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Abstract: The problem of excessive wear of pantograph strips frequently occurs on China’s Z City
Metro Line 1. After on-site investigation and analysis by the metro operating company, it was
speculated that the problem was related to abnormal track irregularities. Therefore, taking Z City
Metro Line 1 as the main research object, the measured track irregularity of the whole line was
analyzed and compared with other typical track spectra, and a track-vehicle-pantograph-catenary
coupling dynamics model was established to analyze the relationship between the pantograph-
catenary dynamic characteristics and the track irregularity. The two frequency ranges of the track
irregularity that have a significant impact on the pantograph-catenary contact were found. Finally,
after numerical calculation and analysis, it is recommended to focus on the irregularities with the
two wavelength ranges of 9~16 m and 3~4 m in the maintenance.

Keywords: track irregularity; dynamic response; pantograph–catenary contact; multibody dynamics

1. Introduction

The main structural components of urban rail transit are tracks, vehicles, and cate-
naries, which are coupled with each other. The pantograph–catenary (PC) is one of the
most important interaction systems [1], responsible for providing power energy for the
locomotive [2]. During the operation of the vehicle, the pantograph and catenary are
always in sliding contact, and there are friction and wear effects between them [3]. With
the increase in the operation time, the track line will inevitably deteriorate [4,5], aggravate
the vehicle vibration, and may make contributions to the wear of the pantograph strip,
which will lead to a significant reduction in the service life and even the separation of the
PC system [6], slowing down the train and affecting the safety.

Aiming at the problem of the abnormal vibration and wear of the pantograph strip, a
series of studies have been carried out. Shining et al. analyzed the statistical data from an
operating railway line and concluded that the irregular height of the contact wire relative
to the rails and high humidity could lead to the abnormal wear of the collector strip [7].
Ding et al. carried out a series of tests to study the influence of the temperature and the
arc discharge on the wear of the pantograph strip [8]. Wei et al. proposed a wear model
to calculate the wear rate and predict the wear of the contact wire [9]. By experimental
studies, Mei pointed out that the direct current and vibration of the pantograph strip can
largely affect the tribological performance [10]. Daocharoenporn et al. proposed a wear
prediction method based on nonlinear multibody dynamic algorithms, which can account
for the electrical and the mechanical effects [11]. Derosa et al. proposed a heuristic wear
model for predicting the wear of the pantograph strip and the contact wire [12]. Yi et al.
established a PC dynamics model and concluded through computational analysis that the
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pantograph crack would aggravate the wear rate of the pantograph strip [13]. Wang et al.
analyzed the wear of the contact wire using the measured data, and the results show that
the wear is related to the structural characteristics of the wire, but it has little effect on the
PC interaction [14]. Zhang et al. carried out a series of tests and concluded that the best
tribological properties could be obtained at 80 km/h, and the increasing amplitude could
extend the cracks [15].

Besides the research from the perspective of PC interaction, the influence of track
disturbance on vehicle vibration and PC contact has gradually drawn attention. There have
also been some studies on the influence of track irregularity on pantograph vibration char-
acteristics. Yao et al. established a track–vehicle–PC coupling dynamics model and studied
the influence of the AAR track spectrum on the pantograph vibration [16]. Carnicero et al.
presented a PC–vehicle–track model to analyze the vertical dynamics of the whole sys-
tem, and the results show that the track irregularities influence the PC contact points [17].
Yang et al. constructed a PC model and a vehicle–track model to study the dynamic re-
sponses of PC with random track irregularities and concluded that the irregularities could
increase the fluctuation of PC contact forces [18].

As can be seen from the above research work, the influence of track disturbance on PC
contact is also a hot spot for researchers. It was mainly analyzed based on the random track
excitations generated from the typical irregularity spectrum, such as the American level
6 spectrum. These random irregularities are general disturbances, which cannot reflect
the abnormal characteristics of the real track lines. In fact, there are great differences in
the characteristics of track irregularities under different lines [19], such as the differential
settlement of the foundation [20,21], or the periodic irregularities such as rail weld [22,23],
which will increase the medium–long-wavelength irregularity of the track. They have
non-negligible impacts on the vehicle system, as well as the PC system. It is necessary to
carry out specific research and analysis according to the actual situation.

The authors received feedback from the metro operation company, claiming that
the problem of rapid wear of the pantograph strip occurred frequently on Metro Line 1
in Z City. The problem led to the frequent replacement of the pantograph strip, which
greatly increased the maintenance cost. Since the problem could not be simply solved
by the replacement of different types of pantograph strips, after a great deal of on-site
investigation and inspection, the maintenance department considered that there were
specific relationships between the track geometry and the PC contact.

To explore the relationship and propose solutions to this defect, taking Z City Metro
Line 1 as the main research object, a pantograph–vehicle–track coupling dynamic model
is established, and the relationship of the measured track irregularity on the vehicle and
pantograph system is studied. The causes that lead to abnormal wear of the pantograph
strip are analyzed, and control suggestions are proposed.

2. Analysis of the Measured Excitations

The analysis of the track irregularity of the whole line and the comparison with typical
irregularities is given in this section to evaluate the track geometry. Figure 1 shows the
whole line track irregularity measured by the inspection vehicle of Metro Line 1 in Z City
(with the speed of 15~60 km/h; the average speed is approximately 43 km/h, and the
sampling interval is 0.266 m/point).

It can be observed from Figure 1c,d that there are periodic irregularities with wave-
lengths of 12.5 m and 25 m, and the amplitude of −6~7 mm existing in the level irregular-
ity; there are periodic irregularities with wavelengths of 10~15 m, and the amplitude of
−10~8 mm existing in the alignment irregularity. These characteristics are prevalent in the
whole line of Metro Line 1 in Z City.
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Figure 1. The time-domain characteristics of the track geometries: (a) the time-history diagram of
level irregularity; (b) the time-history diagram of alignment irregularity; (c) the feature of the level
irregularity; (d) the feature of the alignment irregularity.

To analyze the periodic characteristics of the track geometry more comprehensively,
the track geometry power spectral density (PSD) is calculated, as shown in Figure 2.
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Figure 2. Spectral characteristics of the track geometries: (a) the PSD of the level irregularity; (b) the
PSD of the alignment irregularity.

There are several spectral peaks in the level irregularities, indicating the existence of
periodic irregularities. The wavelength range of the first spectral peak is 5.6~41.6 m with
the largest component of 12.5~13.6 m, which may be caused by the periodic irregularities
of the 25 m welded rail. The wavelength range of the second spectral peak is 2.5~4.5 m,
and the peak wavelength is 3.6 m. The wavelength range of the third spectral peak is
1.78~2.38 m, and its peak value is located at the wavelength of 2.1 m. Considering that the
irregularity with a shorter wavelength has less influence on the car body and pantograph,
this manuscript does not focus on them.

The PSD of the alignment irregularity is similar to that of the level irregularities. There
are also several periodic irregularities. The frequency bands where the three largest peaks
are located are 10~20 m, 2.7~4.5 m, and 1.78~2.38 m, which are basically the same as the
level irregularities.
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The track irregularity spectrum of Metro Line 1 in Z City is compared with other typical
irregularity spectra, as shown in Figure 3, including the American 6-level spectrum [24],
German high-interference spectrum [25], and the measured irregularity spectrum of the
Beijing subway.
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Figure 3. Comparison of track irregularity spectra: (a) the comparison of the PSD of the level
irregularity; (b) the comparison of the PSD of the alignment irregularity.

The values of the track irregularity spectrum of Metro Line 1 in Z City are significantly
higher than others, indicating that the overall track smoothness is poor. The positions
where the larger spectral values exist are mainly the broadband peaks, which are also the
reason for the deterioration in the smoothness of Metro Line 1 in Z City.

Taking the measured irregularity spectrum of the Beijing subway as the comparison tar-
get, the deterioration wavelength range can be obtained: 6.5~18 m, 2.8~4 m, and 1.7~2.5 m.
These medium- and long-wavelength irregularities may have a greater impact on vehicle
vibration, leading to the vibration and wear increase of the pantograph. To verify the influ-
ence and determine the influencing degree of these abnormal irregularities, this manuscript
establishes a pantograph–vehicle–track coupled dynamic model to study the influence of
the measured irregularities on the vibration of vehicle and pantograph.

3. Establishment and Validation of the Analysis Model
3.1. Numerical Model

The vehicles operating on Z City Metro line 1 are metro type B vehicles with a max-
imum running speed of 80 km/h, designed by CRRC Zhuzhou Locomotive CO., Ltd.
(Zhuzhou, China). A two-stage suspension system is used in the vehicle, in which the
rotating-arm positioning measure is used in the wheelset, and the rotating arm and the
double springs form the primary suspension system, which provides the vertical stiffness
and the longitudinal and lateral stiffness required to ensure the running stability of the
vehicle. In addition, the primary suspension also includes vertical hydraulic dampers to
absorb the vertical vibration. The secondary suspension is mainly composed of air springs,
lateral hydraulic dampers, vertical hydraulic dampers, etc. Moreover, in order to control
the rolling motion of the car body, an anti-roll torsion bar is also installed between the car
body and the bogie.

Based on the structural parameters of the B-type metro vehicle and the bogie ZMC080,
a vehicle dynamic model is established by using the multibody dynamics method (shown
in Figure 4). The pantograph strip, upper frame, lower frame, car body, bogie, and wheelset
are included in the model, connected by spring-damping systems. This manuscript focuses
on the lateral and vertical vibrations of the pantograph, so the lateral and vertical degrees of
freedom are considered. The car body, bogie, and wheelset are rigid bodies with 6 degrees
of freedom [26]. The wheelset and the bogie are connected by the primary suspension, and
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the bogie and the vehicle body are connected by the secondary suspension. The vehicle
dynamics model expression is as follows:

MV
..
x + DV

.
x + KVx = 0 (1)
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The mass matrix can be expressed as:

MV =


MP

MC
MB

MW

 (2)

The components of the vehicle are connected by a two-stage suspension system
containing springs and dampers. The nonlinear behavior of the lateral stops and lateral
vibration absorber is considered. In the manuscript, the nonlinear characteristic curves of
the primary vertical damping and secondary lateral damping of the vehicle are given in
Figure 5. The stiffness and damping matrices can be expressed as:

DV =


DPP DPC
DCP DCC DCB

DBC DBB DBW
DWB DWW

, KV =


KPP KPC
KCP KCC KCB

KBC KBB KBW
KWB KWW

 (3)

The subscripts P, C, B, and W in Equation (2) represent the pantograph, the car body,
the bogie frame, and the wheelset, respectively. Some parameters are shown in Table 1.

In terms of the wheel–rail contact part, the Hertzian contact algorithm is used to
calculate the wheel–rail interaction point and force [27]. The polygonal contact model
(PCM) is used to calculate the PC interaction [14].
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Table 1. Model parameters of the type B metro vehicle operating on Z City Metro Line 1.

Item Value

Vehicle mass 33.86 t
Bogie mass 3.73 t

Wheelset mass 1.731 t
Longitudinal stiffness of the primary suspension 17.2277 MN/m

Lateral stiffness of the primary suspension 9.2277 MN/m
Vertical stiffness of the primary suspension 0.347 MN/m

Longitudinal stiffness of the air spring 0.162 MN/m
Lateral stiffness of the air spring 0.162 MN/m
Vertical stiffness of the air spring 0.349 MN/m

The connection siffness of the pantograph strip and the
upper frame 19.7 kN/m

The connection stiffness of the upper frame and the
lower frame 10.6 kN/m

3.2. Model Validation

First, to verify the accuracy of the vehicle dynamics model, the track irregularity
measured by the inspection vehicle and the actual operating speed were used for simulation
calculation. The vertical acceleration of the car body was extracted and compared with the
vibration acceleration of the inspection vehicle, as shown in Figure 6.

As can be seen from Figure 6, the car body acceleration obtained by the simulation is
in good agreement with the measured acceleration of the inspection car, and both are in the
range of −0.6~0.6 m/s2. It can also be seen from the detailed diagram that the simulated
results are consistent with the measured result in the trend and the values of the curve,
which indicates that the vehicle dynamics model established in the manuscript is reliable.

Secondly, to verify the accuracy of the model in the calculation of the PC contact, the
contact forces during the operation of the vehicle were extracted, as shown in Figure 7.
It can be observed that the contact normal forces are basically around 100 N, and the
maximum value is around 200 N. The statistical analysis was carried out, and the results
were compared with the on-site test data, as shown in Table 2.
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Table 2. PC contact force validation [28].

Item Field Test/N Model Results/N

Mean Contact Force 115.90 109.21
Standard Deviation 18.90 18.50

Max. Value 207.70 200.76
Min. Value 67.88 52.77

It can be observed from Table 2 that the model established in the manuscript is close
to the field test results. The deviation is basically within 5%, especially in the average,
standard deviation, and maximum contact force of PC.

The model validation part shows that the pantograph–vehicle–track coupling dynam-
ics model established in the manuscript has high accuracy in the calculation of vehicle
dynamics and PC contact, which can provide a basis for subsequent theoretical calculations
and analysis.

In summary, the track–vehicle–pantograph–catenary contact dynamics model was
established based on the wheel–rail, vehicle, and pantograph–catenary parameters of
the actual vehicle running on Z City Metro Line 1. The nonlinear characteristics of the
suspension system were fully considered in the model, and the measured data of the line
were used for verification, which can accurately reflect the relationship between the track
irregularity, vehicle response, and pantograph–catenary interaction.
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4. Result and Analysis

To determine the reason for the fast wear of the pantograph strip, the relationship
between the measured track irregularity and the PC contact is studied in this section. A
section of field-measured track irregularity (K3.53~K5.29) with a large amplitude was
selected as the excitation input, and the average speed of 42 km/h and a higher speed of
53 km/h were selected as the model running speed. The reflection of the track irregularity
periodic characteristics on the vehicle system from the perspective of the vibration responses
is analyzed in Section 4.1. The contact force of the PC is analyzed in Section 4.2 to determine
its relationship with the track irregularity. The comparison of the track irregularity spectrum
of Z City and the Beijing Metro, as well as PC contact force, is carried out in Section 4.3, to
determine the influence of the abnormal track irregularity on PC contact.

4.1. Vibration Responses of the Vehicle System

The vibration responses of the vehicle system and the pantograph are extracted, and
the vibration transfer characteristics are analyzed from the frequency domain.

Comparing the vertical vibration amplitude–frequency responses of the wheelset,
bogie, car body, and the pantograph strip (shown as Figure 8a), it can be seen that there
are three typical peak values, which are around 0.96 Hz, 1.6 Hz, and 4 Hz, respectively.
The wavelength range corresponding to the first peak is 10~20 m. The vibration energy
is the largest, and the transmission attenuation from the wheelset to the pantograph
is small. The wavelength ranges corresponding to the second and the third peaks are
6~9 m and 3~4 m, respectively. In these two ranges, the attenuation of vertical vibration
gradually increases, but the pantograph still has large peak values. Moreover, at higher
frequency ranges, although there is larger vibration in the wheelset and bogie, the car
body and the pantograph are not affected. The results show that through the energy
dissipation of the primary and secondary suspension systems, vibration higher than 5 Hz
(corresponding to the wavelength of 2 m) can be significantly attenuated, but the vibrations
with the wavelengths of 10~20 m, 6~9 m, and 3~4 m are still prominent in the pantograph.
According to Figure 8b, it can be seen that there are two peaks whose wavelengths are
6~12 m and 2~4 m, respectively, in the lateral vibration of the pantograph, corresponding
to the first and the third peak of the vertical vibration.
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Figure 8. Vibration responses of the vehicle system at 42 km/h: (a) vertical responses; (b) lateral
responses.

The dynamic responses when the vehicle runs at 53 km/h were extracted, as shown in
Figure 9.
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Figure 9. Vibration responses of the vehicle system at 53 km/h: (a) vertical responses; (b) lateral responses.

It can be seen that with the increase in the operating speed, the dynamic responses
of the vehicle system increase, and the peak frequency of the vibration also increases.
However, for vertical vibration, the wavelengths corresponding to the vibration peaks of
the pantograph are still 10~20 m, 6~8 m, and 3~4 m, respectively, which are exactly the
same as those at 42 km/h. In terms of lateral vibration, it can be seen that the vibration
of the pantograph has increased significantly, and the peaks are concentrated in the two
frequency ranges of 9.6~13.4 m and 3~4 m.

According to the measured track geometry irregularity, it can be inferred that its two
broadband peaks at 10~20 m and 3~4 m have a great influence on the vibration of the
vehicle system, especially the pantograph strip.

4.2. PC Contact Forces

The PC normal force and lateral friction force at speeds of 42 km/h and 53 km/h were
extracted and transferred to the frequency domain. The results are shown in Figure 10.
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Figure 10. PC contact force under two speeds: (a) normal force; (b) friction force.

It can be observed from Figure 10 that there are two peaks on the amplitude–frequency
curves of PC contact forces. When the operating speed increases, the amplitude of contact
forces increases significantly in the entire frequency domain, and the peak frequencies also
increase, but the corresponding vibration wavelengths remain unchanged. Among them,
the main peaks of the normal force and lateral friction force are located in the wavelength
range of 10~20 m. The secondary peak of the normal force is relatively wide, and the
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corresponding vibration wavelength range is 3~8 m, while that of the lateral friction force
corresponds to a narrow vibration wavelength of 3~4 m.

For the normal force, the two peaks correspond exactly to the three main peaks in
the measured track irregularity spectrum. For the lateral friction force, the two peaks
correspond to the first and the third peaks in the measured track irregularity spectrum. The
results show that the multiple broadband spectral peaks existing in the track irregularity of
Metro Line 1 in Z City not only aggravate the vibration of the vehicle but also increase the
vibration and the friction of the pantograph.

4.3. Comparison with the Measured Irregularity of Beijing Metro

The influences of the measured irregularity on Metro Line 1 in Z City were analyzed in
Sections 4.1 and 4.2, and two broadband peaks in the irregularity spectrum are preliminarily
associated with the serious wear of the pantograph strip. In this part, to more accurately
determine the relationship between the large vibration and rapid wear of the pantograph
strip of Z City Metro Line 1 and its track irregularity, the measured irregularity of the
Beijing Metro is compared. The comparison of the track irregularity spectrum of the two
lines is shown in Figure 11 and the PC contact normal force and the friction work are shown
in Figure 12.
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Figure 11. Comparison of the measured irregularity in Z City Metro and Beijing Metro: (a) vertical
irregularity; (b) lateral irregularity.
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Figure 12. Comparison of the PC contact: (a) normal force; (b) frictional work.

Due to the short operation time of Z City Metro Line 1, its long-wave irregularity
(with a wavelength longer than 20 m) is significantly lower than that of the Beijing Metro.
The amplitude of the level irregularity is higher in the wavelengths of 10~20 m and
3~4 m. Dynamic calculation results show that below 0.8 Hz, the PC contact force of the Z
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City Metro is smaller, but at the peak around 1 Hz, it is larger than that of the Beijing Metro.
In terms of friction work, the PC friction work of Z City Metro Line 1 is much larger than
that of the Beijing Metro in the whole frequency band.

These results and comparisons further confirm that there is an inevitable relationship
between the large vibration and rapid wear of the pantograph strip in the Z City Metro
and the excessive amplitude of the track irregularity with the two wavelengths.

5. Optimization Suggestions

Based on the above calculation and analysis, there are many broadband spectral peaks
in the track irregularity of Metro Line 1 in Z City. However, the short-wave irregularity
cannot lead to the abnormal vibration and the contact force of PC, so it can be considered
that these abnormal vibrations and forces are related to the medium- and long-wavelength
irregularity. After a comprehensive analysis, it can be considered that the track irregularity
with wavelengths of 2~4 m and 9~16 m plays an important role. Especially for Z City Metro
Line 1, the amplitude of the irregularities in the two wavelengths is too large compared
with other typical metro line irregularity spectra, which aggravates the vehicle vibration
and strengthens the PC interaction. Therefore, the target object in the manuscript is whether
the PC interaction can be reduced by decreasing the amplitude of the track irregularities in
the two wavelength regions.

The irregularity with the wavelength of 2~4 m was mainly caused by the rail straight-
ening operation. The amplitude of the irregularity can be reduced by grinding the rail,
replacing the rail, or improving the rail straightening operation technology. The irregu-
larity with the wavelength of 9~16 m may be caused by the rail straightening operation,
the welded joint, or the periodic structure irregularity of the base. Irregularities within
the wavelength should be determined according to field investigation, and maintenance
measures such as rail grinding, replacement with longer rails, and the repair of the periodic
settlement of the base and the foundation can be taken.

To verify the effectiveness of the above suggestions, the manuscript simulates the
on-site maintenance, and the irregularities of the two wavelengths of 2~4 m and 9~16 m
are filtered by 30% and 60%, respectively (as shown in Figure 13), and then the dynamic
calculation is carried out to verify the reasonableness of the suggestions. Among them,
maintenance 1 means that the amplitude of 2~4 m and 9~16 m wavelength irregularities is
reduced by 30%, and maintenance 2 means that the amplitude of these two wavelength
irregularities is reduced by 60%. The purpose of setting these two calculation conditions
is to fully illustrate the effect of reducing the amplitude of the two-wavelength part on
controlling the pantograph–catenary interaction.
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The track irregularity after filtering is substituted into the dynamic model for calcula-
tion, and the results are statistically analyzed and compared with the original responses.
The vertical and lateral accelerations of the pantograph strip are shown in Figure 14 and
the statistical values of the acceleration are shown in Table 3.
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Table 3. Statistical values of the acceleration of pantograph strip.

Item
Maximum Value

(m/s2)
Effective Value

(m/s2)

Vertical Lateral Vertical Lateral

Before
Maintenance 0.57 7.77 0.096 1.03

Maintenance 1 0.51 2.92 0.073 0.51
Maintenance 2 0.49 2.84 0.058 0.27

According to Figure 14, the vibration responses of the pantograph strip are significantly
reduced after adopting the suggestions proposed in the manuscript, especially in the lateral
vibration, where the overall frequency distribution is closer to the axis x = 0.

It can be calculated from Table 3 that the maximum lateral acceleration of the panto-
graph strip decreases by approximately 62% and the effective value drops by approximately
50% under the condition of maintenance 1, while the maximum value decreases by approx-
imately 63%, and the effective value drops by approximately 74% under the condition of
maintenance 2. The significant reduction in the lateral vibration indicates that it is necessary
to control the 9~16 m and 2~4 m wavelength track irregularities in Z City Metro Line 1.

The comparison of the PC contact force is shown in Figure 15, and the statistical
characteristic values are shown in Table 4.

Table 4. Statistical values of the acceleration of pantograph strip.

Item
Maximum Value (N) Effective Value (N) Standard Deviation

Normal Friction Normal Friction Normal Friction

Before
Maintenance 201.5 48.72 95.35 9.68 13.40 6.70

Maintenance 1 163.2 20.73 95.79 4.05 8.67 2.54
Maintenance 2 151.2 11.42 96.70 1.90 6.34 1.00
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Figure 15. The effect of the maintenance suggestions (on contact force): (a) normal contact force;
(b) friction force.

It can be observed from Figure 15 that after controlling the irregularity with specific
wavelengths, the PC normal contact forces are more concentrated at their mean value of
110 N, and the lateral forces are more concentrated at 0. The maximum and minimum
values are both improved, indicating that the PC contact is more stable.

The statistical values in Table 4 show that the maintenance suggestions have a great
influence on the PC lateral friction. In the case of maintenance 1, the maximum lateral
friction force can be reduced by 57%, the effective value can be reduced by 58%, and the
standard deviation can be reduced by 62%.

Considering that the operation problem is the rapid wear of the pantograph strip, the
friction work is used to approximate the wear of the pantograph in the manuscript. The PC
friction work of the whole section under the three calculation conditions is compared, as
shown in Figure 16.
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Figure 16. The effect of the maintenance suggestions (frictional work). (a) In time domain; (b) In
frequency domain.

According to Figure 16a, it can be seen that under the initial condition, the friction
work has many sharp peaks; however, these peaks are significantly reduced under the
maintenance conditions. For example, when t = 79 s, the friction work is 1.14 J under the
initial condition, while that under the maintenance 1 and 2 conditions is 0.26 J and 0.10 J,
respectively. It can be observed from Figure 16b that under the maintenance conditions,
the friction work decreases in the whole frequency domain, especially at the two peaks.

The statistical values of friction work are shown in Table 5.
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Table 5. Statistical values of the acceleration of pantograph strip.

Item Maximum Value (J) Mean Value (J) Standard Deviation

Before Maintenance 1.139 0.052 0.103
Maintenance 1 0.258 0.009 0.024
Maintenance 2 0.100 0.002 0.006

The PC friction work can be reduced to the degree of 90% or more in the parameter
of maximum value and the mean value under the maintenance condition, and the overall
value of the friction work is closer to 0, indicating that the suggestions proposed in this
paper can have a positive effect on the friction control of the pantograph strip.

6. Conclusions

In this manuscript, aiming at the problem of rapid wear of the pantograph strip in
Z City, a vehicle–track–pantograph coupling dynamic model was established to carry
out the dynamic calculation and simulation, and the transmission of the vibration in the
track irregularity–vehicle vibration–pantograph sequence was studied and analyzed. Then,
optimization suggestions for the maintenance of the track irregularity were put forward.
Finally, by evaluating the optimization suggestions, their rationality and effectiveness were
confirmed. The main conclusions are as follows:

1. The track spectrum values of Metro Line 1 in Z City are significantly higher than
those of the American level 6 spectra, the German high-interference spectrum, and the
Beijing Metro spectrum, indicating that the overall track smoothness is poor. There
are multiple broadband peaks in the irregularity, such as three wavelengths of 3~4 m,
6~8 m, and 9~16 m, indicating that the irregularities of the specific wavelengths are
the main reasons for the deterioration of the track geometry.

2. The two-stage suspension system of the vehicle can attenuate the vibration caused by
some short-wavelength irregularities, but the irregularities of the 3~4 m and 9~16 m
wavelengths can have a significant impact on the vehicle, aggravating pantograph
vibration and PC contact force.

3. The vertical and lateral contact force of the pantograph and catenary is larger in the
three wavelength ranges of 3~4 m, 6~8 m, and 9~16 m, and the track irregularity is
larger in the two wavelength ranges of 3~4 m and 9~16 m. There is a direct mapping
relationship between the spectra.

4. Comparing the spectral characteristics and pantograph contact force under the ir-
regularities of Z City Metro Line 1 and the Beijing Metro, it is further determined
that the vibration and friction of the pantograph are exacerbated due to the excessive
amplitudes of the wavelengths of 3~4 m and 9~16 m.

5. Optimization suggestions for controlling the irregularity in the wavelengths of 3~4 m
and 9~16 m were proposed, and the dynamic calculation was carried out. The results
show that the PC contact force and friction work can be significantly reduced by using
the optimization measures, which can contribute to the reduction in the wear of the
pantograph strip.
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