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Abstract: Automatic intersection identification and extraction are an important foundation for urban
road network updates and traffic network analysis and modeling. Existing intersection extraction
methods based on steering angles and stopping points suffer from inadequate sampling amounts
and threshold settings. To address this problem, we propose a road network intersection automatic
extraction method based on vehicle trajectory intersection clustering. First, the continuous trajectory
segments are extracted from trajectory data based on the sampling interval. Second, the maximum
reconstruction error method is developed to extract straight-line trajectory segments from continuous
trajectory segments. The overlapped straight-line trajectory segments belonging to the same direction
are merged to reduce the number of segments and enhance road network patterns. To further improve
the calculation efficiency of the intersection points of straight-line segments, bounding box filtering
and orthogonal filtering are used to filter the straight-line trajectory segments that do not have an
intersection relationship. Finally, the obtained straight-line segment intersection points are clustered
using a density peak clustering algorithm. The road intersections are automatically extracted using
the clustering center. The experimental results on real vehicle trajectories in Lianyungang City show
that the proposed method performs well on intersection recognition and calculation efficiency.

Keywords: intelligent transportation; intersection extraction; vehicle trajectory; reconstruction error;
density peak clustering

1. Introduction

Intersections are important junctions of urban traffic road networks, as well as bottle-
necks of traffic flow and key nodes of urban traffic management. The automatic extraction
and identification of intersection location and structure are of fundamental importance for
road network map updates, network traffic flow analysis, urban traffic management, and
critical path identification. Existing extraction research on intersections mostly relies on
data sources such as remote sensing images [1], historical map images [2], multi-sensor
combinations, GPS trajectory data, and so on. Among them, methods based on remote
sensing images are sensitive to factors such as weather, lighting, and road environment,
resulting in inaccurate intersection processing. Methods based on multi-sensor combi-
nations are limited by the spatial coverage of the sensors and are only effective within a
certain range.

With the rapid development of intelligent vehicle terminals, autonomous driving, and
5G communication technology, vehicle GPS trajectory data are becoming more accessible,
with higher accuracy and richer feature information. Mousavizadeh et al. [3] estimate the
real-time vehicle turning rate using floating car data in road intersections. Sun et al. [4] pre-
dict traffic congestion based on GPS trajectory using a deep learning method. Tang et al. [5]
present an automatic method for the detection and update of newly added roads based on
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the common low-quality trajectory data. The authors used a point-to-segment matching
algorithm to acquire line segment road network structure but did not take advantage of tra-
jectory information. Wang et al. [6] used low-sample frequency data to reconstruct vehicle
trajectories through road intersections. The trajectory was adjusted microscopically using a
probability method; these studies all focus on intersections as the core area. The location
extraction and structure recognition of road network intersections based on trajectory data
is the first part or kernel problem of such studies, and it is increasingly becoming a current
research hotspot.

By using trajectory data, the intersection extraction is based on the characteristics of tra-
jectories within the intersection area. There is much literature on intersection extraction by
clustering the characteristics of each sampling point in a single trajectory. The widely used
characteristic is the steering angle, which is used by Deng et al. [7] and Tang et al. [8]. Some
studies try to use different clustering algorithms to improve performance. Wang et al. [9]
used a mean-shift algorithm for the clustering steering angle. Hu et al. [10] detected the
traffic intersection using floating car data; they used the angle of the direction difference
for detecting the traffic intersection, and a density clustering algorithm (DBSCAN) for
identifying traffic intersections. Gao et al. [11] improved the density peak clustering algo-
rithm. Some studies enhance the steering point feature by integrating multiple features.
Huang et al. [12] detected road intersections from large-scale vehicle trajectories by cluster-
ing turning points and then removing the false detections using direction discrepancy and
turning discrepancy. Chen et al. [13] detected road intersections by proposing a novel turn-
point position compensation in order to improve the concentration of selected turn-points
under low sampling rates, and indeed there are also studies using other single-trajectory
characteristics. Zourlidou et al. [14] determined the location and area of the intersection
using density-based clustering on vehicle stop points. Zhou et al. [15] proposed a geospatial
method to extract functionally critical network location (FCNL) as road intersections from
trajectories. The FCNL has multiple characterizations, such as a large number of activity
trajectories, and is traversed by trajectories exhibiting diverse patterns; however, among the
existing research, the intersection extraction method based on characteristics of the single
trajectory is influenced by the trajectory sampling amount, which is leading to ignoring
road intersections with low sampling amounts.

There are also some studies based on the properties of multiple trajectories within
the grid of a small area; C.Wang et al. [16] extracted an intersection and stop bar from
crowdsourced GPS trajectories. They gridded the target area and calculated the entropy
of the moving direction within each grid to identify intersection areas. Keler et al. [17]
introduced a method for intersecting vehicle trajectories and extracting their intersection
points for selected rush hours in urban environments. In J.Wang [18]’s study on generating
routable road maps from vehicle GPS traces, the authors detected conflict points in the
grid and clustered these trajectory conflict points to extract road intersection information.
Fathi et al. [19] introduced a local shape descriptor to represent the distribution of the GPS
trajectory in a circular area and constructed an intersection detector based on the local shape
descriptor by introducing an intersection detector that uses a localized shape descriptor
to represent the distribution of GPS traces around a point. Although the methods based
on grids are less influenced by the sample amount, the grid size is difficult to determine
when facing the uneven distribution of trajectory density in a large-scale road network.
One study attempted to automatically set up grids. Zhao et al. [20] proposed an automatic
calibration method for road intersection topology using trajectories and determined the
location and coverage of road intersections by employing a top-down quad-tree-based cell
division method; however, the geometric structure relationship between trajectories has
not been effectively utilized. Li et al. [21] proposed a regularized mean-shift algorithm to
refine GPS scattered points and road segments were extracted from these refined points
to represent road network structure. In our approach, however, we extract straight-line
segments from each single trajectory directly.
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We propose an intersection extraction method from GPS trajectory data. Compared to
previous work in this field, our method directly extracts straight-line segments from each
single trajectory. Then, we use the intersection points of all straight-line segments to identify
road intersections. The algorithm for separating line segments from GPS trajectories is an
important part of our approach.

The intersection points of vehicle straight-line trajectories mostly occur in road in-
tersection areas. We use the geometrical structure of the road network carried by the
trajectory and propose an intersection extraction method based on clustering the trajectory
straight-line segment intersection points. The workflow for extracting road intersections is
shown in Figure 1.
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Figure 1. The workflow for extracting road intersections.

First, the original trajectory dataset is segmented according to sampling time interval
to extract spatial–temporal continuous trajectories. Second, the maximum reconstruction
error method is proposed to extract straight-line trajectory segments from spatial–temporal
continuous trajectories. The overlapped straight-line segments belonging to the same
direction are merged to reduce the number of segments and enhance the straight-line
road pattern. The amount of calculation at the intersection of a straight-line segment is
significantly reduced by bounding box overlapping filtering and orthogonal filtering. The
intersection points are calculated for any two filtered straight-line segments. Finally, the
intersection points are clustered using the density peaking algorithm [22] and the cluster
centers are used as the location of the intersections. The proposed method was verified
using real trajectory data in Lianyungang City in China and the experimental results show
that this method can automatically extract intersection locations effectively and efficiently.

The following section provides the proposed method. Section 2.1 provides a continu-
ous trajectory segment extraction. Section 2.2 gives a detailed description of the algorithm
for the extraction of straight trajectory segments using the maximum reconstruction error.
Sections 2.3 and 2.4 describe the method for calculating the intersection point and extracting
intersection information by clustering. Experimental results and discussions are presented
in Section 3. Conclusions are given in Section 4.
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2. Proposed Method
2.1. Continuous Trajectory Extraction

To better illustrate the method of this paper, the following basic definitions are given.

Definition 1. Location point: A tuple consisting of latitude and longitude, which represents the
spatial location of a vehicle and is denoted by p = (x, y), where x is longitude and y is latitude.

Definition 2. Trajectory sampling points: A tuple is formed by adding the vehicle identifier vid
and sampling time t to the location points, denoted by tp = (x, y, vid, t).

Definition 3. Trajectory: A sequence of all trajectory sampling points of a vehicle within a certain
period of time in the order of the sampling time, denoted as T = {tp1, tp2, . . . , tpn}, where n ≥ 2
represents the amount of sampling points contained in a given trajectory T.

Definition 4. Continuous trajectory: A sub-trajectory of a trajectory T, which satisfies the
sampling interval of adjacent trajectory sampling points less than a given threshold τ, is denoted as

TS = {tpl , tpl+1, . . . , tpm}, (1 ≤ l ≤ m ≤ n)

satisfying tpi+1.t− tpi.t < τ for any adjacent sampling points tpi and tpi+1.

Due to some large sampling time intervals existing in the original trajectory data, which
leads to a reduction in the trajectories’ confidence, the original trajectory needs to be divided
by the location points with large sampling time intervals to obtain a continuous trajectory.

When dividing the original trajectory, it is important to select a proper sampling time
interval threshold. A sampling time interval threshold that is too large will retain some
original trajectories with a large sampling interval, thus reducing the effectiveness of the
segmentation. A threshold that is too small will make the divided trajectory segments too
fragmented and risk losing the original trajectory information.

Therefore, it is necessary to set a sampling time interval threshold for continuous tra-
jectories based on prior experience and the distribution characteristics of the experimental
data. In this paper, the dataset is BaiduMap’s vehicle trajectory data in Lianyungang City
in China. The general GPS sampling interval of this navigation map is 2 s. The distribution
of the sampling time interval of all the sampling points of the dataset used in this paper is
shown in Figure 2.
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As can be seen from Figure 2, most of the original trajectory data sampling time
interval is less than 5 s; therefore, we set the continuous trajectory sampling time interval
threshold τ to 5 s and about 95% of all sampling points. The continuous trajectory amount
after segmentation by this threshold is about 10 times the original trajectory amount.
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After time interval segmentation, on the other hand, there are trajectories with few
sampling points (short trajectories) in the segmented continuous trajectory segment. These
short trajectories should be removed as noise to obtain a valid continuous trajectory, and are
removed according to the amount of sampling points. When the number of sampling points
of a continuous trajectory is less than a preset threshold of 3, this continuous trajectory is to
be removed. The final amount of valid continuous trajectories is about half the total amount
of continuous trajectories. At the same time, the sampling points of all the valid continuous
trajectories cover 93% of the sampling points of the original trajectories, indicating that the
final continuous valid trajectories retain most of the information of the original trajectories.

2.2. Straight-Line Segment Extraction

The main basis for identifying intersections in this paper is the fact that straight-
line trajectory intersection points mostly occur in the road intersection. In order to better
calculate straight-line trajectory intersection points, the straight-line segments of trajectories
need to be extracted from the continuous trajectory segments. The most straightforward
way to separate straight-line segments from continuous trajectories is to divide them
according to the steering angle of each sample point and when the steering angle is
greater than a preset threshold, the original continuous trajectory is separated by this
sample point and the first half of the separated trajectory forms a straight-line segment;
however, it is difficult to use this method of separation based on steering angle threshold
to determine a suitable global threshold value and the separation result is very sensitive
to this steering angle threshold. When the threshold is too large, trajectories with gradual
steering cannot be separated effectively and trajectories with gradual steering behavior are
treated as straight-line segments. On the other hand, when the threshold is too small, the
separated straight-line trajectory segments are too fragmentary and some trajectories with
lane-changing behavior are separated into several straight-line segments, thus losing the
original trajectory characteristics. As shown in Figure 3, the lines represent the straight-line
segments separated by different steering angle thresholds and the dots are the starting
points of the straight-line segments.
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To address the difficulty of using the steering angle method to determine a reasonable
threshold, this paper proposes a method based on the maximum reconstruction error to
extract straight-line segments from the trajectory.

The proposed method assumes that the behavior pattern of the trajectory can be
approximated by a spline curve. If a trajectory is fitted well by a spline curve, then the
spline and the trajectory have the same pattern; therefore, if a trajectory could be fitted well
to a straight-line segment, then this trajectory can be regarded as straight.

The original continuous trajectory is reconstructed as a straight line and the reconstruc-
tion errors for whole sampling points are calculated. When the maximum reconstruction
error is low enough, the trajectory could be regarded as straight-line.

Let the continuous trajectory with m sampling points be TS = {tp1, tp2, . . . , tpm}
and perform a linear segment reconstruction for TS at the first and last sampling point.
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The equation of the approximated linear segment about the i-th sampled point after the
reconstruction can then be written as

C(i) = p1(1− t(i)) + pmt(i), 1 ≤ i ≤ m (1)

where pi ∈ R2 denotes the position of the i-th sampling point, C(i) ∈ R2 is the mapping
value of the i-th trajectory point in the reconstructed straight-line segment, and t(i) is the
ratio of the length of the trajectory from the starting sampling point to the i-th sampling
points of the total length of the trajectory and has t(1) = 0, t(m) = 1, denoted as

t(i) =
∑i−1

j=1 ‖pj − pj+1‖2

∑m−1
k=1 ‖pk − pk+1‖2

(2)

The reconstruction error for a sampling point is the distance between the position in a
continuous trajectory and the reconstructed straight-line segment. The reconstruction error
for the i-th sampling point is calculated as follows:

εi = ‖pi − C(i)‖2 (3)

The maximum reconstruction error εmax is the maximum value of each reconstruction
error εi and imax is the position of the maximum reconstruction error value that first
occurs from the start of the trajectory. Algorithm 1 is the calculation process of maximum
reconstruction error.

Algorithm 1 Calculate maximum reconstruction error

Input: Trajectory sequence [p1, p2, . . . , pn]
Output: εmax, imax
1. Calculate local distance sequence [d1, d2, . . . , dn], where d1 = 0, di = ‖pi − pi−1‖2.
2. Calculate cumulative distance sequence [l1, l2, . . . , ln], where li = ∑1≤k≤i dk.
3. Calculate ratio parameter sequence [t1, t2, . . . , tn], where ti = li/ln.
4. Calculate reconstruction sequence [c1, c2, . . . , cn], where ci = p1(1− ti) + pnti.
5. Calculate reconstruction error sequence [ε1, ε2, . . . , εn], where εi = ‖pi − ci‖2.
6. εmax = ε1, imax = 1.
7. For i = 2 to n
8. If εi > εmax: εmax = εi, imax = i
9. return εmax, imax.

The reconstruction error is shown as a dashed line in Figure 4.
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Based on the maximum reconstruction error, the process for separating straight-line
segments of a continuous trajectory TS with m sampling points is as Figure 5.
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L is used to store the index results of the start and end points of each straight-line
segment after separation and S is the sub-trajectory of the continuous trajectory TS. When
calculating the maximum reconstruction error εimax for a sub-trajectory S, the index of the
maximum reconstruction error in S, denoted as imax, is also obtained. t is the separation
threshold; when the maximum reconstruction error is greater than this threshold, the
trajectory is separated by the location of the maximum reconstruction error. The separation
threshold t indicates the distance between two locations expressed by latitude and longitude
in the mid-latitude (30 to 60 Degrees) range, with the default value t = 8× 10−5 indicating
approximately 10 m. Algorithm 2 is the process of separating straight-line segment.

Algorithm 2 Separating straight-line segment

Input: Trajectory sequence [p1, p2, . . . , pn], threshold εthre
Output: Line segment index SegIdxs = [(istart1, iend1), . . .]
1. Initialize SegIdxs = [] and i = 1.
2. While True:
3. For j = i + 2 to n:
4. εmax, isplit = Algorithm_1 ([pi, pi+1, . . . , pj])
5. If εmax > εthre:
6. SegIdxs.append([i, i + isplit − 1])
7. i = i + isplit
8. Break for
9. If j > = n: break while
10. SegIdxs.append([i,m])
11. Return SegIdxs

The straight-line segment results of separating trajectories using the reconstruction
error method are shown in Figure 6, where the lines represent the separated straight-line
segments and the dots are the start points of the line segments.
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As can be seen from Figure 6, the maximum reconstruction error method is able to
separate progressive steering trajectories well and is unaffected by driving behavior, such
as lane changes in straight-line trajectories. After straight-line segment extraction, each
straight-line trajectory segment is denoted by the position of the start and end points.

2.3. Intersection Points Calculation

There is a large number of similar patterns in the straight-line segments of the trajectory
obtained based on the maximum reconstruction error method. To speed up the intersection
point calculation process and enhance the road network pattern, this paper first merges
the straight-line segments with similar patterns. Then, the pairs of segments that do not
have the possibility of intersection points are excluded using bounding box filtering and
orthogonal filtering. Finally, the intersection points are calculated in the filtered set of
straight-line segments.

2.3.1. Straight-Line Segment Merging

After all continuous trajectories have been separated, there is a large number of
similar patterns in the line segments, leading to a large redundancy in calculating the
intersection point of line segments. By combining these straight-line segments, not only
can the number of straight-line segments to be calculated be effectively reduced, but
the combined straight-line segments can better reflect the structure of the road network;
therefore, before calculating the intersection point of straight-line segments, we first merge
the separated straight-line segments.

The basis for the merging of each straight-line segment is the overlapping straight-line
segments that have the same direction and are on the same line; therefore, the specific steps
for the merging of straight-line segments consist of three parts: classifying the straight-line
segment to the same direction, clustering the co-linear straight-line segment and merging
overlapped segments in the same straight line.

(1) Classify straight-line segment in the same direction

In this paper, a hard separation is used to divide the two-dimensional plane into
360-directional clusters and each straight-line segment trajectory is divided into a certain
directional cluster. The specific process is to use the unit vector of the vector formed by the
position of the start and end points of each straight-line trajectory segment as the direction
vector of that straight-line segment trajectory. The cluster unit vector corresponding to each
angle in the 360 degrees from 0 to 359 degrees is calculated as the unit direction of each
directional cluster. The cluster unit vector is defined as pdeg ∈ R2, deg = 0, 1, 2, . . . , 359.

To classify the directional clusters of a linear segment trajectory, the inner product of
the unit direction vector of the linear segment trajectory to the unit vector of each directional
cluster is calculated and then the linear segment trajectory is divided into the directions
corresponding to the maximum of the inner product. Let the unit direction of a straight-line
segment trajectory be pl ; the cluster of directions corresponding to deg that maximize
pT

l pdeg is then the cluster of directions in which this straight-line segment trajectory lies.

(2) Clustering of the co-linear straight-line segment
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For each directional cluster, the line segments are further divided into co-lines clusters
according to distance. A co-line cluster is based on the co-normal distance relationship of
the line segments within the same directional cluster and the line segments with a small
distance are combined into the same line clusters. In order to automatically determine the
amount of co-linear clusters and to avoid truncation caused by hard separation, we used
density clustering DBSCAN [23] for co-linear clusters. We set the clustering parameter
EPS to 1.5× 10−4 and parameter MinPts to 1. The clustering results can well represent the
proximity of straight-line segments within a certain co-linear cluster.

(3) Merging overlapped segments in the same straight-line

After Step 2, straight-line segments within the same co-linear cluster are on the same
line. These straight-line segments can be merged according to whether there is an over-
lapped relationship between the intervals of each straight-line segment. To simplify deter-
mining the overlap of straight-line segments, all the straight-line segments in a directional
cluster are first rotated toward the horizontal direction. Let a be the angle from the positive
x-axis to the line segment’s unit direction vector; the unit direction vector can then be
written as [cosa, sina]. The rotation transformation matrix is

Q =

(
cos a sin a
− sin a cos a

)
(4)

By performing a rotation transformation with Q for each start and end point of the
line segment, the two-dimensional common line segment merging problem is converted to
a one-dimensional interval merging problem. The merging process can be completed by
traversing all line segments in the collinear cluster once; then, each start and end point of
the merged one-dimensional line segment is rotated in QT to transform back to the original
two-dimensional space.

2.3.2. Bounding Box and Orthogonal Filtering

This paper calculates the intersection point of any two straight-line segments that have
been merged, using the intersection point as the key point in the intersection area; however,
there are two problems with calculating the intersection point directly from the merged
straight-line segments: (1) there are still too many straight-line segments to calculate
the intersection point, resulting in a large amount of computation; (2) the trajectories of
the two straight-line segments may have parallel relationships, resulting in a solution
that is not unique or does not exist when calculating the intersection point. In order to
solve these two problems, we performed two filtering methods on pairs of straight-line
segments—bounding box filtering and orthogonality filtering—to remove most of the pairs
of straight-line segments without an intersection relationship in advance.

(1) Bounding box filtering. Filter out pairs of straight-line segments for which it is
impossible to have an intersection based on two-dimensional spatial relationships.
In this paper, an axis-aligned bounding box (AABB) is used for filtering. In two-
dimensional space, the axis-aligned bounding box is described as

R = {(x, y)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (5)

where xmin, xmax, ymin, ymax represent, respectively, the minimum longitude, maxi-
mum longitude, minimum latitude, and maximum latitude for the start and end
points of a line segment. Straight-line segments may intersect only if their bounding
boxes intersect; therefore, to determine whether straight-line trajectory segments in-
tersect, first determine whether the bounding box in which each lies intersects. Given
two rectangular bounding boxes, RA and RB,

RA = {(Axmin, Aymin), (Axmax, Aymax)}

RB = {(Bxmin, Bymin), (Bxmax, Bymax)}
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In two dimensions, the condition for the rectangles to intersect must be that they
intersect on both of the two axes, as shown in Figure 7.
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Therefore, when there is an intersection of two straight-line segments, the rectangular
bounding box corresponding to each of the two straight-line segments should satisfy the
condition: Axmin < Bxmax, Bxmin < Axmax, Aymin < Bymax and Bymin < Aymax. We
used this condition to quickly filter out a large number of straight-line segments without
intersection relationships.

(2) Orthogonality filtering. In this paper, it is assumed that the two straight-line trajec-
tories intersecting at the road intersection are approximately perpendicular to each
other, so the angle between the direction vectors of the two straight-line segments can
be used to further filter the trajectory segments. When the absolute value of the inner
product of the unit direction vectors of the two straight-line segments is greater than
the orthogonality threshold (0.5), the angle between the two straight-line segments is
small (less than 60 degrees) and the intersection calculation of the trajectories of these
two straight-line segments can be filtered out directly. The orthogonality filtering
not only further reduces the computation of the intersection point of straight-line
segments, but also removes straight-line segments that have parallel relationships,
thus ensuring the existence and uniqueness of the solution when computing the
intersection of straight-line segments.

2.3.3. Calculating Intersection Points

The intersection point calculation of straight-line segments can be translated into the
calculation of the intersection of lines. Let the start and end points of two straight-line
segments la, lb in the two-dimensional plane be as, ae ∈ R2 and bs, be ∈ R2, respectively.
Two real scalar parameters, u and v, satisfy 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Then, the position
points la(u) ∈ R2 and lb(v) ∈ R2 on the two straight-line segments can be expressed in
terms of the parametric equations for u and v, respectively.

la(u) = as(1− u) + aeu
lb(v) = bs(1− v) + bev

(6)

The intersection of straight lines must satisfy as + (ae − as)u = bs + (be − bs)v, which
can be achieved by solving the linear equation directly:

(ae − as)u− (be − bs)v = bs − as (7)

The solution is obtained for the values of u and v for the parameter corresponding to
the intersection of the lines. The existence and uniqueness of the solution is guaranteed
because it is filtered for orthogonality. The intersection point of the line segments exists
when the parameter values satisfy u, v ∈ [0, 1] and the intersection point is as(1− u) + aeu.
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2.4. Road Intersection Extraction

The intersection points of straight-line segments already reflect the spatial location of
the road intersections well, but there is a large number of duplicate intersections; therefore,
it is necessary to further cluster the intersections of the straight-line segments. We used a
density peaking algorithm to cluster the intersection points and the final road intersection
locations were identified by the center of each cluster.

For density peak clustering, where the number of class clusters can be determined
automatically, the key hyper-parameter is the cutoff distance used to calculate the local
density of each sample. In this paper, the cutoff distance was determined to be 5e-4 based on
the Euclidean distance distribution of the latitude and longitude between the intersection
points of each straight-line segment. On the other hand, the cutoff distance set in this
method is somewhat general, as it has a practical physical meaning, i.e., it represents the
smallest possible distance between the two intersections, which is about 60 m.

A Gaussian kernel function was used in the calculation of the local density for each
sample. The standard deviation bandwidth of the Gaussian kernel was set to 1.67× 10−4,
which is approximately one-third of the cutoff distance, based on the assumption of a
normal distribution.

When filtering the decision diagram, in some low-flow or poorly sampled road inter-
sections, there will be few trajectory intersection points, i.e., very little local density and
these road intersections will be missed. Therefore, in this paper, local density is not filtered.
Global threshold filtering is used for the minimum distance only and the threshold is the
cutoff distance. The overall clustering process is described as follows.

In Algorithm 3, first calculate the distance matrix between each line intersection point.
Second, calculate the local density of each intersection point based on the cutoff distance
and a Gaussian kernel.

Algorithm 3 Line segment intersection points DPCA

Input: Line intersection points matrix P = [p1, p2, . . . , pN ], where pi = (xi, yi)
T. Cutoff distance

threshold dcutoff. Gaussian kernel bandwidth σ.
Output: Road Intersection set C

1. Calculate distance matrix

D =

(
1N×2(P� P) +

(
1N×2(P� P)

)T
− 2PTP

)1/2

2. Calculate local distance sequence [ρ1, ρ2, . . . , ρN ]

ρi = ∑d∈Dinear
exp

(
− d2

2σ2

)
Dinear =

{
Dij

∣∣∣1 ≤ j ≤ N ∧ j 6= i ∧ Dij < dcutoff

}
3. Sorted index [ι1, ι2, . . . , ιN ], having ∀1≤u<v≤N → ριu ≤ ριv .
4. Calculate MinDistance sequence [δ1, δ2, . . . , δN ]

διk = min
(

Dιk ,j

∣∣∣j ∈ [ιk+1, ιk+2, . . . , ιN ]
)

5. C = {pi|δi > dcutoff}

Then, calculate the index sequence which is sorted by local density. Our density
peak clustering implementation proposes this sorted index; it avoids the problem caused
by the same local density when calculating the minimum distance and improves the
calculation efficiency.

Furthermore, calculate the minimum distance from each intersection point to any other
higher-density intersection point. Finally, select the sample with the minimum distance
greater than the cutoff distance as the center of each road intersection.
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Since only the minimum distance needs to be filtered when determining the cluster
centers, it is more concise compared to the traditional density peaking algorithm.

3. Experiment

To validate the method in this paper, the road intersections in an area were automati-
cally extracted. The trajectory dataset was from Baidu Map navigation data for the Haizhou
district of Lianyungang City in China. The data time covered the whole day of 1 January
2019; this dataset contained a total of about 5 × 105 sampling points and about 5 × 103 raw
trajectories, and contained fields for vehicle identification, sampling time, longitude and
latitude. The spatial distribution of all sampling points is shown in Figure 8.
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Figure 8. Scatter of original GPS data.

From the original trajectory dataset, 53,960 continuous trajectories were extracted, of
which 25,373 were valid continuous trajectories. The maximum reconstruction error method
was used to extract 28,399 straight-line segments from the valid continuous trajectory. These
extracted straight-line segments are shown in Figure 9.
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The merged straight-line segments amount was 2502, only about 10% of the total
amount of extracted straight-line segments; it not only reduced the amount of data to
be calculated for the intersections, but also enhanced the structure of the road network
represented by the individual line segments. These merged line segments are shown in
Figure 10.
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Figure 10. Merged straight-line segments.

When calculating the intersection points using the merged trajectories, we removed the
short trajectories and the actual number of line segments involved in the intersection point
calculation was 1243. The intersection of any two straight lines requires 1243 × (1243−1)/2
(about 7.7× 105) intersections. Through the bounding box filter and orthogonality filter, the
intersection point calculation is reduced by 96.3%, requiring only 2.8 × 104 calculations (of
which the bounding box filter reduced the calculation by about 90% and the orthogonality
filter reduced the calculation by about 6%). As the complexity of the filtering calculation is
much less than that of the intersection calculation of straight-line segments and as multiple
lines can be filtered simultaneously by vector operations, the total calculation time was
reduced by 94.3%, which significantly improved the efficiency of the calculation. The final
number of intersection points was 4273 and the spatial distribution of all intersection points
are shown in Figure 11 as red dots.
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Figure 11. Scatter of intersection points.

Finally, after clustering the calculated intersection points by spatial location, adaptive
thresholding was used for intersection extraction and 65 intersections were extracted, with
the results shown in Figure 12. The black crosses are extracted road intersections.

Compared with intersection extraction methods based on features such as trajectory
steering angles and stopping points, the method in this paper is less affected by trajectory
sampling amount; it can identify intersections with lower sampling amounts and, at the
same time, be well suited to the situation where the density of trajectories is unevenly
distributed in a wide range of road networks.
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The real locations and number of intersections in the study area are shown in Figure 13,
where the dots are the intersections successfully identified in this paper, but there were
still some road intersections that were not identified (triangles) for the following reason:
the road intersections were T-junctions and straight-line trajectories did not have direct
intersection points. The square locations in the figure are the roundabouts and overpasses,
respectively, which were misidentified as intersections, corresponding to the circular dashed
boxed area in Figure 12.
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To further validate the method in this paper, the density peak clustering method based
on vehicle turning point features proposed by GAO [11] was compared with the global
threshold (DPCA).

As can be seen from Table 1, the recognition accuracy of the method in this paper is
better than the benchmark method.

Table 1. Comparison of intersection extraction methods.

Method Extraction Total Number of
Misidentifications

Steering angle feature 61 7
This paper 65 2

4. Conclusions

In this paper, the geometric structure of trajectories is used to achieve the automatic
extraction of urban road intersections using extract straight-line segments and calculating
their intersection points. The main conclusions obtained are as follows.

(1) Compared with research methods in intersection extraction that use the vehicle steer-
ing angle and stopping point as trajectory features, this paper uses trajectory line
segment intersection points for intersection extraction, which are less affected by the
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distribution of sampling data amount, and which can effectively identify intersections
in low-traffic or low-sampling areas.

(2) A maximum reconstruction error method is proposed to extract straight-line segments,
which can effectively avoid the problem that the threshold value of the steering angle
is difficult to determine and can effectively segment the progressive steering trajectory,
while at the same time eliminating the fluctuations in the trajectory caused by lane
changing and drift.

(3) By merging straight-line segments, the road network structure pattern represented by
straight-line segment trajectories is effectively enhanced, the confidence of intersection
calculation is improved and the number of straight-line segments to be calculated for
intersections can be reduced by 90%. The use of orthogonal and bounding box filter-
ing using the spatial relationship of straight-line segments reduced the intersection
calculation by 96%.

However, besides cross-type intersections, there are other types of intersections, such
as T-intersection, Y-intersection and roundabouts and our approach only identifies inter-
sections with angles formed of legs greater than 60◦; therefore, there is a need to further
improve our method for identification of intersections of different types. There is another
limitation of our approach. We assume that the minimum distance between intersections is
about 60 m; therefore, when distances of multiple adjacent intersections are all less than
60 m, only one intersection can be identified. In our approach, the straight-line segments
are directly extracted from each single trajectory; therefore, the greater the amount of valid
trajectory, the more straight-line segments would be extracted; however, a greater number
of straight-line segments would involve unexpected behavior leading to misidentification.
Such limitations will be considered in future work.
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