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Abstract: Buildings consume a large portion of the global primary energy. They are also key con-
tributors to CO, emissions. Greener residential buildings are part of the ‘Renovation Wave’ in the
European Green Deal. The purpose of this study was to explore the usefulness of energy consump-
tion screening as a part of seeking retrofitting opportunities in the older residential building stock.
The objective was to manage the screening of the electromechanical energy systems for an existing
apartment unit. The parametrization was drawn upon inspection items in a comprehensive electronic
checklist—part of an official software—in order to incur the energy certification status of a resi-
dential building. The extensive empirical parametrization intends to discover retrofitting options
while offering a glimpse of the influence of the intervention costs on the final screening outcome. A
supersaturated trial planner was implemented to drastically reduce the time and volume of the exper-
iments. Matrix data analysis chart-based sectioning and general linear model regression seamlessly
integrate into a simple lean-and-agile solver engine that coordinates the polyfactorial profiling of
the joint multiple characteristics. The showcased study employed a 14-run 24-factor supersaturated
scheme to organize the data collection of the performance of the energy consumption along with the
intervention costs. It was found that the effects that influence the energy consumption may be slightly
differentiated if intervention costs are also simultaneously considered. The four strong factors that
influenced the energy consumption were the automation type for hot water, the types of heating and
cooling systems, and the power of the cooling systems. An energy certification category rating of
‘B’ was achieved; thus, the original status (‘C") was upgraded. The renovation profiling practically
reduced the energy consumption by 47%. The concurrent screening of energy consumption and inter-
vention costs detected five influential effects—the automation type for water heating, the automation
control category, the heating systems type, the location of the heating system distribution network,
and the efficiency of the water heating distribution network. The overall approach was shown to
be simpler and even more accurate than other potentially competitive methods. The originality of
this work lies in its rareness, worldwide criticality, and impact since it directly deals with the energy
modernization of older residential units while promoting greener energy performance.

Keywords: energy consumption; intervention costs; retrofitting; residential apartment unit;
lean-and-green screening; supersaturated designs; regression analysis

1. Introduction

The building sector significantly contributes to the growing worldwide consumption
of energy resources [1-3]. Maintaining building operations absorbs 40% of the total global
energy flow, with China being the leading country in energy demand [4,5]. Likewise,
among the European Union (EU) countries, energy consumption in buildings rises close
to 40% of the total demand [6]. Energy consumption is also a primary culprit for the
generation of 36% of the total CO, emissions in the EU. To achieve climate neutrality by
2050 and to decouple economic growth from resource use, the European Green Deal was
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articulated to embolden a groundwork of policies and measures—that also strongly espouse
the renovation of older building stocks—"as current policies will only reduce greenhouse
gas emissions by 60%” [7]. Surprisingly, the predominant “unique-and-heterogeneous”
European building stock was built before 2001 and it comprises 85% (220 million building
units) of the surveyed sector [8,9]. What makes the retrofitting of buildings urgent is that
85-95% of the current building stock—most of it now not energy-efficient—will continue to
exist in 2050. Meanwhile, the rates of improvement of the global primary energy intensity
have receded with respect to the Sustainable Development Goal target of 7.3 [10]; it is
required to improve energy efficiency through innovative technology and methods by
the year 2030. The EU as a global leader that fosters the United Nation’s 2030 Agenda,
along with its sustainable development goals, has put forth the Climate Target Plan 2030
that aims: “To achieve the 55% emission reduction target, by 2030 the EU should reduce
buildings” greenhouse gas emissions by 60%, their final energy consumption by 14% and
energy consumption for heating and cooling by 18%” [11]. For the U.S. economy, the
decline in the rate of improvement of the energy intensity may continue up to 2050 and the
residential total-delivered energy-intensity index follows a similar trend [12]. Regardless of
the forecasting model (STEPS-2019-40 or SDS-2019-40), the final energy consumption in the
world residential sector ought to slow down [13]. Unfortunately, two-thirds of the countries
were deficient in any mandatory building energy codes in the year 2018. As a result, it has
been recommended that all countries would benefit from extensive renovation programs
that would improve the energy efficiency of the available stock [14]. If it is to catch up
with the SDS forecast for the year 2030, a 30-50% energy intensity improvement should be
anticipated. It has been argued that current approaches are insufficient to elicit those deep
technical and economical transformations that would reduce energy demand [15]. Thus,
the residential building sector is ripe for innovative solutions. Improvements should be
evidence-based so that the decision-maker could assess any progress on the stated energy
reduction objectives [16].

Since residential buildings absorb a large share of the world’s available energy re-
sources, consumption optimization tactics are crucial [17-20]. To be beneficial, a search for
an optimal configuration of the underlying electromechanical power system in a residential
unit might be a prudent starting point. Furthermore, the choice of such energy systems
should be customized to the individual needs of the occupants—commensurate at least to
their comfort thresholds [21]. This reality offers the prospect of selecting among a variety
of retrofitting solutions [22]. Retrofitting existing energy systems aims to curtail energy
expenditures in a practical and cost-effective manner [23,24]. The individual economic
status of occupants and the architectural features of a particular apartment are pivotal in
strategizing the extent of interventions [25]. The criticality of potential retrofit interventions
in older buildings has resulted in continuous development of a field that encompasses
new planning methods, innovative technologies, and tools for economic analysis [26].
Improving the energy performance of a building is not merely a sensible outcome relying
upon the voluntary action of responsible citizens—keen on sustainability issues. It is also a
requirement for attaining green building compliance [27,28]. For example, residential heat
systems may receive a model-based assessment to establish climate and energy targets [29].

To support energy engineers in carrying out their optimization tasks, energy per-
formance screening and predictive modeling are advisable [30-32]. Nevertheless, it is
well-known that the optimal configuration of power systems is characterized by systems,
sub-systems, and components that are prone to high complexity [33,34]. Analyzing the effec-
tiveness of various competing energy systems may become an arduous process, predicated
on a reliable mathematical description even for simple studies, i.e., at the residential-unit
level [35]. Identifying the complexity reduction drivers in retrofitting projects is a highly-
customized process that implicates aspects from a systems change to decision-making
under uncertainty [36]. This is because it hinges upon the availability of the design specifics
of the undertaken residential unit study. On the other hand, attempting to completely
classify and evaluate complexity to its three core components [37]—aggregation, determin-
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ism, and algorithmics—may not always be feasible. Usually, it becomes impractical when
the analysis process is so time-consuming for ordinary realistic applications to be deemed
effective. Instead, a layout simplification of a proposed energy system might be worthwhile
as long as it is accompanied by assigned uncertainty estimations on their components [38].
Generally, there is a great need for developing new modeling tools with a strong emphasis
on handling the pertinent physical and statistical intricacies of energy-related phenomena
in building performance [39]. In predicting an optimal building retrofit, the methodolog-
ical challenge is exacerbated due to the multi-objective multi-parameter character of the
optimization problem at hand, which should innately allow for quantifying the differences
in the selected technical and economic interventions [40,41]. Past research was mainly de-
voted to economically retrofitting the envelope/windows of whole buildings by employing
multi-variable optimization tools such as the decision matrix methodology [42]. To enhance
the performance of apartment units, according to energy conservation measures, simulated
power calculations are indispensable to support the integrated Ensemble models [43]. In
partial retrofits, the emphasis is placed either on the building envelope or on the optimal
configuration of the power systems. Splitting the opportunities for improvement is an
attractive idea since no optimization modeling might subdue the trade-offs due to the large
costs in case of undertaking full-scale renovations [44]. It has been remarked that exact
optimization models have been used to resolve the part that concerns only the configuration
of the energy systems [45]. Nevertheless, the quantification of the statistical uncertainty, ow-
ing to the inherent system complexity, remains a problem at large in the current literature.
Any attempts in the past have been treated with non-probabilistic decision rules [46].

Auspiciously, the presentation of this article is congruent with the evolving socioeco-
nomic advances that envision our home-living spaces to transform into our ideal remote
work environments [47-49]. Certainly, the ‘work-from-home” culture will be a profited
recipient of those improvement studies tapping into new tactics that promote a structured
minimization of domestic energy consumption; living comfort may not be compromised
for the extended time periods, which we are expected to occupy our residences in the
future. Deep retrofit modeling has been recognized to spearhead the disruption insofar
as the intervention impacts could be quantified [50]. The interplay of suitable technical
upgrades and their respective robust indicative costs would suggest energy-efficient re-
placements or modifications [51]. However, this necessitates working out beforehand the
concurrent optimal outcomes in an uncertainty analysis regarding the detailed energy
systems. Furthermore, we identified a crucial gap in the literature after reviewing the
latest research on the modernization of European buildings [52]. All research is devoted
to energy modeling and assessment that leads to optimal energy retrofit designs per a
residential building basis and not on each separate apartment unit per se, as reality would
imply. Apartment owners are allowed to opt to their individual preferences in selecting
their energy system arrangements. Therefore, a key motivational driver for this study is to
develop and explore a methodology that manages the energy performance screening of an
individual apartment unit while permitting modulation of the outcomes from information
that may also incorporate intervention costs.

The main motivation for this work was to introduce a complexity-easing approach
that assists in simplifying the ‘large-parameter’ conundrum that emerges while assessing
various retrofitting options. The impetus for our endeavor is grounded in one of the future
recommendation themes resulting from the extensive literature review by Hong et al. [53],
i.e., the growing interest in: “the implementation of multi-objective optimization process for
establishing the optimal energy retrofit strategy”. Accordingly, Gonzalez-Caceres et al. [54]
in their systematic summary on the versatility of modern retrofitting tools have noted:
(1) the lack of specialized knowledge to leverage uncertainty while optimizing energy and
economic savings, (2) the need for new tools, since “no tool can do it all” (at the moment),
(3) detailed inputs about the energy upgrade scenarios deliver more precise results, and,
(4) the influence of the motivated target users, i.e., renters, homeowners, investors, and
so forth. Moreover, the prioritization of technical and economic interventions as critical
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factors in green retrofitting is of continuing concern, as concluded by Jagarajan et al. [55].
To conduct a green building design, a complex performance analysis is required to handle
the ensuing multi-parameter problem—assisted by advanced optimization tools [56,57].
Despite the great diversity of accessible computational methods, which are appropriate
for sustainable building designs, techniques that resolve polyfactorial problems with in-
herent combinatorial uncertainty due to energy consumption and intervention costs have
not been known [58,59]. This work intends to contribute by offering a novel screening
framework to assist decisions with respect to green retrofitting by: (1) quickly organizing
and outlining—in a simple fashion—the solution landscape, (2) conveniently gathering
the pertinent techno-economical information, (3) easily allocating statistical potency to
predictions, and (4) properly reducing the initial horizon of potential configurations. The
proposed structured screening method narrows down the initially considered list of the
controlling factors. By detecting those effects that are statistically influential, the novel
approach accomplishes a customized reduction of the energy consumption for a com-
bination of electromechanical power systems. By zooming in on a residential building,
the target object of our study becomes the energy consumption performance of a specific
apartment unit. We focused on the practicality of conducting the polyfactorial screening
of the various resulting power system configurations. Eventually, it aims to expedite the
decision-making by discovering the statistical hierarchy of the influences on the energy
performance for the examined retrofitting options. The technical innovations emanating
from this work are the lean-and-agile exploitation of pragmatic electromechanical power
configuration data that are generated using polyfactorial supersaturated designs that also
aid in appreciating the magnitude and the complexity of the problem at its source—in a
real (older) residential apartment unit. The situational complexity reduction is prompted
by the quick detection of the few strong factors using an ordinary partial-least squares
regression method. The article is structured by first proposing a naive methodology to
treat supersaturated data. Next, a unique case study is presented from the area of green
screening of the energy consumption for a real (older generation) apartment unit. As many
as 24 controlling factors were nominated and profiled to identify those influences that
strongly control the reduction of the energy consumption while discovering retrofitting
opportunities. It is a ‘lean-and-green’ project that aims to upgrade the energy classification
status according to the requirements of the ISO 13790 standard; it is attained by comparing
the primary energy of the investigated building with that of a reference building. The
article concludes with the key findings and their future importance in greener applications.
To the best of our knowledge, there is no prior work on this crucial subject.

Screening is a type of optimization procedure that profiles the strength of effects.
Screening minimizes an initial group of examined effects down to just those that are found
to be statistically dominant. It is usually recommended as a starting investigation step in
an attempt to quantify a “cause-and-effect” relationship when many controlling factors
are involved. Planning typical screening experiments requires a rudimentary knowledge
of implementing fractional factorial designs, which play the role of efficient data sample
organizers [60,61]. Fractional factorial schemes provide the blueprint for engineering a
‘lean-and-agile” dataset in comparison to routine full factorial arrangements. The concept
of leanness in experimental work is construed to mean the use of less of everything and
simplicity in thinking about entailing processes everywhere [62—-64]. Consequently, frac-
tional factorial planners demand—en route to deployment—fewer trial materials and labor
hours, while stripping off less machinery availability from operational activities. On the
other hand, fractional factorial samplers are agile because they are responsive [65-68]; they
are capable of delivering structured, intricate, small-and-dense datasets for many-factorial
problems. Leanness and agility are further exploited when employing supersaturated
screening designs because the number of examined factors can be structured to be much
larger than the number of the collected data points [69-71]. Supersaturated screening
schemes may require more specialized analyzers, which are fairly distinguished from
those employed in more ordinary experimental design templates [72,73]. Indeed, recent
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assessments of supersaturated treatments involve dedicated methods, which are based on
the Dantzig selector method, the least absolute shrinkage, and selection operation (LASSO),
and so forth [74,75]. Generally speaking, supersaturated experimental schemes have been
regarded as suitable for lean screening and optimization assignments [76].

2. Materials and Methods
2.1. The Supersaturated Screening Toolset for Energy and Intervention Costs
2.1.1. Developments for Energy Screening

We consider an energy consumption screening study to complement the improvement
activities for an apartment retrofitting project. We set forth the essential nomenclature as
well as the corresponding analysis tools of relevance. The number of controlling factors (k) is
prescribed to be inevitably large whereas the number of trial runs (n) should be serviceably
low. Therefore, the k + 1 > n condition is upheld, indicating the immediate practicality of
the approach. Emphasis is placed on conducting a rapid data analysis that dichotomizes
and categorizes the effects into active and inactive, respectively. We opt to implement
supersaturated polyfactorial experiments in order to accelerate the screening process. The
class of supersaturated designs that we consider are adapted half-fractions of Hadamard
matrices [70], which may include the special case of half-split Plackett-Burman [77] design
matrices. The first phase in the methodology is to select the appropriate recipe design that
makes efficient use of the exerted experimental endeavor against the number of the probed
effects. Once the proper supersaturated plan has been figured out, we execute the trial
recipes, collect the response data, and display the profiles of the effects on a regular main
effects plot [60,61,78].

In the second phase, we seek to reduce the number of examined controlling factors by
filtering out those many effects that have been deemed weak. To diagnose the effects, it
is imperative to have an indication of how each controlling factor influences the central
tendency and the variability of the studied characteristic(s). Supersaturated datasets are
complex in nature since: (1) they pile up information from numerous parameters and (2)
they regulate the manifestation of the characteristic(s) propensities through only a few ob-
servations. For engineering-minded applications, the selected statistical estimators should
be suitably simple to construe in order to benefit from their implementation. We propose
the median, M, and the range, R, estimators to initiate the data reduction process [79-81].
The median is chosen because it is a robust location measure, and for the range, because it
is a preferable variation measure to the standard deviation for small samples (n/2 < 10);
both are easily computed. If the response values of a characteristic, C, in a supersaturated
dataset has elements, {cj} V ¢; € SR and (1 < ¢; < n), then the median, Mps, and range, Rg,
estimators are defined per controlling factor, p € {1, 2, ... , k}, and its two coded settings,
s € {—1, +1}, as follows:

M, = median{c;} for all {i'} Vi’ € &, and (p,s) —{i} 1)

Rys= (max{c; }-min{cy}) for all {i'} Vi’ € S, and (p,s) —{i'} )

Then, we form the absolute value of the median factor-setting differences, Dp, which
corresponds to the size of each effect:

Dp=IMps —Mp_ | for1<p<kandD, € R 3)
Respectively, we take the average of the range values, A, at the two-factor settings:
Ap = Rps+ +Rp-)/2for1 <p <kand A, e R 4)

The next step is to plot the variables Dy, versus A, in a (4-quadrant) matrix data
analysis chart (MDAC), which is one of the seven new tools for managing quality im-
provement [82]. A minor modification is introduced in the chart in order to facilitate the
interpretation process. The range of values in the abscissa is bounded by the minimum
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and maximum A, values; the chart is centered at the halfway distance between the two
endpoints. Similarly, we dichotomize the ordinate to accommodate the D, data points.
The resulting chart arrangement is displayed in Figure 1 along with the convention for the
location of the four quadrants (Q1, ... , Q4). We assign ‘Q1’ to the (green) quadrant that
demarcates the ‘most desirable behavior’; large D}, values signify large differences between
the central tendencies of the settings while smaller A, values align with less variation.
Oppositely, the ‘Q4’ (red) quadrant is viewed as the ‘least desirable behavior’; it bags the
trivial many effects, i.e., weak response differences between settings, which exhibit large
variations. Quadrants ‘Q2’ and ‘Q3’ form the ‘grey areas’ that may contain some potentially
active factor(s), which, nevertheless, may be obfuscated either by a large variation (‘Q2’)
or by faltering separation between setting median values (‘Q3’), i.e., marginal D}, values.
The rough rule is that we eliminate all effects clustered in Q4 and we retain effects in
Q1-Q3 areas. The leading effects are nominated by combining information from the effect
performance from the main effects plot and the MDAC on the sparsity assumption [60].

max D,

Q2

max Ap

min A,

min Dp
Figure 1. Matrix data analysis chart for quick detection and elimination of weak effects.

Next, a basic regression analysis is employed to fit the reduced-column supersaturated
array. At this step, we consider as predictors only the leading effects that were determined
from the previous step. Therefore, the linear model is defined as: y = XB + &, where y is the
(n x 1) response vector (energy consumption); it is collected through the execution of the
supersaturated n-recipe scheme. Moreover, X is the n x k’ (k < k) supersaturated model
matrix that is formed by retaining only the k’ columns; k' is the number of the leading
effects from the previous step, B is the (k' x 1)-vector of sought predictor values, and ¢ is
an (n x 1)-vector of residual errors.

We assume that € ~ N(0, O'ZIH) is a vector of independent normal random variables. If
some fitted parameters appear to be significant, we repeat the regression analysis by firstly
eliminating the identified inactive effects. We check the significance values against a family-
wise error rate (FWER) of 0.05 using the Bonferroni correction [83]. All data processing
and graphical work that follow were prepared using the software package MINITAB 18.0.
The sequence of the design and analysis steps of the proposed technique are encapsulated
in Figure 2.
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l Step 1: Select the controlling factors |
(

l Step2: Select the screened characteristics |
(

l Step3: Select the proper supersaturated design |
(

l Step 4: Collect the supersaturated dataset |
(

l Step 5: Estimate median and range response values for each factor setting |
(

l Step 6: Prepare the main effects plot and the MDAC |
(

l Step 7: Filter out factors that empirically exhibit small effects |
(

l Step 8: Analyze the remaining factors with GLM |
(

l Step 9: Strong effects are identified from statistically significant performances |

Figure 2. Layout of the design and analysis of supersaturated data.

2.1.2. Concurrent Solution for Minimizing Energy Consumption and Intervention Costs

An improvement-oriented screening solution could be further enriched by encom-
passing information from intervention costs. Consequently, for each energy consumption
response entry, we proceed to pair it with an estimation for its respective intervention cost
to materialize the related renovation or refurbishment. If y is the energy consumption
response vector, as defined in the preceding subsection, we similarly define the respective
vector for the intervention costs, z. Then, the first step is to decide whether or not the two
vectors (y, z) are correlated between them by contrasting them on a simple fitted-line plot
(MINITAB 18.0). If it is found that they are indeed correlated, the analysis process termi-
nates at this point; the final screening solution remains as it was previously determined
by the diagnosis on the energy consumption dataset alone. On the other hand, if the two
vectors are not correlated, then we also prepare the main effects graph for the interven-
tion costs. If there are detectable effects, then we calibrate each of the two characteristics
separately. For example, the calibrated y vector (energy consumption), yc, transforms to
y¢i = (yi — min{y;j})/(max{y;} — min{y;j}) fori=1,2, ... n. In the same manner, we calibrate
the z vector to zc. A joint (unitless) vector, JR, is now created, such as JR; = (yci2 + z¢;2)1/2
fori=1,2,... n. It carries concurrent information for the two investigated characteristics.
Next, we prepare the main effects graph and the MDAC for the joint vector JR to inspect
effect dispositions to the combined response. Detectable effects are conferred upon the two
graphs. They are nominated as strong effects to be formally assessed through general linear
modeling (GLM) (MINITAB 18.0). We may now allocate the final concurrent statistical
significance to the screening outcomes.

2.2. A Description of the Residential Apartment Unit for the Energy Retrofitting Project

Improving energy efficiency in older residential constructions contributes to the re-
duction of greenhouse gas emissions. The energy classification status of a building often
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dictates the direction that subsequent retrofitting actions will take to make it greener. It
is not a simple task. Successful energy-efficient retrofitting attempts often rely on a com-
plicated ‘optimal-energy” analysis that engages integrated information from an energy
conservation standpoint as well as from the building’s inherent engineering layout [84-86].
Enhancing the energy performance of a residential apartment unit, by considering its in-
door and outdoor thermal-environment design, requires a screening /optimization analysis
on a score of quantity and quality determinants [87-89]. Prioritization of energy effective
tactics is imperative to improving the energy classification status of a residential unit. A
fruitful approach to discovering the essential improvement opportunities and matching
them to effective energy options is through benchmarking, which is supported by modern
data analysis techniques [90]. However, it is not always accessible. Efficient solutions
to retrofitting older buildings are based on modeling physical systems that should eco-
nomically harmonize greener existing materials to contemporary technology practices [91].
Building energy system designs usually need to confront complexity issues. Resolving
the complicated details may be expedited by the utilization of advanced computational
aids [92]. While examining a residential architecture, an energy efficiency analysis should
list and quantify as many implicated effects as possible; it reduces the energy consumption
uncertainty and determines its optimal resource usage [93]. Specifically, in the European
Union, the energy consumption trends with respect to the performance of residential build-
ings have been a focal matter. The European Commission declared the 20/20/20 rule’
through its European Energy Policy which conjectured—by the year 2020—a 20% energy
production from renewable sources, a 20% reduction in released pollutants, and 20% in
energy savings [94]. The pertinent European Directives 2002/91/EC and 2010/31/EC on
the energy performance of buildings, now flourish to the ‘Renovation Wave for Europe’ [8].
Thus, the objective of greening-through-retrofitting the older European residential building
stock has been now communicated; it urges (at least) a doubling of the annual “deep-
energy” renovation rate by 2030. On the way to EU-wide climate neutrality, the message
is coherent: “Mobilizing forces at all levels towards these goals will result in 35 million
building units renovated by 2030” [8].

In this case study, we exemplify the use of a supersaturated design in a lean (and
green) screening of a real apartment that has residential use. Geographically, it is located
in Attica prefecture (central Greece). The location plays an important role through its
influence—via the climatic phenomena—on the amount of energy, which is necessary to
attain ideal conditions for a comfortable living. The specific apartment unit is located in
Climate Zone B, where the winter is considered mild and the summer is intense [95]. It
was built in the year 1994 and, therefore, it belongs to the building stock category that is
primed for deep modernization. Therefore, it is not known whether it conforms or not to
the latest regulations of energy-efficient buildings that were published in the year 2010. It
is situated on the fifth floor of a five-floor residential building. This condition maximizes its
environmental exposure and, hence, its energy losses to surroundings—mainly, due to the
peripheral heat exchange. The “shell” of the building is discontinuous and heterogeneous.
Thus, it exhibits utterly insufficient insulation, which is to be solely found in the walls and
not in the structural columns.

The model that has been selected to predict the building energy performance in
Greece is based on the ‘semi-steady-state-with-monthly-step” mode. It is in accord with the
requirements as they are outlined in EN ISO 13790 [96], as well as other accompanying
standards. This permits the calculation of the primary energy demands while taking into
account the comfortable-living level of the apartment unit inhabitants. It also incorporates
a primary energy differential in relation to a reference building unit. The classification
categories assign grades to apartment units ranging from A to G. Excellent performers
receive an ‘A™’ grade. This translates to consuming an energy amount of 33% less than the
reference apartment unit. On the other end, the worst possible rating, a ‘G’” grade, signifies
consuming an energy amount 273% higher than that of the reference apartment unit. In
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general, incrementally-rated building apartments reach ‘Green’ status (A*, A, B*) as long
as they consume less than 75% of the energy demand of the reference unit.

To facilitate the energy classification process for different types of building usages,
the term specific energy consumption is introduced, which denotes the annual average
consumption per unit area of the apartment [97]. It is measured in kWh/m? per year. The
behavior of the inhabitants is crucial in assessing the total energy consumption. Several
variables that might contribute to the estimation, such as: (1) the total time of occupation
of the apartment unit, (2) the routine internal thermostat settings, and (3) the type and
variety of rated electromechanical and thermal devices in use. Their temporal trends could
generate enough variability to make estimations of energy consumption difficult to inter-
pret. A different approach is to realize that there are generally three energy-controlling
categories, which are associated with: (1) the building shell, (2) the network of electrome-
chanical devices, and (3) the renewable energy production systems. Each of the three stated
categories undergoes an examination. They aid in identifying opportunities for appropriate
interventions in case the building energy classification status is not found to be favorable.
To dimensionalize the potential effects of the various combinations of the electromechan-
ical systems, as well as those in relation to heating, cooling, and air conditioning, it is
imperative to delineate the unit design conditions. To achieve meaningful estimations, the
monthly standard energy demands are correlated to the proper climate zone data as they
are furnished by the National Meteorological Service in Greece and in accordance with the
energy efficiency regulation [97].

In the influence group of the particulars of the architectural design, its custom external
elements are also included. Furthermore, the optimal design of the electromechanical sys-
tems plays a crucial role in classifying and improving an apartment unit. The architectural
design may indicate how to achieve optimal insulation as well as how to configure the
optimal selection and arrangement of the electromechanical systems. Both aspects also
contribute to the minimization of thermal and cooling loads. Optimal insulation is related
to the minimization of energy losses by entrapping warmness or coolness in the respective
seasons. Optimal electromechanical systems maintain the desired room conditions by
minimizing the consumption of energy and other resources. From an energy inspection
perspective, there are three types of electromechanical systems that deserve separate atten-
tion. Wintertime heating systems are based on energy resources, such as oil, gas, electricity,
and solar energy. They may be centrally or locally controlled through different kinds of
distribution systems that are distinguished by: (1) their structure (single or double piped),
(2) their flow medium (air, water, etc.), (3) their mode of distribution (internal or external),
and (4) their insulation coverage area [98].

To conduct an energy inspection, in order to issue a certificate of energy efficiency
for a building, the information, which we referred to above, is accumulated and becomes
available through the professional software TEE KENAK 1.29.1.19 [99]. The TEE KENAK
software was developed by the Energy Saving Team of the Institute for Environmental
Research and Sustainable Development, which is directed by the National Observatory of
Athens through a cooperation program with the Technical Chamber of Greece; the guideline
was regulated in 2010 by the Greek Ministry of Environment, Energy, and Climatic Change.
The KENAK software was implemented on strict European standards to benchmark the
real energy performance of a residential building against a reference building. It is through
this software that the calculations for the estimation of the energy efficiency and classi-
fication of a building are carried out. The energy efficiency calculations are imperative
for the preparation of the primary energy efficiency report as well as for the impending
inspection of the heating and cooling facilities. To form a reference frame for the residential
building certification suitability, the typologies, which demarcate the energy performance
assessment tool, have been well explained previously [100]. A convincing sample of en-
ergy performance certificates (355,000), which have been issued by the accredited Greek
national registry (www.buildingcert.gr (accessed on 3 September 2013)), has demonstrated
that the TEE KENAK software tool is capable of differentiating among even small-scale
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improvements. It properly sections the energy performance reporting in sub-classes. The
rigid grades of A, B, and so forth, now receive finer increments, which are expressed in
the sub-grades of A+/A/A— etc—in correlation with a standard energy consumption
scale [101]. Therefore, we utilize the TEE KENAK software tool as a direct platform to
manipulate and measure the efficacy of the energy system component changes by solely
relying on those standard typologies that set the basis for inspection in the certification
process. This decision allows us to be in sync with the real needs for setting improved
energy use requirements in a particular apartment unit without, of course, theorizing
beyond the practical aspect of it. It is clear that this approach has never been attempted
before. However, it may be indispensable in identifying renovation opportunities at the
‘micro” (apartment unit) level, to conveniently ensure the energy labeling compliance.

A detailed floor plan (Figure 3) of the investigated apartment unit was included in the
imported data to the TEE KENAK software. Out of a total apartment unit area of 105.20 m?,
the thermal zone spans an area of 100.83 m? with additional total balcony areas of 53.41 m?.
The modeling task also requires the unit’s shell drawings, which incorporate information
about the transparent and non-transparent structural elements, i.e., walls and openings
(windows). The surface formations of the structural elements circumscribe the thermal
interfaces between the apartment’s interior and exterior spaces. They are key inputs for the
program predictions (Figure 4). The basic layout of the examined apartment, in contrast
to its neighboring structures, is shown in Figure 5; it is also regarded as a vital input in
the software application. Representative parameters for the area and wall orientations
are listed in Tables 1 and 2, respectively. Besides affecting the energy classification grade
award, the energy consumption assessment also guides the direction and the extent of
meaningful forthcoming improvements. To arrive at a realistic evaluation, a detailed
account of the unit’s side-shading information must be furnished. There are numerous
types of custom-made drawings that should be prepared to feed the software application
with indispensable details. We indicatively depict, in Figure 6, the two corresponding
side-shading layouts, which relate to the energy consumption profile for the two seasonal
extremes. The impact of seasonality is considered a critical source for generating uncertainty
in energy calculations. Passive heating and cooling are at the core of the design strategy
and are pursued to exploit the benefits of natural light, ventilation, and temperature.
On the other hand, an apartment’s thermal performance is affected by the orientation of
the external window shading (facades, shutters, roll-blinds, or overhangs) as well as the
peripheral topography of the adjacent building structures and neighboring trees. Finally,
the nominal data for the electromechanical systems and the accompanying equipment
of the examined apartment unit are listed in Table 3. The heat generation system is a
centralized network that separately feeds the terminal heat outlets in all apartment units. It
is oil-fueled and thermostat-controlled. It uses the one-pipe distribution mode to circulate
the heated body of water. On the contrary, there is no central cooling system. Instead,
electrical and pump-driven air-conditioning units provide the local cooling load, which
is intended to cover about 50% of that total apartment area. Hot water generation was
provided by a double-sourced boiler. It operates using electricity and solar energy. Solar
energy is directly collected from roof-top solar panels. Hot water is maintained in a storage
tank that hydrostatically circulates to the apartment unit. The solar panel system data are
tabulated in Table 3.
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Figure 3. Floor plan for the examined apartment unit.

Figure 4. Structural elements for the examined apartment unit.

Figure 5. Configuration of the examined apartment unit with respect to the neighboring construction.
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Table 1. Basic area parameters of the apartment building shell.

Flat Surface Area (m?2)

Floor Level Heated Non-Heated Total Balcony Cooled % Non-Heated  Height (m)
Underground 29.95 29.95 0 100 2.6
Ground 56.66 8.17 64.83 276 21.17 12.6 3.15
Upper 100.83 437 105.2 158.61 50.42 4.15 31
Loft 0 21.35 21.35 158.61 0 100 2.2
Totals 560.81 81.32 642.13 1227.66 273.24 17.02 23.45

Flat Volume (m?®)

Floor Level Heated Non-Heated Total Cooled Perimeter (m) Exterior Wall Area (m?)
Underground 0 77.87 77.87 0 22.34 58.08
Ground 178.48 25.74 204.22 89.24 38.3 120.65
Upper 312.57 13.55 326.12 156.29 50.44 156.36
Loft 0 46.97 46.97 0 19 41.8
Totals 1741.34 238.31 1959.65 870.67

Table 2. Basic wall parameters of the building shell.

Orientation Total Area Window Frames Walls Area (m2) U Wall
(Degrees) (m?) Area (m?) alls Area im (W/m2K)
Wall no. 1 30 372 8.8 28.4 0.563
Wall no. 2 120 27.75 27.75 0.522
Wall no. 3 210 26.35 8.12 18.24 0.521
Wall no. 4 300 33.33 33.33 0.523
Stairway/elevator 0 29.37 1.8 27.57 0.261
Loft 0 99.43 99.43 0.44
Maintenance 0 5.77 5.77 0.22
room
summer side shadings winter side shadings

P77

Figure 6. Side shadings for the examined apartment unit (left drawing: summer season, right
drawing: winter season).
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Table 3. Nominal data for electromechanical systems and solar panel system data of the examined
apartment unit.

Electromechanical Systems Nominal Data

System Source Distribution Season Power(kW)
Heating Oil Yes Winter 80
Cooling Electricity No Summer 7
Hot water Solar/Electricity No Year-round 4
Solar Panel System Data
Panel tilt angle Panel area Shade coefficient Orientation(degrees)
(degrees)
37.58 4 1 180
3. Results

3.1. Screening for Energy Consumption

To initiate the energy consumption screening process for the examined apartment unit,
the electromechanical system was dimensionalized by identifying twenty-four potential
controlling factors. The factors involved and their respective two-level settings along with
their coded form are tabulated in Table 4. The left column of the settings (Table 4) refers to
the lower-level setting (*-) and the right column of the settings refers to the upper-level
setting (‘+’) in the trial scheduler. To plan the combinations of the experimental recipes
for so many variables, only a lean-and-agile trial scheme, which minimizes the number of
runs, may deliver the demanded information.

Even for this minimal ‘two-datapoint per factor” problem, one would easily realize
the difficulty in executing (otherwise) the full factorial schedule of 224 (=16,777,216) runs.
Even, the closest fractional factorial design option would require 32 runs, i.e., 130% more
experiments. Clearly, we cannot be responsive to such enormous volumes of experiments,
despite the available advanced computing machinery. In a nutshell, supersaturation
converts the ‘big data’ to a ‘small data” problem. Instead, the ‘lean” supersaturated design
of Lin [70] has been adopted that confines the trial load down to only fourteen runs. The
resulting fourteen recipes were fed into the TEE KENAK software. After the execution of
each application run, the recorded output value was the annual specific energy consumption
(EC). The EC characteristic was measured in units of kWh/m?. The EC response data were
collected (listed in Table 5). It is noteworthy that the 14 EC response entries are classified in
energy grades that range from ‘C’ to ‘F’. The customary response table is listed in Table 6.
The respective main effects plot of the EC response is shown in Figure 7.

Factors that are categorical variables are symbolized as ‘FC’ in the main effects plot to
distinguish them from the rest of the continuous variables. We observe that the hierarchy
of influential factors includes: FC1, FC2, FC4, F9, FC11, F12, and FC21. This might be
considered a quick and empirical pre-screening. Next, we prepare the MDAC for the energy
consumption response (Figure 8). It appears that the Q1l-quadrant group of strong factors
are FC1, FC4, and F9. Moreover, we retain the ‘grey area” Q3-quadrant group of factors:
FC11, F12, and FC21; there are no Q2-quadrant factors to explore. Therefore, it will be those
six factors that will be collectively examined for statistical significance through the GLM
treatment in the next step; Q4-quadrant effects are assessed to be negligible.

We explore the behavior of the seven nominated strong factors by restricting the
application of GLM only to those seven factors (Table 6). The coefficients of regression
and their statistical significances are listed in Table 7. We eliminate non-significant factors
FC2, F9, and F21 from further consideration and we repeat the regression analysis for
the remaining four factors. From Table 8, we confirm that the four dominant predictors
are: FC1, FC4, FC11, and F12). Notably, the strength of the four effects is also significant
at a Bonferroni-corrected FWER of 0.05. The prediction equation is listed in Table 8 and
the fitting performance according to the adjusted coefficient of determination (adj R?) is
86.71% is acceptable for this type of complicated problem. By observing the post-processing
residual analysis diagnostics (Figure A1 in Appendix A), it appears that there is no obvious
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sign of any violations of the regression assumptions. We translate the findings into technical
terms by pinpointing the improvements in using: (1) automation for hot water in the boiler
and the heat pump, (2) air-cooled heat pump for the heating system, (3) water-cooled system
for cooling, and (4) the power of cooling systems was set to 4. The rest of the 20 parameters
may be selected considering economic or practical aspects of the improvement effort or
remain as were originally installed in the apartment unit.

Table 4. Controlling factors and their settings for the system design screening of the examined
apartment unit.

SETTINGS
FACTORS CODE -Boiler -Heat Pump +Boiler +Heat Pump
Automation for water heating FC1 no yes
Category of automatic control FC2 A D
Number of ceiling fan (summer) F3 0 5
Type of heating systems FC4 boiler Air-cooled h.p.
Energy source for heating systems FC5 Oil Electricity
Powe.r f’f heating systems (only for degree F6 472 155 672 165
of efficiency)
Energy efficiency ratio of heating systems F7 0.59 3.3 0.84 3.7
Location of distribution network of heating FC8 Outdoor Indoor
systems
Efﬁc‘lency of distribution network of F9 0.86 0.9
heating systems
Efficiency of terminal units of heating systems F10 0.83 1
Type of cooling systems FC11 Air-cooled water-cooled
Power of cooling systems (only for degree of F12 4 8
efficiency)
Energy efficiency ratio of cooling systems F13 15 3.72
Efficiency of terminal units of cooling systems F14 0.9 0.96
Solar water heater FC15 Yes No
Powe.r f’f water heating systems (only for degree F16 0.64 127
of efficiency)
Energy efficiency ratio of water heating systems F17 0.85 1
Recirculation of distribution network FC18 No Yes
Efﬁc‘lency of distribution network of water F19 0.64 0.92
heating systems
Efficiency of the hot water storage container F20 0.93 0.98
system
Type of auxiliary units for hot water FC21 No 0.04 circulator
Type of solar panels FC22 Simple Vacuum =
Utilization rate of solar water heating F23 0.34 0.38 -
Surface area of solar panels F24 2 5 -

Table 5. The responses of the energy consumption (EC), intervention costs (IC), and their joint
response (JR).

Run EC (kWh/m?) IC (EUR, €) JR
1 104.0 10,003 0.3633
2 163.4 9233 0.5897
3 149.2 7641 0.4402
4 105.7 16,815 0.7587
5 137.2 13,613 0.6364
6 132.7 20,302 0.9904
7 223.7 10,733 1.0791
8 204.1 3743 0.8363
9 197.7 13,028 0.9503
10 139.7 7894 0.3834
11 123.2 15,432 0.6970
12 146.3 20,975 1.0606
13 158.7 9892 0.5798
14 192.4 14,820 0.9791
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Table 6. The energy consumption (EC) response table.

Factors FC1 FC2 F3 FC4 FC5 Fé6 F7 FC8 F9 F10 FC11 F12
level - 173.00 17049 15846 17594 15814 159.23 16221 154.67 17321 15890 168.00  138.61
level + 138.14 140.66 152,69 13520 153.00 15191 148.93 15647 13793 15224 14314  172.53
Differen 34.86 29.83 5.77 40.74 5.14 7.31 13.29 1.80 35.29 6.66 24.86 33.91
Rank 3 5 18 1 19 16 11 23 2 17 6 4

Factors F13 F14 FC15 F16 F17 FC18 F19 F20 FC21 FC22 F23 F24

level - 164.07 15053 164.63 164.07 156.26 15327 15751  160.51 14420 150.39  151.66  158.03

level + 147.07 160.61 146,51  147.07 15489 15787 153.63 150.63 16694 160.76 15949  153.11

Difference17.00 10.09 18.11 17.00 1.37 4.60 3.89 9.89 22.74 10.37 7.83 491
Rank 9-10 13 8 9-10 24 21 22 14 7 12 15 20
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Figure 7. Main effects plot of the annual energy consumption (EC) for the 24 controlling factors.
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Table 7. Coefficients of regression analysis of EC (seven-factor strong group).

Term Coef SE Coef t-Value p-Value VIF
Constant 192.0 11.9 16.20 0.000

FC1 —36.27 8.84 —4.10 0.006 1.57

FC2 — .2 9.75 —0.13 0.899 1.91

FC4 —31.57 8.33 -3.79 0.009 1.39

F9 —13.91 9.30 —1.50 0.185 1.74

FC11 —24.55 8.40 —2.92 0.027 1.42

F12 23.31 8.81 2.65 0.038 1.56

FC21 11.37 8.55 1.33 0.232 1.47

Table 8. Coefficients of the regression analysis of EC (four-factor confirmation).

Term Coef SE Coef t-Value p-Value VIF
Constant 193.16 8.70 22.20 0.000

FC1 —38.52 7.39 —5.21 0.001 1.06

FC4 —35.42 7.44 —4.76 0.001 1.07

FC11 -31.15 7.39 —4.21 0.002 1.06

F12 29.91 7.44 4.02 0.003 1.07

Model Summary
R? R? (adj) R? (pred)
90.80% 86.71% 75.88%

Regression Equation:
EC =193.16 — 38.52 FC1 — 35.42 FC4 — 31.15 FC11 + 29.91 F12

3.2. Concurrent Screening for Energy Consumption and Intervention Costs

The intervention costs (IC), which have also been generated using the supersaturated
trial planner as a guide, are listed in Table 5. Intervention costs are usually conducive to
the local range of available brands of electromechanical equipment/systems as well as to
market standing and negotiation efforts. Therefore, ICs are always subjective to the time
and area of the performed study and, hence, it precludes any further commenting on this
issue. This strengthens the need for the analysis that follows because we realize that each
study is custom-based on the mere specifics of the examined apartment unit. First, we
assess the prospect of a potential correlation between the two response vectors (EC and
IC) by line-fitting their respective data entries. From Figure 9, we observe that no evidence
might hint at a relationship between the two characteristics. The fitted-line slope prediction
is weak, the value of the adjusted coefficient of determination is very low (5%), while
several datapoints are located out-of-bounds of the 95% confidence band. Therefore, we
proceed to perform the simultaneous screening of both responses, the energy consumption,
and the intervention costs. Empirically, from the main-effects graph screening of the IC
response (Figure 10), we observe that the leading controlling factors that cause greater
modulation are: FC2, FC5, FC8, FC9, and FC11. On the other hand, the active controlling
factors, after the final EC screening (Section 3.1), were found to be: FC1, FC4, FC11, and
F12. The independent EC and JR screening solutions share only two common controlling
factors: (1) the automation for hot water and (2) the type of the heating system.
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Figure 9. Line fitting plot of energy consumption (EC in kWh/m?) versus intervention costs (IC in
€/1000) with a 95% confidence band.
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Figure 10. Main effects plot for the intervention costs (IC in €/1000).

The only common factor to influence both responses appears to be FC11. We conclude
that each response is influenced for the most part by a different group of effects. This could
complicate matters toward a compromised synchronous screening solution. It appears
that at least eight effects might be considered for the concurrent solution. Equivocally, the
optimal adjustments for the FC11 are located on the opposite ends of the two responses.
Perhaps, a rough prognostication may be that the FC11 might be auto-neutralized which
may cause it to vanish after the joint screening effort. Instead, we opt to calibrate the two
characteristics according to our proposed methodology (Section 2.1.2). Thus, we form the
single (unitless) joint response, JR (Table 5). Moreover, from a simple factorial pre-screening
of the JR response, through a main-effects graph (Figure 11), we recognize an influential
group that is comprised of the following candidate members: FC1, FC2, FC4, FC8, FC11,
and F19. Using our proposed MDAC pre-profiler (Figure 12), the located components on
the strong and grey quadrants are: FC1, FC2, FC4, F6, FC8, FC11, F12, and F19. Using
the GLM treatment on the retained eight components (Table 9), we observe that the five
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controlling factors (FC1, FC2, FC4, FC8, and F19) are indeed statistically significant at a
level of 0.05. This result is further confirmed when applying the GLM to the five nominated
effects (Table 10). The estimation of the adjusted coefficient of determination at 91.43%
denotes that the prediction outcome is satisfying despite the inherent complexity of the
problem. Additionally, no overfitting may be contemplated as the values of the adjusted
and predicted coefficients of determination are not substantially deviating from each other.
Finally, the four-part residual analysis (Figure A2 in Appendix A) of the fitted linear model
shows that the GLM fitting obeys the regular normality and stability assumptions. To
summarize, the composite solution promotes the following strong recommendations: (1)
automated hot water generation, (2) select a “D” category of automatic control, (3) select an
‘air-cooled” heat pump system, (4) prefer an indoor distribution network for the heating
systems, and (5) maintain the efficiency level of the distribution network of the water
heating systems to 0.64.
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Figure 11. Main effects plot for the combined (unitless) response, JR.
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Table 9. Coefficients of regression analysis of the joint JR response (eight-factor strong group).

Term Coef SE Coef t-Value p-Value VIF
Constant 1.0083 0.0926 10.89 0.000

FC1 —0.1810 0.0470 —3.85 0.012 1.42
FC2 —0.1653 0.0525 —3.15 0.025 1.77
FC4 —0.1619 0.0502 —3.23 0.023 1.62
F6 —0.0499 0.0479 —1.04 0.345 1.47
FC8 —0.2581 0.0632 —4.09 0.009 2.56
FC11 —0.0501 0.0543 —0.92 0.399 1.89
FC12 —0.0306 0.0528 —0.58 0.587 1.79
F19 0.2496 0.0486 5.14 0.004 1.51

Table 10. Coefficients of regression analysis of joint JR response (five-factor confirmation).

Term Coef SE Coef T-Value p-Value VIF
Constant 0.9953 0.0443 22.48 0.000
FC1 —0.1882 0.0456 —4.13 0.003 1.36
FC2 —0.1687 0.0504 —3.35 0.010 1.66
FC4 —0.1627 0.0449 —3.62 0.007 1.32
F19 0.2339 0.0409 5.72 0.000 1.10
FC8 —0.2271 0.0421 —5.40 0.001 1.16
Model Summary
R? R? (adj) R? (pred)
94.73% 91.43% 85.96%

Regression Equation
JR =0.9953 — 0.1882 FC1 — 0.1687 FC2 — 0.1627 FC4 — 0.2271 FC8 + 0.2339 F19

Additionally, the adjustment settings agree for both factors. We notice that the inclu-
sion of the intervention costs in the screening procedure significantly alters the overall
prediction outcomes.

4. Discussion

It is indispensable that the new developments we explicated in the preceding sections
to be compared to other existent methods. Direct assessment of our method with that of
Siomina and Ahlinder [76] is not possible because the latter method: (1) does not allocate
statistical significance to the outcomes, (2) has been exclusively tested on deterministic
relationships—no indication that it can handle uncertainty as it was needed in our case,
(3) has been used as a “poly-parameterizer” of a single dimension, instead of being tested in
a large number of independent physical parameters, (4) has not demonstrated capabilities
of simultaneously engaging continuous and categorical variables, (5) has not demonstrated
capabilities of concurrently handling at least bi-response (independent) outputs and (6) the
number of segments in the chosen dimension—for all studied functions—is set ambiguously
large; thus, it markedly augmented the volume of the subsequent data analysis. The
synthesis of tools that we used in this work (MDAC and GLM) are simple, well-accepted,
and well-deployed in a wide range of scientific fields. Therefore, simplicity was sought
and attained in this work by endorsing lean principles:

1.  Demanding markedly less experimental work by designing trials through a supersat-

urated planning scheme—the ratio of the number of the profiled parameters to the

number of the executed runs was noticeably greater than one.

Permitting a large number of parameters to be investigated at the same time.

3.  Tolerating different types of parameters (continuous/categorical/discrete) to mingle
in the same model.

4. Utilizing or demanding no new tools that otherwise would possibly prolong the
assimilation and penetration horizon.

N
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The least absolute shrinkage and selection operation (LASSO) has been recommended
as an advanced graphical/statistical technique that may aid in comparing supersaturated
screening solutions, which have been derived from various other approaches [75]. To
achieve superb computational speed while ensuring convenience in the verification process,
we implemented the R-package ‘glmnet” [102], which permits the fitting of the LASSO
and the Elastic-Net model paths in regression through the coordinate descent [103]. In
Figure 13A, we depict the LASSO results (coefficients of factors versus log(A)) for the EC
response. The first six stronger contributions are: FC4, FC1, FC11, F12, F9, and FC18. The
LASSO-derived list of active factors includes all four active factors that appeared in the
final solution of our method (FC4, FC1, FC11, F12). Therefore, we ought to decide whether
or not the F9 and FC18 should have been predicted by our proposed method. Consequently,
a versatile comparison measure should be employed to allow assessing the upshot of this
discrepancy. By simultaneously keeping score of the finer model-fitting accuracy and the
tolerated model complexity, the measure should provide guidance toward a solution that
precludes either a potential underfitting or overfitting. Thus, a proper estimator of the
prediction error that takes into account (1) the relative quality of the statistical model and
(2) the small dataset is the ‘corrected’” Akaike information criterion (AICc) [104-106]. The
AICc, which is convenient and useful as long as the condition n/p < 40 holds, is defined
as follows:
2p? +2p

AlCc :nlog(RrslS) +2p+ ——
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Figure 13. LASSO plots (‘glmnet’ R-package) for the identification of important effects in the (A) EC
and (B) JR supersaturated datasets.
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The constant term, in the original AICc expression, has been arbitrarily taken to be zero
since the estimator is used for direct comparison between two models. Moreover, n and p
are the sample size and the ‘augmented” number of parameters (p = k + 2), respectively;
the RSS is the residual sum of squares in the linear regression context. Particularly, for
the least-squares model fitting, the p-value in the AICc is meant to incorporate the two
contributions—besides the k controlling factors—owing to: (1) the intercept and (2) the
noise in the model. Hence, for a single parameter model (k = 1), we have p = 3 and so forth.
For our case study, we have n/p = 0.54 (<40), which justifies the adoption of the corrected
version of the Akaike information criterion.

In Table 11, we progressively list the groups of strong effects to minimize the AICc
score. The sequential insertion of impending active factors in the group decreases the
AICc score until the four factors—FC4, FC1, FC11, and F12—all partake in the model.
Incorporating F9 and F18 in the model causes AICc score to increase. By combining the
predictive and comparative features of LASSO and AICc, we verified that the final cut of
the active factors agrees exactly with our results. However, the clear gain in practicality is
supported by the fact that the implementation of MDAC and GLM may be notably more
accessible to energy engineers. This is because only the basic functions of an ordinary
spreadsheet application are needed to be recalled using any portable computing device.
On the other hand, LASSO and AICc require more advanced knowledge of statistical
interpretation of the information.

Table 11. The corrected Akaike information criterion scores for sequential factor screening of the
EC response.

Factor Group Sum of P 1 AlCc
Squares

FC4 11,822.58 3 14 102.74
FC4, FC1 8810.14 4 14 102.67
FC4, FC1, FC11 4538.14 5 14 98.44
FC4, ECL, FC1L, 1622.77 6 14 90.54
F12
FC4, FC1, FC11,
F12, F9 1365.94 7 14 96.79
FC4, FC1, FC11,
F12, F9, FC18 647.7 8 14 98.48

Similarly, we reapply the LASSO method and the AICc estimator on the combined
JR dataset. The ‘glmnet’-generated output is shown in Figure 13B. The leading effects are
quickly identified to be: FC2, FC1, F19, FC8, and FC15. We notice that the LASSO prediction
agrees in identifying the four out of the five factors when it is compared with the outcome
of our proposed method. The fifth factor is identified as the FC15 according to the LASSO
technique; the new method predicts the FC4 instead. Next, we estimate the AICc score
for the sequential insertion of the five candidate factors in the model and we list them
in Table 12.

It becomes apparent that the five-factor solution favors our solution version because it
minimizes the AICc score to an optimal value of —50.55. In comparison, the AICc estimate
for the LASSO solution version is a non-optimal value of —47.98. It is remarkable that
even a six-factor solution that compromises the difference between the two approaches,
by including both FC4 and FC15 in the model, does not improve the overall quality
of the model since the AICc score climbs even more to a value of —43.51. Therefore,
we verify that our proposed solution could also be more competitive with other more
sophisticated methods.

We may now ponder on the tangible benefits of this real study by contemplating
the differences between the outcomes of the original energy assessment and its resulting
improvement recommendation (Table 13). It becomes evident that the proposed approach
offers a quick and practical resort to a complex situation by providing a pathway for
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ramping up the energy performance status by directly intervening in the simultaneous
minimization of the energy consumption of the respective reference apartment unit. Hence,
the apartment unit status was improved from a grade ‘C’ to ‘B’, because of the dramatic
reduction of the energy consumption of the reference apartment dropping from 123.5 to
75.1 kWh/m? (~—40%), while the corresponding reduction of the apartment’s performance
dipped from 156.3 to 83.3 kWh/m?(~—47%).

Table 12. The corrected Akaike information criterion scores for sequential factors screening the
JR response.

Important Factor Group Sum of P n AlCc
Squares

FC2 0.3925 3 14 —41.64
FC2, FC1 0.3114 4 14 —40.84
FC2, FC1, FC8 0.2293 5 14 —40.06
FC2, FC1, FC8, F19 0.097 6 14 —45.61
FC2, FC1, FC8, F19, FC4 0.0367 7 14 —50.55
FC2, FC1, FC8, F19, FC4,

FC15 0.0255 8 14 —43.51
FC2, FC1, FC8, F19, FC15 0.0441 7 14 —47.98

Table 13. A comparative energy performance evaluation of the original energy status of the examined
apartment unit against a recommended renovation.

Settings

Original EC
FACTORS CODE Status Solution
Automation for Hot Water FC1 no Yes
Category of automatic control (choice among 4) FC2 C D
Number of ceiling fan (summer) F3 0.00 5.0
Type of heating systems (select from a list) FC4 boiler Air-cooled heating pump
Energy source for heating systems (select from a list) FC5 Oil Oil
Power of heating systems (only for degree of efficiency) F6 47.20 67.20
Energy efficiency ratio of heating systems F7 0.59 0.84
Location of distribution network of heating systems FC8 Indoor Indoor
Efficiency of distribution network of heating systems F9 0.86 0.96
Efficiency of terminal units of heating systems F10 0.84 1
Type of cooling systems (select from a list) FC11 Air-cooled Water-cooled
Power of cooling systems (only for degree of efficiency) F12 4.76 4.0
Energy efficiency ratio of cooling systems F13 2.36 3.72
Efficiency of terminal units of cooling systems F14 0.96 0.90
Solar water heater FC15 Yes No
Po?v.er of heating water systems (only for degree of F16 107 107
efficiency)
Energy efficiency ratio of heating water systems F17 1 1
Recirculation of distribution network (yes or no) FC18 No No
Efficiency of distribution network of heating water systems F19 0.84 0.92
Efficiency of domestic hot water storage system F20 0.93 0.98
Type of auxiliary units (select from a list) for domestic hot FC21 No No
water
Type of solar panels (choice among 3) FC22 Simple Simple
Utilization rate of solar radiation for domestic hot water F23 0.34 0.34
Surface area of solar panels F24 4.00 5.00
Energy Consumption of the apartment unit (kWh/m?): 156.3 83.3
:Ekn‘:]rl%; E)(:nsumptlon of the reference apartment unit 123.5 751

Energy Status Grade (Certification level): C B
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5. Conclusions

The large share of residential buildings in energy consumption and CO, emission
contributions is a global problem. The European Green Deal has committed to a greener
residential building stock by prioritizing energy consumption reduction tactics for the next
decades. Retrofitting older apartment units to meet ‘greening’ trends might be a complex
process because many variables are implicated with a wide spectrum of input data types.
The impending ‘big data” problem is miniaturized into a ‘small data” exercise through the
adoption of supersaturated trial plans. We showed that supersaturated tandem (energy
consumption/intervention costs) datasets deliver the necessary responsiveness to deal
with the anticipated large number of potential controlling factors.

We demonstrated how main effect plots and regression analyses may offer a wealth
of building energy consumption information to assist cost-regulated retrofitting decisions
at the lowest level—the apartment unit. Simultaneously profiling many contributing
electromechanical power systems, in a custom locale, is feasible. As many as 24 candidate
controlling factors were screened, demonstrating that the problem at hand was indeed
substantial. Regarding the influences on the energy consumption, the final cut included
only four predictors: (a) the automation type for hot water, (b) the type of heating systems,
(c) the power type of cooling systems, and (d) the type of cooling systems. Nevertheless,
the screening outcome is markedly differentiated if the intervention costs are also jointly
analyzed. In this case, the statistically significant factors are: (a) the automation for
hot water, (b) the category of automatic control, (c) the type of heating systems, (d) the
passage type of the distribution network of the heating systems, and (e) the efficiency of
the distribution network of the water heating systems. Future research may be extended
to profiling even more complex ‘green’ improvement projects by also including in the
investigation multiple building envelope characteristics at the same time.
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Nomenclature

A, average range values between factor settings
AIC Akaike information criterion

AICc corrected Akaike information criterion

C output characteristic

CI confidence interval

Dp median differences between factor settings
EC energy consumption (kWh/m?)

EU European Union

EC European Commission

FWER family-wise error rate

GLM general linear model

IEA International Energy Agency

IC intervention costs (€)
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JR joint response of EC and IC

k number of controlling factors

LASSO least absolute shrinkage and selection operation
M median

MDAC matrix data analysis chart

n number of observations

P number of parameters

Q; ith quadrant in the MDAC

R range

R? coefficient of determination

RSS residual sum of squares

SE standard error

TEE TENAK official software package for energy performance certification of buildings
VIF variance inflationary factor

Appendix A
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Figure A1. Residual analysis for the GLM results of energy consumption (Table 9).
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Figure A2. Residual analysis for the GLM results of JR-response (Table 11).
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