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Abstract: This study develops a novel estimation method under low-frequency probe data using the
Bayesian approach. Given the challenges in estimating travel time under low-frequency probe data
and prior distribution of the parameters in a traditional Bayesian approach, the proposed algorithm
adopts a historical data-based data-driven method according to the characteristics of travel time
regularity. Due to the variability of travel times during peak periods, this paper adopts a mixture
distribution of travel times in the Bayesian approach rather than traditional single distribution. The
Gibbs sampling method with a burn-in period is used to generate a series of sampling sequences from
an unknown joint posterior distribution for estimating the posterior distribution of the parameters.
The proposed algorithm is tested using traffic data collected from the Korean freeway section from
Giheung IC to Dongtan IC. Both MAPE and RMSE of the estimation results show that the proposed
method has the smallest deviation from the ground truth travel time compared to the simple mean
and moving average methods. Moreover, the proposed Bayesian estimation yields the smallest
standard deviation of MAPE for all test days. The credible intervals for estimated travel times show
that the proposed method provides good accuracy in estimating travel time reliability.

Keywords: Bayesian mixture estimation; low-frequency probe data; data-driven method; individual
travel data; credible interval

1. Introduction

Travel time is one of the most important metrics to measure the operational efficiency
of a transportation network; it is of interest to traffic operators and travelers alike. From
an operator’s perspective, travel time information is used for better management and
control of the traffic system to ease congestion. From a traveler’s perspective, travel time
information can provide them with better route choice and departure time decisions.

Nowadays, most traffic monitoring systems are based on point detectors (e.g., loop
detectors) installed along the roadway. Although these systems collect traffic counts and
occupancy rates that can be used to estimate point speeds and segment travel times, such
estimations are prone to major errors [1–3]. The recent proliferation of in-vehicle electronics
(e.g., smartphones with GPS units and electronic toll collection transponders) provides
new possible solutions for estimating travel time. These devices on the vehicles are used
to measure actual travel times between distant locations; the actual travel time can be
calculated after the vehicle has passed a road segment [4–9].

Although estimation-based probe vehicles provide more reliable information to cap-
ture actual travel time, there are still some issues that remain to be resolved. For instance,
there are issues with the privacy and low penetration rate of on-board devices [10–15]. If
a sufficient number of samples cannot be obtained to estimate travel times within a time
interval, biased travel times can be estimated, with higher variance [12,13,16].
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Given this situation, several different statistical methods have been proposed over the
past few years. The regression model is proposed, which makes use of correlations between
links to generalize low-frequency probe vehicle data and captures the underlying factors
behind spatial and temporal variations in velocity [17]. The Fuzzy logic is also proposed to
assign vehicle trajectories to a certain degree of membership. In order to estimate the mean
travel time for the entire population, different traffic conditions are matched according to
the degree of membership [18–20]. Other previous studies have focused on the effect of
small samples from probes on the estimation of mean travel time [13,21–23].

These studies show that simple travel time averages based on low-frequency probes
cannot approach the overall mean travel time due to correlations between samples. It must
be said that it is still common to obtain a sample of probe vehicles that is small and not
representative of the entire population.

As traffic becomes non-stationary, the variability in estimated travel times indicates
that the uncertainty and changing characteristics of travel times tend to increase during
peak periods [24–26]. Since the distribution of travel time with the variability during peak
periods does not follow a single model, mean travel time using point estimation is not
meaningful as a statistical inference about the estimator of travel time. In order to be
meaningful as a statistical inference, interval estimation of travel time can be used as an
alternative to overcome the limitations of the point estimation. However, there are few
previous studies on interval estimation of travel time [16,27–29], and it is still difficult to
accurately estimate travel time using interval estimation.

The objective of this study is to overcome the aforementioned problems in estimating
travel time under low-frequency probe data during peak periods. To this end, this paper
develops a novel travel time estimation model using a Bayesian approach. The rest of this
article is organized as follows: The next section provides background information on the
Bayesian approach and introduces the framework of the novel estimation model. This is
followed by a description of the test data for the case study and a comparison of results
using different estimation methods. The last section provides the conclusions of the paper
and discusses their implications.

2. Methodology

Since the prior distribution of travel time is difficult to quantify, the implementation of
traditional Bayesian methods is often challenging in terms of travel time estimation during
the time update process. Therefore, this paper proposes a data-driven approach based on
historical data to solve this problem. In this section, the novel estimation method in the
Bayesian approach is presented as follows:

2.1. Definition of the Bayesian Approach

The Bayesian approach is a statistical inference method in which Bayes’ theorem is
used to update the probability of a hypothesis as more evidence or information becomes
available. The Bayesian approach treats a parameter as a random quantity and is based on
the distribution of the parameter conditional on observed data, as provided below:

p(θ|y) ∝ L(y|θ)·π(θ) (1)

where p(θ|y) is the posterior distribution based on given measured data y, L(y|θ) is the
likelihood based on given parameter θ, and π(θ) is the prior distribution before updating
with observed data y.

The methodology in this study attempts to estimate accurate travel time under low
sampling rates of probe data using the Bayesian approach. According to the characteristics
of travel time regularity [30,31], the prior distribution of the parameters can be estimated
using a data-driven method. The distribution of travel times during peak periods has
a mixture shape of distribution that can be classified into a group of vehicles that have
rapidly traveled along the road segment and a group of vehles that have traveled slowly
due to the influence of irregular traffic oscillation [32,33]. Since the distribution of travel
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time has the mixture shape of distribution, this study adopts a Gaussian mixture model
with two components in the Bayesian approach. The Gaussian mixture model has the
advantage of expressing the centroid and forming clusters properly even if the variance is
not constant. The details of the model with each step included are as follows.

2.2. Likelihood and Model Estimation Method

Estimation of mixture models can be classified into two methods, such as Expectation-
Maximization (EM) and Bayesian methods. The EM algorithm has been widely used to
estimate the mixture shape of distribution based on the maximum likelihood method.
However, this method may lead to a local maximum and many starting points are needed
to find a global maximum. Furthermore, since the maximum likelihood method is based
on asymptotic theory, the sample size must be large [34,35]. This means that estimating
a mixture model is difficult under low sampling rates of probes using the EM algorithm.
In this study, a Bayesian mixture model is used as it provides richer inferences than the
maximum likelihood method; also, this approach can address parametric uncertainty
and travel time properties in estimating travel time. This study employs a mixture of
two Gaussian distributions since mixture models are a flexible family of models and have
been used to model large heterogeneous populations. The two mixtures of Gaussian
distribution with individual travel data, y = {y1, y2 · · · yn} can be expressed as follows:

p(yi|θ) = ∑ 2
k=1wk N

(
yi|µk, σ2

k

)
(2)

where K is the number of components and wK is the proportion of component K
(0 ≤ wK ≤ 1, ∑2

k=1 wK = 1). N
(
yi|µk, σ2

k
)

is the normal distribution with mean µk and
variance σ2

k. θ is the vector of all parameters, θ = {(w 1, w2),(µ1,µ2), (σ
2
1,σ2

2)}.
The likelihood function of the mixture distribution with latent variable Z for classi-

fication can be expressed as follows. Latent variables are variables that are not directly
observed but inferred from other observed variables. Thus, the latent variable Z follows the
multinomial distribution and the likelihood function is expressed with the latent variable.

(y, Z|θ) =
n

∏
i=1

p
(
yi|Zi,θ

)
p(Zi|θ) = ∏ n

i=1 ∑ K
k=1[wkp

(
yi|µk, σ2

k

)
]
Zi, k

(3)

where Zi, k is the ith element of the kth component and, if yi follows N (µk, σ2
k), Zi, k is 1; if

not, Zi, k is 0.
The Bayesian mixture model is applied when the number of components is assumed

to be known. According to the influence of traffic oscillation, this paper used the Bayesian
mixture model with two components to estimate the travel time distribution. To classify
the individual travel data of the kth component, the conditional probability function can be
expressed as follows:

p
(

Zi = k|w(r−1),µ(r−1),σ2(r−1), c
)

∝ w(r−1)·p
(

yi | µ
(r−1),σ2(r−1)

)
,

for k = 1, 2,· · · , K
(4)

where w(r−1),µ(r−1),σ2(r−1) are the parameters of the Gaussian mixture model at r− 1
iterations and yi is the individual travel data for classification.

2.3. Prior Distribution Based on Data-Driven Method

In Bayesian methods, the prior distribution of the parameters must be specified. The
prior distributions in this study assume conjugate form since the conjugate prior distri-
bution, which is in the same probability distribution family as the posterior distribution,
offers a closed-form posterior distribution [35]. In order to estimate prior distributions on
the parameters with two components, this paper used the k-means clustering method. The
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k-means clustering is popular for cluster analysis in data mining and has a low computa-
tional cost.

wk ∼ Dirichlet(e1, · · · , eK) (5)

τk ∼ Gamma(α,β) (6)

µk|τk ∼ N(µ0, n0τ) (7)

where wk, τk, and µk are the parameters of the Gaussian mixture distribution. Dirichlet is
the conjugate prior for weight distribution and e1, · · · , eK are the hyper-parameters of the
prior distribution. Gamma is the conjugate prior for precision distribution and α,β are the
hyper-parameters of the prior distribution. N is the conjugate prior for mean distribution
and µ0, n0τ are the hyper-parameters of the prior distribution.

The hyper-parameters of wk, τk, and µk in this study are estimated by the data-
driven method based on historical data according to the characteristics of travel time
regularity [30,31]. The data-driven method is a prediction algorithm used to compare
the distance between current and historical neighbors to find neighbors that are closest
to the current states. The method assumes that traffic conditions similar to the current
one exist in the past and usually estimates state values using a large amount of historical
traffic data to select the candidates through the Euclidean distance with the current data
sequence. It assumes current and historical travel time sequences, which are denoted by tail
time; the distance between two sequences is calculated using the Euclidean distance, which
represents the dissimilarity measure between these two sequences. The data-driven method
has been used in numerous studies for predicting short-term traffic conditions [36–40].
For the hyper-parameters of prior distribution in this study, the optimal number of hyper-
parameters of prior distribution was calculated through the trial-and-error method. The
number of hyper-parameters of prior distribution with the minimum error was selected, and
10 was selected, and to estimate prior distributions on the parameters with two components,
k = 2 is chosen in k-means clustering.

The data sequence length of the data-driven method is chosen to be 3 periods (15 min),
which entails travel time patterns in short-term traffic flow. To increase accuracy and to
decrease computational cost, the k-candidates in the data-driven method are selected while
searching past data in the same time slot.

Min. Dist =

√
∑ n

i=1

(
Tc

i − Th
i

)2
, “for all samples” (8)

where Tc
i is the ith current travel time sequence, Th

i is the ith historical travel time sequence,
n is the length of travel time sequence, and Dist is a dissimilarity measure at time t between
the two sequences, obtained using the Euclidean distance.

2.4. Posterior Distribution Based on Gibbs Sampling Method

Posterior distribution, which is augmented with the component indicator Z, is es-
timated by likelihood and prior distribution. The posterior distribution is in the same
probability distribution family as the prior probability distribution since this paper used
conjugate form of prior distribution; the details of derivations are expressed as follows:

p(w|y) ∝ L(y|w)·π(w) ∝
n!

∏i ni!
∏ K

i=1wni
i ·

1
B(e) ∏ K

i=1wei−1
i = ∏ K

i=1wei+ni−1
i (9)

B(e) =
∏k

i=1 Γ(ei)

Γ
(

∑k
i=1 ei

) , e = (e1, · · · , eK)

where Γ is the gamma function as a normalizing constant, ei is the hyper-parameter of
prior distribution, and ni is the number of observations allocated to component k.

p(τ, µ|y) ∝ L(y|τ,µ)·π(µ|τ)·π(τ) (10)
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∝ τn/2 exp
(
−τ

2 ∑(yi − µ)2
)
·τ1/2 exp

(
−n0τ

2
(µ− µ0)

2
)
·τα−1e−βτ

∝ τα+ n
2−1 exp

(
−τ(β+

1
2 ∑(yi − y)2)

)
τ1/2 exp

(
−τ

2

(
n0(µ− µ0)

2 + n( y− µ)2
))

which leads to a gamma posterior for τ:

P(τ|y) ∝ τα+ n
2−1 exp

(
−τ
(
β+

1
2 ∑(yi − y)2 +

nn0

2(n + n0)
( y− µ0)

2
))

τ|y ∼ Gamma
(
α+

n
2

, β+
1
2 ∑(yi − y)2 +

nn0

2(n + n0)
( y− µ0)

2
)

where y is the mean of the observations in component k, µ0, n0 are parameters of the prior
distribution for the mean, and α, β are parameters of the prior distribution for precision.

p(µ|y) ∝ L(y|µ)·π(µ) (11)

∝ exp(− τ

2 ∑ n
i=1(yi − µ)2) exp(− n0τ

2
(µ− µ0)

2)

∝ exp(− nτ
2
( y− µ)2) exp(− n0τ

2
(µ− µ0)

2)

∝ exp(− nτ
2
(µ2 − 2 y µ)− n0τ

2
(µ2 − 2µ0µ)

2
)

∝ exp(− 1
2
(nτ+ n0τ)(µ

2 − 2
(nτ y + n0τµ0)

(nτ+ n0τ)
µ))

∝ exp(− 1
2
(nτ+ n0τ)(µ−

(nτ y + n0τµ0)

(nτ+ n0τ)
)

2

)

µ|y ∼ N(
nτ

nτ+ n0τ
y +

n0τ

nτ+ n0τ
µ0, nτ+ n0τ)

where y is the mean of the observations in component k, n is the number of observations
allocated to component k, and µ0, n0 are parameters of the prior distribution for mean. The
posterior distributions of the proposed Bayesian mixture model are expressed as in Table 1.

Table 1. Posterior distribution of the proposed Bayesian mixture model.

Parameter Likelihood Conjugate Prior Posterior

w yi|w ∼ Mulinomial (w) w ∼ Dirichelt (e1, · · · , eK) w|Z, y ∼ Dirichelt (e1 + n1, · · · , eK + nK)

τ = 1
σ2 yi|µ, τ ∼ N (µ , τ) µ| τ ∼ N (µ 0, n0 τ)

τ ∼ Gamma (α,β) τ|Z, y ∼ Gamma
(
α+ n

2 , β+ 1
2 ∑ (yi − y)2 + nn0

2(n+n0)
( y− µ0)

2
)

µ
yi|µ, τ ∼ N (µ, τ)

with known τ
µ|τ ∼ N (µ0, n0τ) µ|Z, τ, y ∼ N

(
nτ

nτ+n0τ
y + n0τ

nτ+n0τ
µ0, nτ+ n0τ

)

Although the proposed mixture model is based on a standard distribution, the in-
ference of the posterior distribution of the model parameters is analytically intractable
(McLachlan et al., 2000; Gelman, et al., 2003). Fortunately, due to new computational
techniques, it has recently become possible to estimate mixture models using the Markov
Chain Monte Carlo (MCMC) algorithms. The Gibbs sampling method is a special MCMC
algorithm that is widely used to generate sample draw sequences from an unknown joint
posterior distribution. During each iteration of the algorithm, samples of each parameter
are alternately drawn from the conditional posterior distribution, given the other param-
eters drawn recently. If the sequence is long enough, it can be used to estimate the joint
distribution. This paper used the Gibbs sampling method including the burn-in period
to estimate the posterior distributions of model parameters. We first use R0 to draw the
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burn-in period, with iteration value R. We perform R = 15,000 iterations and discarded the
first R0 = 5000 draws as a burn-in period, then estimated the parameters as follows:

ŵk =
1

R− R0
∑ R

r=R0+1wk
(r) (12)

µ̂k =
1

R− R0
∑ R

r=R0+1µk
(r) (13)

σ̂2
k =

1
R− R0

∑ R
r=R0+1σ

2(r)
k (14)

This paper sets an initial allocation of Z(0), with initial values for µ(0)
k and τ

(0)
k to classify

the individual travel data. For the initial allocation Z(0), we assumed that there is an equal
prior for the prior weights assumed and for the initial µ(0)

k and τ
(0)
k , the parameters of each

clustering step are calculated at the first iteration step. The framework of the proposed
Bayesian mixture estimation is summarized as follows:

This paper uses initial allocation Z(0), with initial values for µ(0)
k and τ

(0)
k = 1

σ
2 (0)
k

, and

repeat the following steps for r = 1, · · · , R0, · · · , R0 + R.
Step 1: Classification, Z(r) with conditional on knowing (w(r−1), µ(r−1),σ2(r−1))

Classify each observation yi for i = 1, · · · , N, with the following probability rule

p(Z i = k| µ, σ2, w, yi)∝
1√

2πσ2
k

exp

{
− (yi − µk)

2

2σ2
k

}
·wk

Step 2: Parameter estimation, (w(r), µ(r),σ2(r))
Sample w(r) from posterior distribution of Dirichlet
Sample τ

(r)
k for each component k from posterior distribution of Gamma

Sample µ
(r)
k for each component k from posterior distribution of Normal

Store the values of all parameters as
θ(r) =

{(
w(r)

1 , · · · ,µ(r)
k

)
,
(
µ
(r)
1 , · · · ,µ(r)

k

)
,
(
τ
(r)
1 , · · · , τ(r)k

)}
Increase r by one, and return to Step 1
Step 3: Discard the first R0 draws as a burn-in period.

3. Model Evaluation

In this section, an empirical study is performed to evaluate the proposed travel time
estimator. The test environment is first introduced, followed by implementation of different
estimation methods on the same test dataset. Finally, the test results and discussion
are given.

3.1. Descriptions of Site and Data

The study site used for empirical analysis is two segments of the Busan-bound
Gyeongbu Expressway connecting Giheung IC to Dongtan IC, as illustrated in Figure 1a.
The selected freeway sections typically experience high traffic volume and heavy conges-
tion on weekends since they are main routes to tourist attractions. Therefore, travelers
need efficient and accurate travel time estimates when planning trips and changing travel
routes, especially during peak periods. The evaluation of travel time estimation on the test
site is conducted based on individual probe data from Korean Expressway Corporation.
The dataset provided by Korean Expressway Corporation is mainly collected by Korea
Expressway’s ETC system, Hi-Pass, using two different types of transponder technologies,
radio frequency (RF) and infrared ray (IR), through dedicated short-range communication
(DSRC) (Kim et al., 2013). The individual probe data at the test site covers two freeway
segments with a total length of 5.3-km. The raw probe data provides individual travel times
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for each segment and are collected in different time intervals. In this study, the raw data are
used at five-minute intervals to estimate travel time and their distribution of travel times.
The individual probe data between 6:30 and 13:00 from 1 March 2017 to 28 April 2017 are
used for the training dataset, and from 29 April and 5 May 2017 are used for the test
dataset because the most congested periods are observed in this time frame. Therefore, the
estimation performances using different methods are investigated during the peak period.
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To evaluate the estimation accuracy of the methodology, this study assumes the travel
time estimated on the Gyeongbu expressway to be the ground truth. The Gyeongbu
expressway, which relatively includes a high penetration rate of on-board devices in
South Korea, is selected to test the estimation algorithm. The loop detector collects a full
volume of traffic during the time interval, and it is possible to compare those data with the
amount of traffic volume collected by ETC readers. The traffic volume from loop detectors
was compared with the penetration rate of ETC between Giheung IC to Dongtan IC, as
illustrated in Figure 1b. The traffic volume of passenger cars was used to compare between
loop detectors and ETC, and traffic volume from different types of vehicles was excluded.
Since the ratio traffic volume between loop detectors and ETC is approximately 50% in the
study site, the estimation results obtained by assuming the travel time collected by ETC as
ground truth were compared.

3.2. Comparison of Estimation Methods and Performance Indicators

For performance evaluation, several different methods are also applied on the same
data set. The methods chosen include the state-of-the-art simple mean method and the
moving average method as comparison groups. The simple mean method is the easiest al-
ternative to estimate travel times by collecting real-time data on the segments. This method
is generally used by Korean Expressway Corporation to display travel time information on
variable message signs. Therefore, the simple mean method is considered a state-of-the-art
method for quantifying the trade-off between simplicity and estimation accuracy. The
moving average is often used with time-series data to smooth out short-term fluctuations
in real-time travel time estimations by creating a series of averages of different subsets of
the full data set to analyze the calculation of data points. The threshold depends on the
application, and the parameters of the moving average will be set accordingly. In this study,
three and five orders of moving average are selected, which entails travel time patterns in
short-term traffic flow.
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To evaluate different estimation methods, performance criteria are specified using
unbiasedness and efficiency to obtain a good estimator. The unbiasedness means that the
estimated value of the estimators should be equal to the true value of the variable estimated.
This study adopts both the absolute and root mean square estimation errors for measuring
the unbiasedness of the different estimators. The Mean Absolute Percentage Error (MAPE)
is the average absolute percentage change between the estimated and the true values. Also,
the Root Mean Square Error (RMSE) is also the difference between the estimated and the
true values as demonstrated as follows:

MAPE =
1
n ∑ n

i=1
|TE

i − TG
i |

TG
i

(15)

RMSE =

√
1
n ∑ n

i=1

(
TE

i − TG
i

)2
(16)

where TE
i is the estimated travel time of the ith time interval, TG

i is the ground truth of
travel time of the ith time interval, and n is the total number of the estimated travel times.

The efficiency is a measure of the quality of an estimator and an efficient estimate of the
good estimator is one that has the smallest standard error among all unbiased estimators.
This study adopts the standard deviation of MAPE for measuring the efficiency of the
different estimators.

3.3. Estimation Results by Penetration Rate of Probe Data

To evaluate the performance of the novel estimation method during peak periods
(6:30–13:00), this study compared average absolute estimation errors by different penetra-
tion rate of probes from random sampling in Figure 2. Among all the results, the estimation
error has a pattern in which it decreases as the penetration rates of probes increases. Al-
though the estimation error gradually decreases as the number of probes increases, moving
average methods show constant errors since the moving average is not intensely related to
the penetration rate of probe data. The simple mean method produces similar patterns of
estimation error with the Bayesian mixture estimation, but the average absolute estimation
error is higher than the Bayesian mixture estimation. The Bayesian mixture estimation
shows higher accuracy than other models for a 3–13% penetration rate of probe data. How-
ever, the Bayesian mixture estimation has limitations in that it cannot be used to perform
estimations at under 1–2% penetration rate of probes due to constraints of the model at low
sample numbers.

3.4. Estimation Results under Low Frequency Probe Data

For investigation of the deviation between estimation results and ground truth data,
estimation results using scatter plot were produced by the four methods on 3% penetration
rate of probe data and presented in Figure 3. The figure clearly shows a significant difference
during peak periods (6:30–13:00) between estimated travel time by different methods and
ground truth travel time. Among all the methods, the estimated travel times from simple
mean and moving average and ground truth travel time highly deviate during peak periods.
Meanwhile, Bayesian mixture estimation does not result in significant bias. In conclusion,
the figure demonstrates that the estimation errors are occurring during peak periods under
low sampling rates of probes.

For better evaluation on the performance of the Bayesian mixture approach, the
average absolute and root mean square estimation errors produced during peak periods
by the four methods are summarized in Table 2. As shown in the table, the proposed
Bayesian mixture method produces the smallest estimation error. Among all the methods,
the method of simple mean generally provides the worst performance for all test days, with
a significant drop in performance during peak periods. Moving average produces slightly
lower estimation errors compared to the simple mean method. Besides, the least standard
deviations of MAPE are produced by the proposed Bayesian mixture approach compared
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to simple mean and moving average methods. In conclusion, the results show that the
proposed algorithm outperforms the different estimation methods during peak periods.
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Table 2. Estimation results by different methods during peak periods.

Simple
Mean MA(3) MA(5) Bayesian

Mixture

Case I, 29 April
MAPE (%) 14.1 12.0 14.8 10.3
RMSE (s) 74.9 61.5 65.6 51.2

SD of MAPE 13.8 10.8 11.0 9.2

Case II, 29 April
MAPE (%) 11.8 12.8 13.7 8.6
RMSE (s) 31.9 29.6 32.8 21.2

SD of MAPE 10.5 9.0 11.3 6.6

Case I, 5 May
MAPE (%) 19.4 19.2 21.5 13.6
RMSE (s) 130.2 110.1 107.5 87.2

SD of MAPE 18.4 17.8 18.1 10.9

Case II, 5 May
MAPE (%) 18.8 15.5 16.5 11.2
RMSE (s) 52.5 41.7 39.8 27.6

SD of MAPE 13.9 13.2 14.3 7.5
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3.5. Credible Intervals under Low Frequency Probe Data

Since the Bayesian mixture not only estimates travel time but can estimate travel time
distribution, the credible intervals on 3% penetration rate of probe data are estimated using
the Bayesian mixture estimation and presented in Figure 4. The 95% credible intervals of
the estimated travel times are calculated using a 2.5% lower boundary and 97.5% upper
boundary. Due to the variability of travel times during peak periods, the credible intervals
of the estimated travel times are slightly large. However, the 95% credible intervals of
the estimated travel times cover most of the temporal variation of the ground truth data,
suggesting that the proposed Bayesian mixture provides a good accuracy for estimating
travel time reliability.
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4. Conclusions

This paper develops a new travel time estimation method under low-frequency probe
data based on the Bayesian approach. Due to the variability of travel times during peak
periods, this paper adopts a mixture distribution of travel times in the Bayesian approach
instead of the conventional single distribution. According to the characteristics of travel
time regularity, the proposed estimation method adopts a historical data-based data-driven
method to estimate the prior distribution in the Bayesian approach. The Gibbs sampling
method, which includes the burn-in period, is used to generate a series of sample draws
from an unknown joint posterior distribution and to estimate the posterior distribution of
the parameters.

The individual probe data on the selected freeway sections connecting Giheung IC
to Dongtan IC are used to study the performance of different estimation methods. To
evaluate different estimation methods, the performance criteria are used to specify good
estimations using unbiasedness and efficiency. The MAPE and RMSE of estimation results
for the unbiasedness show that the proposed method produces the smallest deviation from
the ground truth travel times, compared to simple mean and moving average methods.
Furthermore, the proposed Bayesian mixture method yields the smallest standard deviation
of the MAPE of efficiency compared to the different estimation methods for all test days.
Besides, the proposed approach provides good accuracy in estimating travel time reliability
according to the credible intervals.

This method can not only estimate the travel time, but also estimate the travel time
distribution under the low-frequency sounding data. The method essentially proposed in
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the Bayesian approach does not require a specific type of data source and can be applied
to low-frequency data problems in other application fields. The proposed approach is
also flexible in addressing data estimation problems in other application fields and can
potentially yield a relatively high accuracy if sufficient historical data are provided during
peak periods. Implementation of the proposed estimator into arterial travel time estimation
will be considered in the future. Moreover, future research will consider the use of the other
observable factors (e.g., weather conditions) to accurately estimate prior distributions of
parameters in data-driven methods.
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