent Neural Network, LSTM—Long–Short Term Memory Network,
ICA-ENM—independent component analysis by entropy bound minimization, BNN—Bayesian neural networks, GA—Genetic algorithms, BN—Bayes net, NB—Naïve Bayes, RT—random tree,
ELM—extreme learning machine, mELM—morphological ELM, GRU—Gated-Recurrent Unit, ESN—Echo State Network, EMG—Electromyogram, RMSE—Root-mean-square error, HNet—Hybrid
Network, DGHNet—Dynamical system Generated HNet, MCC—Matthews Correlation Coefficient, ANN—Artificial Neural Network, PCA—principal component analysis, FC—agglomerative
feature clustering, CSP—Common Spatial Patterns, FPR—false positive rate, ROC—Receiver Operating Characteristic, MAE—mean average error, PSD—power spectrum density, DFA—Discriminant
Function Analysis, HOS—higher order spectrum, CFS—correlation-based feature selector, FKNN—fuzzy KNN with m being the fuzzy strength parameter. Here n stands for the number of patients.
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1. Evaluation of the quality of the dataset. It was evaluated if the articles considered
balanced datasets, and if the samples were statistically equivalent, by means of
the number of subjects in each group and the demographic data of the patients.
Other clinical parameters related to PD progression were also evaluated, such as the
Hoehn-Yahr (HY) scale, UPDRS, years of disease, and whether the data collection
was recorded with active dopaminergic medication. These parameters provided
information about the quality of the dataset, allowing for assessing the performance
results of the model. Finally, parameters related to the recording of EEG signals
were evaluated, such as the number of channels, duration of the test, and type of
test performed, which provided information about the quality of the signal recording
process. Regarding Table 3, this point corresponds to the Participants column, Stage
PD column, and part of the EEG Pre-processing column.

2. Data pre-processing. The cleaning protocol of the EEGs and the extraction of features
were analyzed. The cleaning protocol of the EEG is a process that is sometimes omitted.
Moreover, there is no gold standard defined, and the great variety of techniques
usually considered produce different modifications in the EEG signals. Thus, the
cleaning of the EEG was evaluated in each article to verify the impact of this pre-
processing on the results of the models. With regard to the extraction of features
from the EEG signals, it should be taken into account that the features introduced as
inputs in the models play a transcendental role in the ML techniques, so they were
collected to extract those used most frequently and those for which better results were
obtained. The information associated with this point was specified in part of the EEG
Pre-processing column, and the Features Column, of Table 3.

3. Evaluation of the models used. The type of model used together with its architecture
and its training and validation methods were examined. This set of parameters
was considered to assess which models obtained the best results depending on the
objective of the article. More specifically, the analysis of the validation process carried
out allowed for evaluating the quality of the results and provided a more objective
assessment of the scope of the predictive results of the model. Within Table 3, this
information corresponds to the Models, Model Parameters, and Validation columns.

The aspects exposed above combine both clinical and computational points of view,
providing, together, an analysis of the three fundamental steps that should be considered in
a ML problem. In addition, to facilitate subsequent analysis, Table 3 included a row in the
header, specifying the correspondence between these three and the columns, an additional
column indicating the objective of each study, and another column with the most relevant
results of each model and the metrics used.

Next, a global analysis for each of the three key points introduced in Table 3 was pro-
vided: dataset quality, data pre-processing, and model evaluation. Regarding the objective
of the selected articles, it could be noticed that 30 of the studies included in this review
covered the problem of classification between patients with PD and controls, whereas the
remaining articles considered diverse topics: six detected alterations in gait, four classified
cognitive impairments, two selected the features to classify cognitive impairment and
patients with PD, and one distinguished between patients with medication vs. patients
without medication. The remaining 16 articles were not included in Table 3, despite passing
the exclusion criteria, since their objective was not completely related to the study of PD
with EEG. Within this group of articles, five classified emotions [72–76], four identified
sleep disturbances [77–80], five used DBS or neurostimulation [81–85], one combined EEG
and EMG features [86], and one classified mental tasks [87]. In conclusion, it can be appre-
ciated that the diagnostic problem of PD is the main objective of this type of study. The
subsequent evaluation was carried out in the 43 articles included in Table 3.
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3.2.1. Assessment of the Quality of the Dataset

The evaluation of the quality of the dataset was performed through the analysis of the
number of subjects that contained each class, the clinical parameters associated with the
progression of the disease, and the EEG recording parameters.

It was observed that 69.77% of the selected studies (30 articles) used balanced classes,
that is, the classes contained a similar number of subjects. The criterion that was cho-
sen to evaluate when the classes were unbalanced was that the difference between each
pair of classes was greater than 25% of the class with the largest number of samples. Ac-
cording to this criterion, 16.28% of the studies did not consider balanced classes, and the
articles [35,40,55,56,68,69] only had a single class. A training set with unbalanced classes
can lead to prediction errors and poor data generalization. It should be noted that for this
selection, the total number of subjects per class was taken into account in those studies
that used a mixture of patients with different diseases. The mean number of subjects for
the balanced sets was approximately 23.10 ± 16.74 in each class (this result was calculated
for the PD patients). It can be appreciated that among the studies with a balanced dataset,
only [41] exceeds 50 subjects in one of the classes, whereas the mode was 20 subjects per
class (considered in nine articles). In addition, to verify that the classes could be statistically
compared, it was convenient to verify that the subjects exhibited the same demographic
characteristics. Of the 30 articles that considered balanced classes, only 18 of them spec-
ified the mean age of the patients included in the study. The mean of these groups was
63.37 ± 4.22 years, which is approximately the age at which this disease usually begins. Of
the remaining articles belonging to this group, eight indicated the age range of the subjects,
contained in (40–80) years. The articles [43,51,53,60,62,66] did not specify the age of the
subjects included in the study.

The state of the disease is relevant information to evaluate the quality of the dataset
because it can influence the performance of the model and therefore affect the classification
problem, since patients with PD in more advanced stages of the disease who were moni-
tored without their habitual take of dopaminergic medication may be easier to distinguish
from the controls than a group of PD patients in the early stages of the disease who took
their dopaminergic medication. Nevertheless, not all articles contained the state of the
disease of the patients. From Table 3 it was observed that 32.56% of the selected articles
did not provide any information about the disease status or the medication, 13.95% of the
studies only indicated the medication, 6.98% only specified the affectation through the HY
scale, and 11.63% of the articles provided little information. Therefore, only 34.88% of the
selected articles included all the information related to the patients’ condition and their
medication. For the dopaminergic medication, it was found that 51.16% of the articles did
not report the status of the medication during the EEG recording, 13.95% recorded the EEG
in the ON state, 16.28% recorded the EEG in the OFF state, and 18.60% recorded the EEG in
ON and OFF states.

In relation to the EEG recording, the parameters specified in Table 3 were: the number
of EEG channels, the EEG recording length, and the test performed. A high density of
electrodes has greater spatial resolution and therefore provides more information about
the global state of the brain by increasing the data contained in the EEG. The number of
electrodes was specified in all articles with a mean value of 43.34 ± 62.18 electrodes. As can
be appreciated, there was great heterogeneity in the density of electrodes, with a mode of
14 electrodes considered in eight studies. There were studies (such as [35,41,63,68–70]) that
used EEG with less than five channels, but it should be noted that three of them detected
gait disturbances, two diagnosed PD in combination with EMG, and [70] used one channel
with emotional stimuli. Regarding the duration of the EEG recording, the mode was 5 min.
Moreover, the tendency was to divide the signals in windows of uniform length, so that
larger recordings provided larger datasets and allowed some studies to eliminate those
EEG segments that had defects or could disturb the analysis. Finally, different types of EEG
tests, such as resting state tests, stimulation of emotions, or motor activation tests, provide
EEGs with different properties and therefore are not comparable. In the articles selected
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for this review, the resting state tests predominated, as they were considered in 22 articles,
followed by Timed Up and Go tasks (present in 5 articles), and tests that require a physical
response to a stimulus (Oddball and Visual Go/No-Go in 4 studies).

3.2.2. Data Pre-Processing

Within data pre-processing, two key points may be distinguished: the EEG cleaning
protocol and the feature extraction. It could be seen from the information in Table 3 that
the cleaning process was very heterogeneous among the selected articles, which may be
due to the lack of a standard EEG cleaning protocol. Actually, 27.91% of the studies did not
specify the EEG cleaning process, 23.26% carried out little pre-processing in the EEG data,
and 48.84% of the articles used artifact-free EEG signals. This makes it difficult to evaluate
the dataset and assess how this pre-processing affects the EEG signals since alterations
in the signals can modify essential aspects and lead to a false diagnosis. A more precise
evaluation of these aspects is shown in the discussion section.

The articles also showed great heterogeneity in the features extracted from the EEG
signals. Spectral features predominated (they were considered in 88.37% of the articles),
and only [29,31,42,64] used signal segments as input data to the model. Although the
studies used a wide variety of spectral features, the most common procedure consisted of
decomposition into frequency bands.

3.2.3. Evaluation of the Models Used

As shown in Table 3, one of the most notable characteristics of the selected articles had
to do with the variety of models used. A brief description of these models can be found in
Table 1 of [88]. The number of models used exceeded the number of articles selected. This
was due to the fact that 18 articles, corresponding to 41.86%, made comparative studies
between various models, whereas the remaining articles used a single model. Within the
latter group, MLP was the most used model, being considered in five articles, followed by
CNN used in four studies, and SVM and RF, utilized in three articles each.

For the complete set of selected studies, Figure 3A shows a bar chart with the models
used and the number of times they appeared in the articles, differentiating those models
that used symbolic processing (in red) and subsymbolic processing (in blue). It was taken
into account that J48 is a model based on DT, VGG-16 is a model based on CNNs, and
that SGD, AdaBoost, bagging, and vote method are training and optimization methods
and therefore do not belong to the group of models used. Moreover, SL was incorporated
into the group of LR. The ANN group contains both the unspecified ANN (since the
corresponding articles suggested they were MLP networks) as well as BP-NN and FF-NN.
As expected, since the dataset was made of time series, those models with subsymbolic
processing predominated, being considered 82.61% of the time, whereas RF, DT, and RT
were the only models utilized within the symbolic processing group. To emphasize these
differences, it should be pointed out that whereas 17.39% of the articles considered models
with symbolic processing, only two articles used them exclusively. Taking into account
the previous groups, Figure 3A shows that the most used models in the articles included
in this review were SVM and ANN, considered by 14 studies, followed by KNN, used
by 10 studies, and RF and CNN models, which appeared in nine studies. The acronyms
utilized were defined in the description in Table 3.

The importance of Neural Machine Learning, which constituted 42.39% of the models
used, although the most widely used models were SVM, a non-neural ML technique, and
ANN in the same proportion, stand out. Deep Learning (DL) techniques are of special
importance. Deep Neural networks are networks with more complex architectures that
allow greater abstraction levels at the expense of increased computational power. So,
the development of these models was expected to be concentrated in recent years. In
fact, since 2019, we found 28 articles, of which we discarded [46,54] for not providing
enough information about the model used. Of the remaining 26 articles, 57.69% used
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Neural Machine Learning models, predominating the use of CNNs, present in 34.62% of
the studies.
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Regarding the architecture of the models, it should be noted that, although it was
specified for most of them, the degree of specificity of this information showed great
variability among the articles. Actually, for the most complex models, parameters such
as the number of units in each layer, the activation function used, the optimizer used,
the learning rate value, or the loss function chosen, were specified in a few of the arti-
cles, and the associated information was not always uniform for all the models within
every article. Moreover, the absence of a baseline complicated the comparison between
the different studies. Both points made it difficult to provide a precise assessment of the
architecture, and so of the Model Parameters column. However, it is worth emphasiz-
ing that it stood out the use of the Adam optimizer, the ReLU activation function, and
Softmax for the last layer. Within the assessment of the training and validation phase, it
could be observed that 24 of the selected articles (55.81%) used the K-fold cross-validation
technique (two of which were LOO), and 16 of the selected articles considered a division in
separate sets for training/validation/testing according to percentages fixed in each study.
In particular, for this last set of articles, the mode was to use around 70% of the data to train
the model, considered in six of them. The remaining articles [37,58,59] did not specify the
methodology used.

To evaluate the results obtained by the selected articles, the accuracy metrics were
considered and used in 90.70% of the articles, followed by sensitivity, used in 69.77% of
the studies, and specificity, used in 46.51% of the articles considered in Table 3. For the 31
articles that covered the diagnostic problem of PD, it was found that the models with at
least two metrics greater than 90% were: refs. [51,64,66,70] using ANN with values over
97% for sensitivity and precision, refs. [38,39,49] considering CNN with values over 99%
for accuracy, precision and sensitivity ([38,39] were based on the same study), refs. [29,30]
using CNN + RNN with values over 93% in accuracy, sensitivity, and precision, refs. [67,71]
utilizing SVM with accuracy and sensitivity values over 93%, and [44] using DFA with
accuracy, specificity and sensitivity values over 94%. For these articles, the validation
method carried out was evaluated to obtain information about the ability of the model to
generalize the result in blind tests. It was found that the predominant method was cross-
validation for 9 of the 12 articles, whereas [29,49,64] split the data into training, validation,
and test. The models with the best results in the problem of classifying patients with PD and
controls were CNN, and the group of ANN models, found in articles [38,39,51,59,64,66,70].
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4. Discussion

Parkinson’s is a disease mainly characterized by motor dysfunctions that affect the
quality of life of patients. The development and application of ML techniques to the analysis
of EEG associated with PD is a major initiative in PD research as it represents an affordable
and accessible technique that may help to make an early diagnosis. As can be seen in the
PRISMA diagram in Figure 1, the selection process carried out on this topic resulted in a
total of 59 articles. The year and country of publication of the selected articles are displayed
in Figure 2. According to that information, it can be noted that the interest in this field has
shown to be global (predominating the development in Asia). Furthermore, such interest
has increased in recent years, probably caused by the greater amount of available data and
by the growth of computational power, which allows for the use of more complex and
advanced models.

For a deeper analysis of the content of each article, three key points were evaluated
within ML techniques: 1. the quality of the dataset, by means of the clinical parameters and
the recording parameters of the EEG signals; 2. data pre-processing, through the cleaning
protocol and the extraction of features; 3. the evaluation of the models used specifically the
type of model, its architecture, and the training and validation methods. These points are
summarized in Table 3.

4.1. Quality of the Dataset

Regarding the quality of the dataset, 69.77% of the studies worked with balanced
datasets with an average number of 23.10 ± 16.74 subjects for each class. The use of
balanced classes in training is important to ensure reliable results since unbalanced training
classes tend to favor the majority class and can lead to skewed accuracy metrics. Among
the studies that used balanced classes, those with 20 subjects per class predominated. This
may provide a measure of the adequate number of subjects, an especially important piece
of information in the case of EEG data, as they depend on the availability of the patients,
and therefore they may be quite complicated to obtain.

Furthermore, the EEGs of the subjects change with age, and hence, it should be cor-
roborated that the classes exhibit similar demographic data so that the sets are statistically
comparable. This also applies to the state of the disease of PD patients, since patients in
more advanced stages of the disease are easier to distinguish from healthy controls than
patients in the early stages of PD. It is striking that only 34.88% of the articles specified
such information. This lack of specificity may be a limitation in many studies since the
differences between the state of the disease of PD patients and their medication status
may influence the results of the classification problem. This was reflected in [65], which
classified PD patients in the ON state vs. OFF state of medication, and in those studies that
evaluated cognitive impairment [32,34,45,47,53]. Consequently, those articles that did not
specify the clinical setting of the patients [37,40,42,43,46,51,53,55,56,58–62,64–66,68–70], nor
the status of the medication in the patients [32,33,35,41,50,54,63,71] were excluded from the
evaluation process of the current state of diagnosis of PD, because they did not allow the
objective evaluation of the results of the models used. These exclusions, based on quality
criteria, resulted in 15 admissible articles.

Regarding the EEG recording parameters, although the electrode density did not
directly affect the quality of the recorded signal, it did so to its spatial resolution, because a
high density of electrodes increases the number of EEG signals and therefore the amount of
information, favoring a more complete dataset that benefits the learning of the models. The
number of electrodes considered was heterogeneous, although montages with 14 electrodes
predominated, followed by 64 and 32 channels in the same proportion.

4.2. Data Pre-Processing

Table 3 showed that 27.91% of the studies did not specify the EEG cleaning process,
23.26% carried out little pre-processing in the data (which is the application of filters
without eliminating artifacts), and 48.84% of the articles used artifact-free EEG signals. In
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the case of those studies that did not specify the EEG cleaning, it was assumed that they
did not perform any pre-processing of the signals. When the results of these three types
of cleaning for the same model and the same objective problem were compared, it was
observed that the articles [38,49,65] which corresponded to artifact-free signals, signals
with unspecified cleaning, and signals with little preprocessing, respectively, used CNN in
the classification problem of patients with PD vs. healthy controls, and obtained accuracy
values of 100%, 99.62%, and 99.22%, and sensitivity values of 100%, 99.17% and 98.98% for
the articles mentioned, respectively. It can be noted that the values obtained in both metrics
are independent of the EEG cleaning procedure. This also occurs in the articles [51,66],
which considered artifact-free signals and unspecified cleanliness, respectively, and used
MLP in the same classification problem, obtaining sensitivity values of 100% and 96.7%,
and specificity values of 94% and 100%, respectively. These results reinforce the conclusions
that were obtained in [28], where it was indicated that the EEG cleaning protocol did not
influence the results of the ML models.

Regarding the extracted characteristics, we found a great heterogeneity, although the
use of spectral characteristics predominates in 88.37% of the articles. This may be due to
the fact that, especially in PD, no visual alterations are observed in the EEG signals of PD
patients, whereas a spectral analysis provides information on variations in the EEG bands,
which are related to alterations in the patients’ condition and are therefore applicable in the
clinical setting.

4.3. Models Evaluation

There are two sets of studies: those that compared different models and those that
used a single model. The latter should provide a detailed bibliographic analysis that
serves as a comparison and justified the development carried out and the results obtained.
Delving into the evaluation of the models, it is worth noting that both the architecture of the
models and the training/validation methods were not specified in all articles. Regarding
the architecture, even if it was specified, the information provided for different models
within the same study exhibited a different degree of specificity, turning the architecture
into heterogeneous information, which made it difficult to establish conclusions from a
comparison between the articles. These facts are quite remarkable, since as shown in [41],
the parameters that define the model architecture can greatly influence the results of the
precision metrics, so it is important to specify them to increase the quality of the study.

The validation method is key to evaluate the training process and to obtain information
on the generalizability of the model, facilitating a possible application in the clinical setting.
The most widely used validation method was k-fold cross-validation, considered by 55.81%
of the articles. Among them, 13 studies (30.23% of the total set) used 10-fold cross-validation
and five studies (11.63%) used a five-fold cross-validation. The articles [37,58,59] did
not specify the validation process and therefore the results cannot be generalized. This
validation method allows for the evaluation of the model by minimizing the bias produced
by the choice of the data. Hence, it is especially appropriate in those cases in which datasets
are considered small or difficult to expand, much like when dealing with clinical data.
Even though most of the studies specified the validation method, which constituted a good
practice, it should be noted that it was not specified for all models whether the results
obtained belonged to the training, validation, or test sets, although the three provide crucial
information about the training process of the model and its ability to generalize to blind
data. This was an inconvenience when comparing the results of the models since the value
of the metrics may be rather different in each of these scenarios.

Finally, it was striking that the accuracy metric was the most widespread metric among
the selected articles, being present in 90.70% of the studies, followed by the sensitivity metric
considered in 69.77%. It should be noted that in the most recent articles, the evaluation
of the models was carried out by means of other metrics. In the studies that work with
patients, especially in a problem of diagnosis of a disease, the sensitivity or recall, specificity,
and precision metrics are also very useful to evaluate the results of the model, as they
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provide a measure of the correctly classified positives, the correctly classified negatives,
and the hits among the positives predictions, respectively.

4.4. Global Discussion

A different set of papers focused on classifying PD patients or evaluating cognitive
impairment. The articles related to the detection of walking alterations presented defi-
ciencies in terms of the patient demographic data and medication status. Specifically,
refs. [29–31,36,38,39,44,48,49,52,57,67] were the articles that considered classification prob-
lems and went through the quality criteria specified above. All of them considered balanced
classes. Article [48] may also be discarded, as it did not consider balanced classes, so the
results could be affected by the majority class. Among the remaining studies, article [36]
was also excluded from the comparison, since its objective was the early diagnosis and
the results obtained may differ greatly from the classification of patients in advanced
stages of the disease. Given that the rest of the articles had accuracy as a common metric,
this metric was evaluated for the problem of diagnosing PD by means of EEG through
ML techniques, obtaining a value of 97.35 ± 3.46%. Consequently, this value could be
considered as a baseline for future studies that focus on this diagnostic problem. The
sensitivity metric appeared in eight of the articles with a mean value of 96.36 ± 5.00%.
These studies were performed with different EEG channels, predominating the setups with
14 and 32 electrodes. The low variation in the value provided by the metrics may lead us
to think that the number of channels did not influence the classification results.

Regarding the models used in recent years (from 2019 to 2021), and taking into account
all the results in Table 3, it can be observed that neural models are increasingly used in
the classification problem, appearing in 11 of the 16 studies within these years. However,
there was no standard in the cleaning process. In 2019, there was an equitable distribution
between the three types of processing. In 2020, three of the five articles considered did
not perform EEG pre-processing, whereas in 2021, of the nine studies, five considered
the removal of artifacts. This analysis indicates, again, that the cleaning protocol did
not influence the results of the study. The use of increasingly complex techniques to
solve the problem is striking, highlighting the use of CNNs and hybrid models based on
CNN + RNN.

The articles [32,34,36,45,47,53] classified the level of cognitive impairment of PD pa-
tients. It should be noted that all of them have been published in the years 2019 and 2021,
indicating the novelty of the subject and marking the evolution in the study and diagnosis
of PD. In all of them, the elimination of artifacts in the EEG signals was carried out, and
the use of the SVM and RF models stands out. Given the novelty of the research topic, it
was expected that the models initially used were non-neuronal and that the pre-processing
sought to minimize the noisy component from the EEG signals. For this case, we did not
consider that there were enough studies that met the proposed quality criteria (description
of the medication and patient status, use of balanced classes, and specification of the pro-
posed validation method) to obtain a baseline for this case. However, the mean provided
by those studies that passed the cut-off [45,47] was 77% accuracy. Although [47] did not
use fully balanced classes, it did take these differences into account in evaluating the results
and performed a five-sample multi-class task, whereas [45] used balanced classes in a
binary problem.

In light of the previous analysis, growth in the complexity of the neural models, and
in the number of studies that address the problem of identifying the cognitive status in
patients with PD, is expected. This will benefit the development of a marker of the disease
in the early stages. Regarding the methodology, it would be desirable that the studies
provide more specific information about the state of the patients and their demographics.
This would allow for an objective evaluation of the results obtained by the models, which
should be based on a cross-validation process.
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5. Conclusions

The objective of this review consisted in the study of ML techniques applied to the
analysis of EEG associated with PD. The search process carried out on 14 February 2022
yielded 358 results that were submitted to the selection process following the PRISMA
guidelines. This process resulted in 59 articles dealing with this topic, from different
perspectives or with different objectives. Although they were mainly focused on the
diagnosis of PD, studies on the classification of cognitive impairment and prediction
of alterations in walking were also found. These studies were analyzed according to
three key points in the development of ML techniques, which were the dataset quality, the
data preprocessing, and the model used.

The most widely used models were SVM and ANN, with ANN encompassing both
MLPs and those ANNs not specified (but suggested to be MLPs), followed by KNN, RF,
and CNN. Although the most used individual model was the SVM, the DL techniques, with
CNN models, predominated in the diagnostic problem in recent years. Currently, research
has focused on the identification of cognitive impairment in patients with PD, in light of
articles from recent years (2019 and 2021). The importance of the validation process should
also be highlighted. In particular, the k-fold cross-validation method (with k = 10) was used
in most of the articles, which allowed the objective evaluation of the results, eliminating
the bias produced by the choice of the subjects and facilitating future applications in the
clinical field.

Among the main results provided by this analysis, it was found that neither the EEG
cleaning protocol nor the number of channels were relevant to improve the performance in
the classification or diagnosis of PD, although the 14-electrode setup was the most used
in these studies. In addition, the content of the studies whose objective was the diagnosis
of PD was evaluated. Within this group of articles, those satisfying quality criteria were
selected to provide a baseline for the accuracy metric, yielding a value of 97.35 ± 3.46%.

According to the analysis performed, future research directions are recommended
to be based on the identification of the cognitive status of PD patients, to aid in the early
diagnosis or staging of the disease. Moreover, studies are encouraged to incorporate and
take into account patient demographics, carry out a k-fold CV for results validation, and
use various metrics to provide a global view of the model’s performance.
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