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Abstract: Subway station projects are characterized by complex construction technology, complex site
conditions, and being easily influenced by the surrounding environment; thus, construction safety
accidents occur frequently. In order to improve the computing performance of the early risk warning
system in subway station construction, a novel model based on least-squares support vector machines
(LSSVM) optimized by quantum-behaved particle swarm optimization (QPSO) was proposed. First,
early warning factors from five aspects (man, machine, management, material, and the environment)
were selected based on accident causation theory and literature research. The data acquisition method
of each risk factor was provided in detail. Then, the LSSVM with strong small sample analysis and
nonlinear analysis abilities was chosen to give the early warning. To further ameliorate the early
warning accuracy of the LSSVM, QPSO with a strong global retrieval ability was used to find the
optimal calculation parameters of the LSSVM. Seventeen subway stations of Chengdu Metro Line
11 in China were picked as the empirical objects. The results demonstrated that the best regularization
parameter was 1.742, and the best width parameter was 14.167. The number of misjudged samples of
the proposed model was 1, and the early warning error rate was only 4.41%, which met the needs of
engineering practice. Compared with the classic and latest methods, the proposed model was found
to have a faster prediction speed and higher prediction accuracy.

Keywords: early warning; construction safety risk; subway station; LSSVM; QPSO; accident causation
theory

1. Introduction

Due to the traffic congestion caused by the rapid increase in the urban population and
prosperous economic development, major cities worldwide are actively promoting subway
construction [1]. Subway station projects are the most important component of a subway
system, but the majority of safety accidents of subway system construction occur in subway
station projects [2]. There are many potential safety hazards in subway construction, and
safety accidents caused by these risk factors are likely to cause huge human and economic
losses. In addition, early risk warning is an important component of risk management
that links daily risk management and emergency risk management [3]. The accurate early
warning of the construction safety risk level of subway station projects could effectively
improve the emergency risk management of managers, thereby ultimately reducing the
losses caused by construction safety accidents to the greatest extent.
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The construction content of subway station projects is complicated and includes
excavation, support, the dewatering of the foundation pit, and the construction of the main
and auxiliary structures of the station. In narrow and deep foundation pits, constructors
of different professions operate various construction machinery. Therefore, the risk of
subway station construction is characterized by many influencing factors. At present,
the most commonly used method at the construction site is the checklist method [4]. Via
the on-the-spot inspection of all hazard sources on the construction site, this method can
directly reveal the construction safety risk status. However, this method has two serious
shortcomings, namely (1) the cost is high, and the early warning efficiency is low, and
(2) the result of risk early warning based on this method relies heavily on the subjective
judgment of experts, so the accuracy is low.

To cope with the deficiency of the checklist method in construction risk management,
a large number of scholars have put forward a variety of early warning models based
on the concept of multiple linear regression [5–7]. These methods make full use of the
multivariate heterogeneous data of the construction site and realize the low-cost and
rapid early warning of the construction risk. However, they assume that there is a linear
relationship between the predicted data and the risk level and therefore cannot effectively
cope with the complexity of subway construction safety risks [8]; thus, the risk early
warning accuracy cannot meet the needs of engineering practice.

With the vigorous development of machine learning and artificial intelligence in recent
years, some scholars have applied machine learning technology to the early warning of
construction safety risks. At present, the most representative models are the backpropa-
gation neural network (BPNN) [9], the random forest (RF) [10], and the support vector
machine (SVM) [11]. Related research results have shown that these new technologies could
effectively improve the early warning accuracy of construction safety risks. However, the
BPNN requires a huge training set to ensure the prediction results, and the data samples in
engineering practice are usually small. The RF is not able to effectively cope with data with
different attributes, and when the risk factors are divided into many values, the prediction
results will be adversely affected. Although the SVM can sufficiently handle small sample
data, it faces difficulty solving inequality constraints. When applied to the research of
construction risk early warning, the SVM is characterized by some shortcomings, such as a
too-large solution scale and insufficient computational performance.

The least-squares support vector machine (LSSVM) is an improved SVM, and the core
of the improvement is the solution of a set of linear equations obtained by the Kuhn–Tucker
condition [12]. The LSSVM reduces the solution difficulty and improves the solution speed,
and it is a new application in complex problems such as power demand prediction [13],
slope safety factor prediction [14], and soft soil settlement prediction [15]. In addition, in
the application research of machine learning modeling, different algorithms reach different
conclusions for different research problems. Therefore, it is very meaningful to introduce
the LSSVM into the research of this paper.

The kernel width and the regularization parameter of the LSSVM have obvious in-
fluences on its computational performance [12–14]. The genetic algorithm (GA) [16] or
particle swarm optimization (PSO) [17] is often used to find the optimal parameter combi-
nation. However, the GA has some shortcomings, such as low computational efficiency and
premature convergence, and PSO easily falls into the trap of the local optimum because
of the lack of randomness of the change of the particle position. In addition, both the GA
and PSO require the preset of too many calculation parameters, which is not conducive to
finding the optimal parameters of the model to be optimized. Quantum-behaved particle
swarm optimization (QPSO) replaces the displacement updating formula and velocity
updating formula in the traditional PSO with the wave function of quantum mechan-
ics [18]. Because the particles in QPSO appear in all dimensions of the solution space in the
form of probability, it has a better global retrieval ability than the classical meta-heuristic
optimization algorithms from the aspects of the prediction and optimization of turning
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surface roughness [19], image segmentation optimization [20], and economic scheduling
optimization [21].

According to the “no free lunch” quantification in machine learning, although many
scholars have already discussed the advantages of QPSO and the LSSVM in different fields,
the research of their application in the research object of this paper is still valuable.

Therefore, an early warning model of the construction safety risk of subway stations is
constructed based on the LSSVM optimized by QPSO, and an empirical study on Chengdu
Metro Line 11 is conducted. The contributions of this study include the following. (1) At
present, most of the research results simply and roughly give the early warning index
system of construction risk, lacking the relevant theoretical basis. Based on accident
causation theory and the characteristics of subway station engineering, an index system
is completely constructed to effectively deal with the risk complexity. To improve the
engineering application value, the methods of obtaining each index are provided in detail.
(2) At present, the prediction accuracy of related research cannot meet the engineering
needs. Therefore, a novel early warning model integrating the computing advantage of
QPSO and LSSVM is constructed to effectively deal with the strong nonlinearity of safety
risks in subway station construction. (3) Different from the common simulation examples
used previously, Chengdu Metro Line 11 is selected for empirical research. The findings
provide new insights into the construction safety risk management of this project.

The remainder is arranged as follows. Section 2 summarizes the related research.
Section 3 describes the construction of the early warning index system for the construction
safety risk of subway stations and describes the methods of obtaining the index data in
detail. Section 4 proposes the early warning model in detail. Section 5 describes a case
analysis. Section 6 discusses the computational performance of different optimization
algorithms and prediction methods to highlight the advancement of the proposed model.
Finally, the research results and limitations are summarized in Section 7.

2. Related Work

To improve the efficiency of project management decision-making, Sjekavica and Radu-
jkovic [5] used the linear regression method to construct an early warning and monitoring
system for water conservancy projects. However, the data on early warning indicators (out-
come factors) in that study were obtained from questionnaire surveys and expert interviews,
which are not subjective. Qiu et al. [6] established a risk prediction model for oil and gas
construction projects. However, although the model included the addition of grey relational
analysis, it still could not effectively deal with the strong nonlinear management of the risk
factors of oil and gas construction projects. Senthil and Muthukannan [7] constructed a
modified historical simulation statistical method for the development, identification, and
prediction of construction risk. Although the strong nonlinearity among risk factors was
found to have a great influence on the prediction results, this nonlinear feature was not
effectively dealt with.

Considering the strong nonlinearity of construction safety risk factors, Shen et al. [9]
built a safety risk prediction model based on the BPNN. However, the research object
was the entire construction industry, which lacks pertinence. Yaseen et al. [10] compared
the common risk early warning methods and emphasized that artificial intelligence could
sufficiently deal with the dynamics, uncertainty, and complexity of construction risks.
While an RF model optimized by the GA was developed, the data were obtained from
questionnaires and expert interviews. Liu et al. [11] introduced safety risk management
into the design and management center of a subway station and proposed an SVM model
optimized by PSO to predict the construction safety risk of subway stations. However,
the prediction accuracy of the model was only 85.26%; although it was higher than other
models, it still did not meet the requirements of engineering practice.

Via the powerful nonlinear modeling ability of the LSSVM, Huang et al. [13] effectively
solved the problem of power demand forecasting. However, a trial algorithm was used
instead of an intelligent swarm algorithm to solve the parameter combination of the LSSVM,



Appl. Sci. 2022, 12, 5712 4 of 22

which reduced the computational performance. Zeng et al. [14] used trial and error (TE),
the gravity search algorithm (GSA), and the whale optimization algorithm (WOA) to find
the best parameters of the LSSVM. Because the settlement of soft soil is a complex nonlinear
system, Cui et al. [15] used the cross-validation method to get the best LSSVM model. The
results showed that the selection of the control parameters had a significant impact on the
predictive performance of the LSSVM. To accurately predict landslide displacement, Zhu
et al. [16] proposed an LSSVM model optimized by the GA. However, the GA requires
the preset of several calculation parameters, which brings a lot of trouble to the predictive
work [22].

Based on QPSO, Alajmi and Almeshal [19] constructed a new prediction method for
turning surface roughness. The simulation results revealed that compared with the artificial
neural network (ANN) and classical meta-heuristic optimization algorithm, QPSO exhib-
ited advantages in accuracy, robustness, and rapid convergence to the global optimum.
Yang et al. [20] used QPSO to solve image segmentation and found that, compared with
other optimization algorithms, QPSO improved the stability and accuracy of image seg-
mentation. The economic dispatch problem in power systems is a typical high-dimensional
nonlinear problem. Sun et al. [21] used QPSO with a powerful global retrieval ability to
effectively solve this problem. The results of simulations showed that QPSO achieved
better computational performance than differential evolution (DE), PSO, and the GA.

3. Early Warning Index System
3.1. Risk Identification Based on Accident Causation Theory

Accident causation theory is an accident mechanism and model extracted from the
compromise of the essential causes of accidents. The system involves four basic elements,
namely the unsafe behavior of men, the unsafe state of machinery, adverse effects from the
environment, and the lack of management [23].

(1) Unsafe behavior of men. This mainly refers to the unsafe behavior of people, including
people’s mistakes in activities, behaviors, and communication [24]. Examples include
operation violations, improper emergency treatment, on-site monitoring errors, human
error, malicious damage to engineering buildings or equipment by contractors, shortage of
standby personnel, etc.

(2) Unsafe state of machinery. Considering the complexity of subway station engineering,
in this work, the unsafe state of equipment is defined as the unsafe state of construction
machinery and the unsafe state of construction materials. Inadequate investment in con-
struction tools and equipment in subway construction will cause many problems, including
outdated production equipment and incomplete or substandard safety protection facilities.
These problems will reduce the disaster prevention and resistance ability of subway con-
struction projects, which are the direct causes of many failures of safety protection facilities
and poor safety protection ability.

(3) Adverse effects from the environment. Subway station engineering is generally a
form of underground engineering, and its environmental impact is complex, including
physical, chemical, and biological factors. The common environmental risks in subway
station construction include the settlement and horizontal displacement of retaining piles,
stratum subsidence and horizontal displacement, the water level of groundwater and rivers,
foundation pit rebound, the geological conditions of the construction site, the construction
of facilities and pipelines along the line, ground traffic and surrounding ground buildings,
harmful substance injury, floods, earthquakes, fires, etc.

(4) Lack of management. The management of subway station construction includes the
implementation of national guidelines, clever strategies, laws, regulations, and standards
related to subway construction, the establishment of a sound safety production responsibil-
ity system, the organization of regular inspections and maintenance, and the carrying out
of regular education and training on safety knowledge and skills for employees.
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It should be emphasized that management mistakes cause defects in people, things,
and the environment, which leads to the unsafe behaviors of subway constructors, the
unsafe state of things, and an unsafe production environment, thus leading to accidents.

3.2. Early Warning Index System

Ten experts in the field of subway project management were interviewed to construct
the early warning index system for the construction safety risk of subway stations. Basic
information about the ten experts is reported in Table 1.

Table 1. The information about the ten experts.

No. Position Length of
Work Years Title Number of Subway

Projects Involved

(1) Contractor 16 Senior engineer 47
(2) Contractor 21 Senior engineer 38
(3) Contractor 28 Senior engineer 27
(4) Contractor 25 Senior engineer 30
(5) Contractor 10 Senior engineer 35
(6) Design 35 Senior engineer 147
(7) Design 38 Senior engineer 205
(8) Government 12 Senior engineer 7
(9) Government 5 Intermediate engineer 5
(10) Academy 35 Professor 16

The ten experts who participated in the interview were all from units related to subway
station projects, which indicates they had a good professional background. Their average
number of working years was 22.5 years, and nine experts had senior professional titles,
which indicates that they had rich experience. The average number of subway station
projects attended by the ten experts was 55.7, which also demonstrates that they had rich
experience in the project management of subway stations.

By combining the various impact factors described in Section 3.1, the interview results
of the ten experts, and previous research results [25,26], the early warning index system for
the construction safety risk was designed and presented in Table 2.

Table 2. The early warning index system.

Primary Index Secondary Index Unit

R1: Man

R11: Rate of operation violation %
R12: Rate of technical failure %

R13: Emergency handling -
R14: Rate of monitoring error %

R15: Proportion of old workers %

R2: Machine
R21: Rate of mechanical quality failure %

R22: Rate of mechanical installation failure %
R23: Rate of mechanical maintenance failure %

R3: Material

R31: Qualified rate of concrete %
R32: Qualified rate of steel %

R33: Rate of material supply %
R34: Rate of material stacking error %

R4: Environment

R41: Maximum deformation of foundation pit mm
R42: 24-h maximum rainfall mm

R43: Poor geological conditions -
R44: Poor geomorphic conditions -
R45: Extreme weather conditions -

R5: Management

R51: Efficiency of communication -
R52: Team cohesion -

R53: Rate of personnel change %
R54: Rationality of organization -
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The index system shown in Table 2 is hierarchical and includes five primary indexes
and 21 secondary indexes. R43, R44, R45, R51, R52, and R53 are qualitative indexes, which
refer to data obtained by qualitative methods. Other indicators are quantitative indicators,
which refer to the data obtained through quantitative methods. R13, R31, R32, R33, R45, R52,
R53, and R54 are cost indexes, which refer to those for which the lower the index score, the
higher the security risk warning level. Other indicators are benefit indexes, which refer to
those for which the higher the index score, the higher the security risk warning level.

3.3. Acquisition Methods of the Index Data

The rate of operation violation (R11) is a measure of the implementation of national
subway construction laws and regulations, construction manuals, and safety operation
regulations by constructors. The lower the value of R11, the greater extent to which the
constructors strictly implement the relevant operation requirements, and the lower the
construction safety risk. The index data are obtained by field investigation.

R11 = R1
11/R2

11 ∗ 100%, (1)

where R1
11 is the number of illegal operation events on a certain day, and R2

11 is the total
number of operation events investigated on a certain day.

The rate of technical failure (R12) is a measure of the knowledge, technical level, and
working ability of project managers. The lower the value of R12, the higher the technical
level and project management level of the project managers, and the lower the construction
safety risk. The index data can be obtained by technical training and examination.

R12 = R1
12/R2

12 ∗ 100%, (2)

where R1
12 is the number of people who failed the exam, and R2

12 is the total number of
people who took the exam.

Emergency handling (R13) is a measure of managers’ abilities and results in dealing
with emergencies. The lower the value of R13, the fewer emergencies on the construc-
tion site, and the lower the construction safety risk. The index data can be obtained by
field investigation.

The rate of monitoring error (R14) mainly refers to the monitoring errors of deforma-
tion, temperature, rainfall, water levels, methane contents, etc. The lower the R14 value, the
more accurate the monitoring of major hazard sources, the easier it is for project managers
to carry out accurate risk management, and the lower the construction safety risk. The
index data are obtained by field investigation.

R14 = R1
14/R2

14 ∗ 100%, (3)

where R1
14 is the number of monitoring errors on a certain day, and R2

14 is the total number
of monitoring instances on a certain day.

The proportion of old workers (R15) is a measure of the population structure of workers
on the construction site. Generally speaking, the older workers are, the more easily they
get hurt in safety accidents [27]. Therefore, the lower the value of R15, the lower the
construction safety risk. The index data are obtained by field investigation.

R15 = R1
15/R2

15 ∗ 100%, (4)

where R1
15 is the number of workers over 50 years old, and R2

15 is the total number of workers.
The rate of mechanical quality failure (R21) reflects the mistakes in the design selection,

material selection, manufacturing, and processing of construction equipment. It is diffi-
cult to ensure the stability of engineering structures and non-engineering institutions by
selecting inappropriate construction machinery and construction machinery with excessive
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machining errors. The lower the value of R21, the lower the construction safety risk. The
index data are obtained by field investigation.

R21 = R1
21/R2

21 ∗ 100%, (5)

where R1
21 is the value of unqualified construction tools at the construction site, and R2

21 is
the total value of all construction tools at the construction site. There is no strict requirement
on the selection of the measurement units of R1

21 and R2
21, as long as they are consistent.

Considering that the case study of this research is in China, RMB, the monetary unit of
China, was selected as the unit of both R1

21 and R2
21.

The rate of mechanical installation failure (R22) reflects installation problems caused
by unfamiliarity with the installation process, a lack of special command, and failure to
promptly update all kinds of connecting bolts after damage. The lower the R22 value, the
lower the construction safety risk. The index data are obtained by field investigation.

R22 = R1
22/R2

22 ∗ 100%, (6)

where R1
22 is the number of unqualified inspections and installations, and R2

22 is the total
number of installations.

The rate of mechanical maintenance failure (R23) is an index with which to measure
the maintenance of construction equipment. The better the mechanical maintenance, the
lower the R23 value, and the lower the construction safety risk. The index data are obtained
by field investigation.

R23 = R1
23/R2

23 ∗ 100%, (7)

where R1
23 is the number of failed maintenance inspections, and R2

23 is the total number
of inspections.

Concrete and steel are the most important materials for subway station construction.
The qualified rate of concrete (R31) and the qualified rate of steel (R32), respectively, indicate
the quality of these two materials. The lower the values of R31 and R32, the lower the
construction safety risk. The data are all obtained from field tests.

R31 = R1
31/R2

31 ∗ 100%, (8)

R32 = R1
32/R2

32 ∗ 100%, (9)

where R1
31 represents the volume of qualified concrete in the field test, R2

31 represents the
total volume of concrete in the field test, R1

32 represents the weight of qualified steel in the
field test, and R2

32 represents the total weight of steel in the field test. The unit of R1
31 and

R2
31 is m3, and the unit of R1

32 and R2
32 is tons (1 ton = 103 kg).

The rate of material supply (R33) indicates the material supply at the construction
site. If the construction materials are not supplied in time, the construction can easily be
interrupted unexpectedly, thus increasing the construction safety risk. The index data are
obtained by consulting the construction log.

R33 = R1
33/R2

33 ∗ 100%, (10)

where R1
33 is the number of instances of timely construction material supply, and R2

33 is the
total number of instances of construction material supply.

The rate of material stacking error (R34) indicates the stacking situation of construction
materials at the site. The incorrect stacking of construction materials can easily lead to
collapse, so the potential safety hazard is substantial. The lower the value of R34, the lower
the construction safety risk. The index data are obtained by field investigation.

R34 = R1
34/R2

34 ∗ 100%, (11)
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where R1
34 is the number of inspections for which the inspection fails to meet the standard,

and R2
34 is the total number of inspections.

The maximum deformation of the foundation pit (R41) indicates the stability of the
foundation pit supporting structure. The lower the value of R41, the more stable the
foundation pit supporting structure, and the lower the construction safety risk. The index
data are obtained by consulting the monitoring data of the construction site. The unit of
R41 is mm.

The 24-h maximum rainfall (R42) represents the rainfall intensity. Because subway
station projects are completely exposed to the natural environment, rainfall can easily lead
to safety accidents such as landslides, waterlogging, and electric shock. The lower the value
of R42, the lower the construction safety risk. The index data are obtained by consulting
the construction log or local meteorological data. The unit of R42 is mm.

Poor geological conditions (R43) refer to the adverse effects of the soil type, rock
weathering, and the groundwater level on the construction site. The lower the value
of R43, the more favorable the geological conditions for construction, and the lower the
construction safety risk. The index data are obtained by consulting the previous geological
survey data. If the geological conditions are too complicated, expert interviews can be used
to obtain the index data.

Poor geomorphic conditions (R44) refer to the adverse effects of underground pas-
sages, lakes, rivers, tall buildings, and other factors around the construction site on the
construction. The lower the value of R44, the fewer geomorphic elements that are not
conducive to construction, and the lower the construction safety risk. The index data are
obtained by field investigation or expert interviews.

Extreme weather conditions (R45) refer to the adverse effects of extreme weather, such
as gale, rainstorms, hail, typhoons, and tsunamis, on construction. The lower the value of
R45, the less extreme the weather, and the lower the construction safety risk. The index
data are obtained by consulting the construction log or local meteorological data.

The efficiency of communication (R51) refers to the information communication within
the project management team. Generally speaking, the more efficient the information
communication, the more timely the disposal of potential construction safety accidents,
and the lower the construction safety risk. This index is qualitative and comprehensive, so
its data are obtained through expert interviews.

Team cohesion (R52) is an index by which to measure whether the management style
between construction working groups is democratic, whether the division of labor is
reasonable, and the degree of tacit cooperation, and the index data are obtained by the
scoring method. The lower the value of R52, the lower the construction safety risk. This
index is qualitative and comprehensive, so its data are obtained through expert interviews.

The rate of personnel change (R53) reflects the index of organizational personnel
adjustment and personnel flow. The lower the value of R53, the more stable the project
management team, and the lower the construction safety risk. The index data are obtained
by consulting the project management documents.

R53 = R1
53/R2

53 ∗ 100%, (12)

where R1
53 is the number of people leaving this project, and R2

53 is the number of project
managers.

The rationality of organization (R54) indicates the influence of project management
organization on construction. The higher the value of R54, the more reasonable the project
management organization, and the lower the construction safety risk. This index is qualita-
tive and comprehensive, so its data are obtained by expert interviews.

3.4. Classification of Early Warning Levels

At present, there is no unified classification system of the early warning levels of
construction safety risks. Scholars [28–30] often classify construction safety risk levels
according to the research needs. In the present work, according to the emergency man-
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agement measures, the classification of early warning levels is divided into five levels.
Very safe (I) means that the construction risk is very low and no measures need to be
taken. Safe (II) means it is low, but managers should examine the implementation of the
safety measures taken. Medium (III) indicates it is acceptable, but managers should reduce
dangerous risk factors in a targeted manner. Dangerous (IV) means it is unacceptable, and
managers should immediately take targeted measures to reduce the construction risk. Very
dangerous (V) means it is totally unacceptable, and managers should immediately issue
shutdown instructions.

With reference to the Standard for Construction Safety Assessment of Metro Engi-
neering (GB 50715-2011), the Unified Code for Technique for Constructional Safety (GB
50870-2013), the Technical Code for Construction Safety of Deep Building Foundation
Excavations (JGJ 311-2013), the Standard for Construction Survey (JGJ/T 408-2017), and
the opinions of the experts described in Table 1, all the construction risk warning levels
of the secondary indicators were divided, as shown in Table 3. It should be emphasized
that the theoretical upper limit of the five levels of R41 and R42 was +∞, but an upper limit
with engineering significance should be set artificially according to the project management
needs in actual case analyses. The equivalent division of the qualitative indicators includes
qualitative language descriptions and corresponding quantitative data intervals.

Table 3. The classification of the construction risk early warning of the secondary indexes.

Indexes I II III IV V

R11 (%) [0, 1) [1, 3) [3, 5) [5, 10) [10, 100]

R12 (%) [0, 5) [5, 10) [10, 20) [20, 40) [40, 100]

R13 [0, 3) [3, 5) [5, 10) [10, 20) [20, 100]

R14 (%) [0, 5) [5, 10) [10, 20) [20, 40) [40, 100]

R15 (%) [0, 5) [5, 10) [10, 20) [20, 40) [40, 100]

R21 (%) [0, 1) [1, 3) [3, 5) [5, 10) [10, 100]

R22 (%) [0, 1) [1, 3) [3, 5) [5, 10) [10, 100]

R23 (%) [0, 3) [3, 5) [5, 10) [10, 20) [20, 100]

R24 (%) [0, 3) [3, 5) [5, 10) [10, 20) [20, 100]

R31 (%) [99, 100] [97, 99) [95, 97) [90, 95) [0, 90)

R32 (%) [99, 100] [97, 99) [95, 97) [90, 95) [0, 90)

R33 (%) [95, 100] [90, 95) [85, 90) [80, 85) [0, 80)

R34 (%) [0, 3) [3, 5) [5, 10) [10, 20) [20, 100]

R41 (mm) [0, 30) [30, 50) [50, 80) [80, 100) [100, +∞)

R42 (mm) [0, 50) [50, 100) [100, 150) [150, 250) [250, +∞)

R43
Rarely
[0, 20)

A few
[20, 40)

Acceptable
[40, 60)

Many
[60, 80)

Too many
[80, 100]

R44
Rarely
[0, 20)

A few
[20, 40)

Acceptable
[40, 60)

Many
[60, 80)

Too many
[80, 100]

R45
Rarely
[0, 20)

A few
[20, 40)

Acceptable
[40, 60)

Many
[60, 80)

Too many
[80, 100]

R51
Very efficient

[0, 20)
Efficient
[20, 40)

Acceptable
[40, 60)

Inefficient
[60, 80)

Very inefficient
[80, 100]

R52
Very good
[0, 20)

Good
[20, 40)

Acceptable
[40, 60)

Bad
[60, 80)

Very bad
[80, 100]

R53 [0, 10) [10, 20) [20, 30) [30, 50) [50, 100]

R54
Very reasonable

[0, 20)
Reasonable
[20, 40)

Acceptable
[40, 60)

Unreasonable
[60, 80)

Completely unreasonable
[80, 100]
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4. The Early Warning Model
4.1. Introduction to QPSO

PSO is a meta-heuristic method that can realize the global optimization of multi-
extremum functions. The particles in the population search for the global optimum of
the function via cooperation and competition and share or exchange the information
they obtained in their respective search processes. PSO has the following shortcomings:
(1) when the number of iterations tends to infinity, the algorithm cannot converge to the
global optimum with probability 1, i.e., it does not have global convergence; (2) the speed
of a single particle has an upper limit, and its search space is limited, which cannot cover
the whole feasible region.

Aiming at the deficiency of PSO, Sun et al. [21] proposed QPSO from the perspective
of quantum mechanics, which holds that every particle in the population has quantum
behavior in δ potential wells. Thus, the particle has an uncertain search trajectory, and the
algorithm has global convergence.

The iterative optimization expression of QPSO is as follows [21]:

pi(t) = ϕ(t)pbest,i(t) + (1− ϕ(t))gbest(t), (13)

where t is the number of iterations, pi(t) represents the current particle position, ϕ(t) is
a random number that obeys a uniform distribution in (0,1), pbest,i(t) represents the self-
optimal position in the i-th particle search process, and gbest(t) is the population optimal
position in all particle search processes.

si(t + 1) = pi(t)± α(t)|si(t)− C(t)|In(1/β(t)), (14)

where α(t) is a compression-expansion factor, which can be used to adjust the influences
of “self experience” and “group experience” on the particle position in the next iteration.
To ensure the global convergence of QPSO, α(t) must be less than 1.781. Moreover, β(t)
is a random number that obeys a uniform distribution in (0,1), and the sign before α(t) is
determined by β(t). When β(t) ≤ 0.5, the value of α(t) is positive; otherwise, it is negative.
Finally, D(t) is the average of the self-optimal positions in the searching process, and is
defined as follows [21].

D(t) =
1
N ∑n

i=1 pbest,i(t). (15)

The updating method of pbest,i(t) and gbest(t) in QPSO is the same as that in PSO.

4.2. Introduction to the LSSVM

The LSSVM is a derivative method of the SVM and is characterized by the successful
introduction of least-square estimation into the SVM. In this study, the regression form of
the LSSVM is adopted. After a series of strict derivation and simplification, the problem
is finally transformed into the solution of a and b in linear equations by the least-square
method, and the regression function of the LSSVM is as follows [12]:

f (x) = ∑N
i=1 aK(x, xi) + b, (16)

where a is the weight variable of the regression function, K(x, xi) is the kernel function, and
b is the deviation coefficient.

The key to solving the LSSVM is to solve the prediction function. By combining the
prediction function in Equation (16) with the structural risk function [14], the solution of
the LSSVM can be equivalent to the following nonlinear optimization problem [31]:{

minJ(w, δ) = 1
2‖ w ‖2 + C

2 ∑l
i=1 δi

2

s.t. yi = wT ϕ(x) + b + δi
2, i = 1, 2, · · · l

, (17)



Appl. Sci. 2022, 12, 5712 11 of 22

where δi represents a relaxation variable, and C represents a regularization parameter,
C > 0. The regularization parameter is an important parameter in the LSSVM, and a
reasonable value guarantees the efficient and accurate prediction of the LSSVM. If the
value is too small, the prediction model will punish the prediction deviation too little, thus
increasing the possibility of the under-fitting of the prediction model and reducing the
prediction performance. If the value is too large, the prediction model will punish the
prediction deviation too much, thus increasing the possibility of the over-fitting of the
prediction model and reducing the prediction performance.

Compared with the polynomial kernel function, the radial basis function (RBF) has
the advantages of a lesser number of iterations, higher running efficiency, and only one
kernel parameter. Therefore, the RBF was chosen for use in this study:

K(x, xi) = exp(−‖ x− xi ‖
2σ2 ), (18)

where σ represents the width parameter of the RBF, which is the key calculation parameter.
If the value of σ is small, the range of learning variables is small. Although the LSSVM
model has a high calculation accuracy, the calculation and prediction results cannot be
effectively promoted. If the value of σ is too large, the range of learning variables will be
larger. Although the generalization of the prediction results is improved, the calculation
accuracy of the LSSVM model will be poor.

Therefore, when using the LSSVM for data regression analysis, it is necessary to
optimize the regularization parameter and the width parameter of the RBF.

4.3. The Proposed Prediction Model

Step 1: Data collection and preprocessing
Data are obtained by on-site investigation and the consultation of construction logs

and project management documents. Qualitative index data should be tested for reliability
and validity.

To reduce the complexity of the modeling calculation of the LSSVM, the extreme value
normalization method is adopted to standardize the data.

For benefit-based indicators [31]:

x∗ij =
xij −min

(
xj
)

max
(
xj
)
−min

(
xj
) . (19)

For cost-based indicators [31]:

x∗ij =
max

(
xj
)
− xij

max
(
xj
)
−min

(
xj
) , (20)

where xij is the data of the j-th indicator of the i-th early warning object, min
(
xj
)

represents
the minimum value of the data of the j-th indicator, max

(
xj
)

represents the maximum
value of the data of the j-th indicator, and x∗ij is the normalized data.

Step 2: Linear correlation analysis
Choosing the linear or nonlinear modeling method is the first step of early risk warning.

In this study, the Pearson correlation coefficient is selected to analyze the correlations
between early warning indicators and early warning results. Its calculation formula is as
follows [31]:

r = ∑n
i=1(xi − x)(yi − y)√

∑n
i=1(xi − x)2(yi − y)2

, (21)

where xi is the value of a certain early warning variable, x is the average value of a certain
variable, yi is the risk early warning result, and y is the average value of the risk early
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warning result. If r is greater than 0.7, there is only a certain linear correlation; if r is less
than 0.7, there is almost no linear correlation [32].

In this work, 70% is set as the threshold for selecting the modeling method. When
more than 70% of the early warning indicators have an obvious linear relationship with the
risk early warning results, the linear modeling method should be used for risk prediction.
If most of the early warning indicators are linearly related to the results, it is suggested to
adopt a linear modeling method or re-collect data.

Step 3: Searching for the optimal parameters of the LSSVM based on QPSO

(1) Setting the calculation parameters of QPSO and the LSSVM.

Excluding the total number of particles N and the maximum number of iterations tmax
in the population, the QPSO has only one parameter, namely the compression-expansion
factor α(t). To simplify the algorithm to the greatest extent, the value strategy of α linear
reduction is chosen for use [20]:

α(t) =
(α1 − α2)(tmax − t)

tmax
+ α2, (22)

where α1 and α2 are the initial and termination values of α, respectively, and α1 > α2 is
satisfied. It should be emphasized that the selection of calculation parameters of QPSO
generally only affects the calculation efficiency of the algorithm and has little effect on the
optimization results.

In the LSSVM, the regularization parameter and the width parameter of the kernel
function are randomly given. However, the range of parameters should be as large as
possible, so that the optimal parameter combination can be found.

(2) Initializing the calculation model

The ratio of the training and test sets is set according to the research needs. The
common ratios were 95%:5%, 90%:10%, 80%:20%, and 70%:30%.

The optimization model of QPSO is initialized according to Equations (13)–(15), and the
nonlinear early warning model of the LSSVM is initialized according to Equations (16)–(18).

(3) Calculating the fitness function

The regularization parameter and the width parameter are used as the solution dimen-
sions in QPSO. The optimal kernel function parameters and penalty factor parameters in
each iteration of QPSO are trained as the parameters of the LSSVM model, and the fitness
values of all particles are calculated by the fitness function. The root-mean-square error
(RMSE) is selected as the fitness function to evaluate QPSO [16,33]:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2, (23)

where n is the number of samples in the test set, yi is the predicted value and ŷi is the
true value.

(4) Updating the particle position and global optimal solution according to the fit-
ness function.

(5) Judging whether the convergence condition is reached.

The convergence criterion of QPSO is usually that particles “gather” in a small range
around a certain position. In this study, the following conditions must be met when
converging [16]:

max
{∣∣ui(t)− uj(t)

∣∣} < ε, (24)

where 1 ≤ i, j ≤ N, and i 6= j. Moreover, ε is a small positive number, the value of which is
considered 10−5 in this study.

If the convergence condition is not met, the optimization is continued. When the
convergence condition is reached, the optimal parameter combination can be obtained.
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Step 4: Construction risk early warning based on the LSSVM
The optimal parameter combination is introduced into Equations (16)–(18), and the

LSSVM model is reconstructed for calculation so that the early warning result of the
construction risk level can be obtained. It should be noted that, given the regularization
parameter and the Gaussian kernel function width parameter, the LSSVM can conduct
risk early warning. The purpose of Step 3 is to find the optimal calculation parameters of
the LSSVM.

Step 5: Reliability analysis of the early warning results
To verify the reliability of the early warning results, the Bland–Atman analysis method

is used to analyze the early warning values and the measured values. The Bland–Atman
analysis is realized with the assistance of SPSS 17.0 software.

If the early warning result based on the proposed method is consistent with the true
value within the 95% confidence interval, it indicates that the early warning result has good
reliability and the early warning is over. Otherwise, Steps 3 and 4 are repeated.

Summarizing the above analysis, the flowchart of the proposed model was shown in
Figure 1.
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It should be emphasized that the proposed model was a data-driven model. Different
cases mean different engineering data and different trained models. However, the proposed
model, rather than trained models, is able to be applied to any type of case study.

5. Case Analysis
5.1. Project Overview and Data Acquisition

The total length of Chengdu Metro Line 11 in China is 22.0 km, and it has 17 new
subway stations. The engineering profiles of the 17 stations are presented in Table 4.

Table 4. The overview of the 17 stations.

Station Maximum
Excavation Depth

Regional
Characteristics Contractor Adverse Conditions

Huilong Boulevard Station 21.26 m Urban region under
construction CCTEB Abandoned pipe gallery,

high slope

Science Park Station 18.65 m Urban region under
construction CCTEB Abandoned pipe gallery

Science Park East Station 19.75 m Urban region under
construction CCTEB Fish pond, gas pipeline,

high-voltage electric tower

Science Park South Station 25.18 m Urban region under
construction CCTEB Rivers, high gas

Wan’an Station 21.45 m Urban region under
construction CCTEB Multiple ponds, high gas

Lushan Boulevard Station 28.84 m Established
urban region CCTEB Under a bridge, high gas.

Shenyang Road Station 19.45 m Established
urban region CSCRIE Many ponds and rivers,

high-voltage lines, high gas.

Dakoujing Station 18.46 m Established
urban region CSCRIE Many projects under

construction, high gas

Miaoyan Station 26.47 m Established
urban region CCTEB High gas

Tianfu CBD North Station 28.80 m Urban region under
construction CSCRIE High voltage tower

Tianfu CBD East Station 22.50 m Urban region under
construction CSCRIE Large bridge

Guobin Boulevard station 24.37 m Urban region under
construction CSCRIE Utility tunnel, underpass

tunnel, viaduct

Lujiao Village Station 19.57 m Urban region under
construction CSCRIE

Ponds, chemical tanks,
high-voltage wire towers,

projects under construction
Diaoyuzui East Station 18.50 m Suburban region CCTEB Ponds

Diaoyuzui Station 19.85 m Suburban region CCTEB Flood channel, high slope,
landscape bridge

Huilong Road Station 20.75 m Suburban region CCTEB Low terrain, rivers, existing
subway line

Huilonglu West station 22.46 m Suburban region CCTEB Ponds, slopes, rivers

Due to spatial constraints, Table 4 only reports the four most important types of station
information, namely the maximum excavation depth, regional characteristics, construction
units, and unfavorable conditions.

The maximum excavation depth is the most important factor affecting the construction
difficulty of subway station engineering. The greater the excavation depth, the higher
the professional skills of the construction workers, the higher the management ability of
the project managers, the higher the quality and maintenance level of the construction
machinery, and the higher the quality of construction materials. In addition, the deeper
the subway station project, the more easily it will experience adverse effects from the
surrounding environment.
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Regional characteristics reflect the availability of construction machinery and con-
struction materials. In urban areas, due to traffic control, it is difficult to promptly obtain
construction materials. In the suburbs and newly-built development zones, construction
materials can easily be promptly obtained. In addition, subway station projects with
different regional characteristics suffer from different unfavorable environmental factors.

Relevant information about the construction unit directly reflects the risk manage-
ment level of the project management team. The construction units of this project are the
China Construction Third Engineering Bureau Group Co., Ltd., Wuhan, China (hereinafter
referred to as CCTEB) and the China State Construction Railway Investment & Engi-
neering Group Co., Ltd., Wuhan, China (hereinafter referred to as CSCRIE). CCTEB has
rich experience in subway station engineering construction, while CSCRIE lacks relevant
construction experience.

Unfavorable conditions mainly include unfavorable geological conditions, unfavorable
geomorphic conditions, and extreme weather conditions, all of which are important causes
of construction safety accidents. Excluding Wan’an Station, Dakoujing Station, Guobin
Avenue Station, Fishing Mouth East Station, Fishing Mouth Station, and Huilong Road
West Station, the other stations are characterized by complicated pipelines, which affect
the construction.

According to the index data acquisition methods described in Section 3.3, 294 groups of
data were collected. After eliminating invalid data, 261 groups of valid data were retained,
as shown in Table 5. Due to spatial limitations, only partial data are provided in Table 5. It
should be emphasized that 261 sets of data represent a small data set for simulation but a
large data set for a case study.

Table 5. Partial case data.

No. 1 2 3 4 5 · · · 257 258 259 260 261

Risk Level II III I II II IV II II I III

R11 1.47 3.45 0.12 2.62 0.88 · · · 4.01 1.34 5.76 4.90 2.62
R12 5.89 5.9 8.04 2.52 4.11 · · · 2.77 6.08 7.93 7.26 2.44
R13 5 4 0 1 5 · · · 13 9 1 7 3
R14 5.46 2.47 3.19 9.94 4.61 · · · 10.07 6.65 2.96 5.41 9.86
R15 10.90 21.81 13.73 18.50 6.82 · · · 10.92 7.46 20.35 10.14 5.37
R21 3.18 3.76 4.50 3.69 2.67 · · · 1.71 4.80 4.49 4.10 3.36
R22 0.21 1.62 0.06 0.87 1.64 · · · 1.07 1.86 0.29 1.29 2.00
R23 0.29 5.54 6.54 2.97 3.74 · · · 5.12 3.26 5.33 5.98 5.65
R31 98.77 99.15 99.55 99.68 99.64 · · · 98.77 99.66 98.92 98.44 98.94
R32 99.58 98.5 98.18 99.51 98.67 · · · 99.97 99.21 98.98 99.71 98.70
R33 99.67 97.10 97.98 97.77 95.19 · · · 95.91 98.23 95.99 97.10 96.69
R34 2.45 3.58 2.93 2.77 0.49 · · · 1.29 1.26 3.24 0.84 2.10
R41 28.20 21.03 24.14 7.90 21.41 · · · 33.33 6.98 13.01 30.57 6.90
R42 167 0 0 5 55 · · · 0 0 15 120 10
R43 34.5 35 37.5 44 33.5 · · · 38 47.5 35 46 49
R44 65 71 74.5 13 36 · · · 52 51.5 57 85 73.5
R45 30 32.5 36 10 22.5 · · · 27 24.5 28 29.5 19
R51 10 14.5 19 13.5 13 · · · 18 10.5 20 12.5 15.5
R52 11 19.5 180 16 19.5 · · · 17 17.5 18 13 16
R53 13.58 12.57 13.98 14.69 18.69 · · · 15.19 15.89 11.99 13.43 18.51
R54 24 24.5 27 26.5 17 · · · 16.5 26 14.5 11 12.5

Table 1 presents the information of the experts who participated in determining the
qualitative indicators. The Cronbach’s alpha values of all qualitative indicators were found
to be greater than 0.7, which proves the reliability of the questionnaire survey results [34].

5.2. Data Preprocessing and Correlation Analysis

According to the type of indicator, the normalized early warning data could be ob-
tained by introducing the data in Table 5 into Equation (19) or (20). The normalized early
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warning data were then introduced into Equation (21) to obtain the correlation analysis
results of each index (input variable) and the early warning level (output variable), as
shown in Table 6.

Table 6. The correlations between the secondary indexes and risk early warning results.

Secondary index R11 R12 R13 R14 R15 R21 R22

Pearson correlation
coefficient −0.4871 −0.7124 0.5767 −0.7521 0.1574 0.8017 −0.2578

Secondary index R23 R31 R32 R33 R34 R41 R42

Pearson correlation
coefficient −0.7533 0.4297 0.8746 0.3325 −0.1247 0.7197 −0.5427

Secondary index R43 R44 R45 R51 R52 R53 R54

Pearson correlation
coefficient 0.3475 0.2458 −0.3462 0.746 0.3024 −0.7003 −0.2467

Among the 21 secondary indicators, the absolute values of the Pearson correlation
coefficients of only eight indicators were greater than 0.7. Only 38.09% of the secondary
indicators had an obvious linear relationship with the early warning results of construction
risks. Therefore, the nonlinear modeling method was chosen for the case study.

5.3. Early Warning of Construction Safety Risks

(1) Set the parameters of algorithms

The tmax of QPSO was set to 1000, and the N was set to 20 [18,20]. Moreover, the
compression-expansion factors were set to α1 = 0.8 and α2 = 0.4. According to Equation (22),

αt = 0.4
(

1− t
tmax

)
+ 0.4. (25)

The range of the C is [0.01, 10], and the range of the width parameter σ of the kernel
function is [10, 1000] [13]. The initial regularization parameter of the LSSVM is 2, and the
initial width parameter is 30.

(2) Find the optimal parameter combination of the LSSVM based on QPSO

The normalized data and preset QPSO parameters were introduced into
Equations (13)–(15) to initialize the optimization model of QPSO. Then, the normalized
data and preset LSSVM calculation parameters were introduced into Equations (16)–(18) to
initialize the LSSVM-based nonlinear early warning model. All the calculation programs
were realized with the assistance of MATLAB 2016 software.

The initial fitness function was calculated, and the particle position and global optimal
solution were updated according to the fitness function. The fitness function of QPSO is
shown in Figure 2.

The QPSO found the optimal calculation parameters of LSSVM around the 120th
generation. The best regularization parameter was 1.742, and the best width parameter
was 14.167. The iterative steps of QPSO around the 120th generation were tracked in detail,
as exhibited in Table 7.

Table 7 reveals that QPSO found the optimal calculation parameters of the LSSVM in
the 120th generation. To examine the stability of QPSO calculations, the proposed model
was recalculated 100 times. The QPSO found the best calculation parameters of LSSVM
after 134.71 optimization times on average.
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Table 7. Detailed QPSO update process.

Iterations Fitness of the k − 1
Iteration

Fitness of the k
Iteration Accuracy Continue?

118 0.0000084643 0.0000084643 0 < 0.0000001 Yes
119 0.0000084643 0.0000071867 0.0000012776 > 0.0000001 Yes
120 0.0000071867 0.0000001597 0.0000070270 > 0.0000001 Yes

1000 0.0000001597 0.0000001597 0 < 0.0000001 No

(3) Construction of the early warning model based on the LSSVM

Among all data sets, 234 were randomly selected as training sets, and the remain-
ing 27 were used as test sets. Thus, the ratio of the training sets to the test sets was
89.66%:10.34%. This ratio is discussed in detail in Section 6.3.

All data and calculation parameters were introduced back into Equations (16)–(18),
and the nonlinear early warning model based on the LSSVM was calculated. The calculation
results of the test set are reported in Table 8. Sample data with the wrong prediction in
Table 8 are bolded.

Table 8. The prediction results of the test set.

Test Set Actual Risk The Predicted Results Test Set Actual Risk The Predicted Results

1 II II (2.003) 141 III III (2.985)
11 II II (1.986) 151 I II (1.975)
21 III III (3.014) 161 II II (2.037)
31 I I (0.997) 171 III III (3.004)
41 IV IV (4.006) 181 IV IV (3.995)
51 II II (2.013) 191 II II (2.007)
61 I I (1.012) 201 III III (3.014)
71 II II (2.004) 211 I I (1.005)
81 III III (2.987) 221 II II (2.003)
91 I I (1.001) 231 III III (3.014)
101 III III (3.027) 241 I I (1.027)
111 II II (2.001) 251 II II (2.002)
121 I I (1.000) 261 III III (2.999)
131 II II (1.998) - - -
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Among the 27 test set samples, only the 151 test set had the wrong prediction. The
error rate of the proposed model was 3.7%. It should be emphasized that this is the result
of a prediction calculation.

5.4. Reliability Analysis of Early Warning Results

To testify the reliability of the predicted results in Section 5.3, the Bland–Altman
analysis was used to analyze the predicted values and the measured values. The Bland–
Altman analysis method was first put forward by British scholars Bland and Altman in
1983. Its basic principle is to analyze the differences between the results calculated by two
different methods within a 95% confidence interval (consistency limit). This method has
become an authoritative statistical method to judge the consistency of the results calculated
by two data calculation methods. In this research, the calculation results based on QPSO-
LSSVM and the real construction risks were compared. If the calculation results based on
QPSO-LSSVM were consistent with the real construction risks within a 95% confidence
interval, it showed that the risk warning results based on QPSO-LSSVM had good reliability.
In the empirical study, the Bland–Altman diagram is shown in Figure 3.
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71 Ⅱ Ⅱ (2.004) 211 Ⅰ Ⅰ (1.005) 
81 Ⅲ Ⅲ (2.987) 221 Ⅱ Ⅱ (2.003) 
91 Ⅰ Ⅰ (1.001) 231 Ⅲ Ⅲ (3.014) 
101 Ⅲ Ⅲ (3.027) 241 Ⅰ Ⅰ (1.027) 
111 Ⅱ Ⅱ (2.001) 251 Ⅱ Ⅱ (2.002) 
121 Ⅰ Ⅰ (1.000) 261 Ⅲ Ⅲ (2.999) 
131 Ⅱ Ⅱ (1.998) - - - 

Among the 27 test set samples, only the 151 test set had the wrong prediction. The 
error rate of the proposed model was 3.7%. It should be emphasized that this is the result 
of a prediction calculation. 

5.4. Reliability Analysis of Early Warning Results 
To testify the reliability of the predicted results in Section 5.3, the Bland–Altman anal-

ysis was used to analyze the predicted values and the measured values. The Bland–Alt-
man analysis method was first put forward by British scholars Bland and Altman in 1983. 
Its basic principle is to analyze the differences between the results calculated by two dif-
ferent methods within a 95% confidence interval (consistency limit). This method has be-
come an authoritative statistical method to judge the consistency of the results calculated 
by two data calculation methods. In this research, the calculation results based on QPSO-
LSSVM and the real construction risks were compared. If the calculation results based on 
QPSO-LSSVM were consistent with the real construction risks within a 95% confidence 
interval, it showed that the risk warning results based on QPSO-LSSVM had good relia-
bility. In the empirical study, the Bland–Altman diagram is shown in Figure 3.  
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In Figure 3, the vertical axis of the diagram was the difference between the measured
value and the predicted value, and the horizontal axis was the average of the measured
value and the predicted value of the model. From Figure 3, 26 groups of values were within
(−1.96SD,+1.96SD), and only one group was absent. According to the basic principle of the
Bland–Altman analysis method, it could be known that the calculated results in Section 5.3
and the measured values met 95% of the predicted points within the consistency range.
Therefore, the early warning results of construction risks in Section 5.3 had high reliability.

6. Discussion
6.1. Computational Performance of Different Optimization Algorithms

Although many research results have proved the excellent computing performance of
QPSO in many optimization problems, there has been little research on the optimization
performance of QPSO in the LSSVM model. The computational performance of different
meta-heuristic optimization algorithms in different studies is likely to be significantly dif-
ferent [35]. Classical and latest meta-heuristic optimization algorithms (GA [11], PSO [36],
GSA [14], WOA [14]) were selected to find the best calculation parameters in Section 5.
The calculation parameters and principles of each algorithm refer to the corresponding
references. In addition, TE [14], a classical LSSVM parameter determination method, was
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selected to perform calculations. The results of 100 calculations of different optimization
algorithms are shown in Table 9.

Table 9. Calculation results of different optimization algorithms.

Optimization
Algorithm

Average
Number of

Misjudgments

Average
Prediction

Error

Average
Calculation

Time

Average Iteration
Times at

Convergence

TE 4.14 24.35% - -
GA 1.01 5.94% 1574.24 574.14
PSO 1.27 7.47% 654.04 377.08
GSA 1.05 6.18% 317.17 229.07
WOA 1.24 7.29% 357.81 197.43
QPSO 0.75 4.41% 203.38 134.71

It could be seen from Table 9 that, compared with other meta-heuristic optimiza-
tion algorithms, the calculation error of QPSO was the smallest, and the best calculation
parameters of LSSVM could be found fastest with the QPSO.

By researchers’ manual trial and error, the TE method could find the appropriate
LSSVM calculation parameters, which was understood as finding the LSSVM calculation
parameters without using an optimization algorithm. The calculation error of the TE was
the largest. This result emphasized the necessity of introducing an optimization algorithm
into LSSVM research.

Generally, the algorithm performance is judged by the following three conditions.
The best case indicates the fastest optimization speed of the algorithm. Average means
the average of the algorithm. In the worst case, it means that the algorithm cannot find
the optimal solution. The best case is accidental, so it has no comparative value, and the
average case has been discussed in this section. Therefore, this section will continue to
discuss the worst case.

The range of the C was reset to [100, 10,000], and the range of the width parameter σ
was reset to [0.001, 10]. The optimal combination of parameters was not in this interval, so
the three optimization algorithms could not find the optimal solution within the maximum
iteration steps. After calculation, it was found that QPSO completed the calculation fastest,
so the complexity of QPSO was the smallest among all algorithms.

6.2. Computational Performance of Different Prediction Methods

To compare the computational performance of the proposed model, the BPNN and
Extreme Learning Machine (ELM) [37] were selected for comparative analysis. The two
data prediction methods also use QPSO to get the optimal calculation parameters, and the
calculation results of 100 calculations were shown in Table 10.

Table 10. Calculation results of different early warning models.

Early Warning Model QPSO-BP QPSO-ELM QPSO-LSSVM

Average number of misjudgments 3.28 1.74 0.75
Average prediction error 19.29% 10.24% 4.41%
Average calculation time 687.52 374.24 203.38

Average iteration times at convergence 439.34 233.01 134.71

It could be seen from Table 10 that the early warning error rate of QPSO-LSSVM
was only 4.41%, and the early warning accuracy was significantly higher than that of
QPSO-BP and QPSO-ELM. The prediction model constructed by BPNN had the largest
misjudgment rate, which was 4.37 times that based on the LSSVM model. Under the same
optimization algorithm, the average calculation time of LSSVM was the shortest, and the
optimal solution could be found the fastest. It was considered that this method had the
advantages of being a simple model and having a fast calculation speed.
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According to the calculation principles of the three algorithms, the LSSVM determined
the segmentation hyperplane only with fewer support vectors, while BPNN or ELM
followed the law of large numbers in nonlinear modeling [38]. When the training data
samples of BPNN or ELM were more, their prediction results were closer to the truth. The
number of sample sets of BPNN or ELM was often required to be more than ten times
that of input variables. Therefore, under the condition of sufficient historical data and
large research samples, the BPNN or ELM method had more advantages than LSSVM in
nonlinear modeling ability and computational performance. However, when the historical
data was insufficient or the research samples were small, the nonlinear modeling ability and
computational performance of LSSVM were significantly better than those of the BPNN or
ELM methods.

6.3. The Influence of the Different Ratios of Training Sets and Test Sets

In the research of machine learning, the ratio of the training set to the test set might
affect the calculation results. These common proportions mentioned in Section 4.3 were se-
lected to warn the construction safety risks of the case objects. The results of 100 calculations
with different ratios of training sets and test sets are shown in Table 11 below.

Table 11. Calculation results of the different ratios.

Ratio of Training Set
and Test Set

Average Number of
Misjudgments

Average Prediction
Error

Bland–Altman
Analysis

247:14
94.64%:5.36% 0.23 1.64% Pass

234:17
89.66%:10.34% 0.75 4.41% Pass

208:53
79.69%:20.31% 2.26 4.26% Pass

182:79
69.73%:30.27% 7.54 9.54% Fail

It could be seen that with the decreasing number of samples in the training set, the pre-
diction error gradually increased, in which the average number of misjudgments increased
from 0.23 to 7.54, and the average prediction error increased from 1.64% to 9.54%. While
the ratio of the sample set to test set was 69.73%:30.27%, the average prediction error was
close to 10%, and it failed to pass the Bland–Altman analysis. Therefore, it was reasonable
to set the ratio of the training set to testing set to 89.66%:10.34% in Section 5. In addition,
the sample set ratio should not be lower than 80% when using this proposed model.

7. Conclusions

In this paper, an early warning model of subway station construction safety risk based
on QPSO and LSSVM was developed, and a case study of Chengdu Metro Line 11 was
carried out. Based on the theory of accident cause and the characteristics of subway station
engineering, an early warning index system of subway station engineering construction
safety risk was constructed. Among the 21 secondary indicators in this index system,
only 8 indicators had an obvious linear relationship with the early warning results of
construction risks. This showed that the nonlinear modeling method should be used in the
early warning research on subway station construction safety risks. The LSSVM with strong
nonlinear analysis abilities and QPSO with strong global retrieval ability were used to
construct the early warning model. In the case analysis, QPSO found the optimal calculation
parameters of LSSVM in the 120th generation, and the error rate of the model proposed was
only 3.7%. Bland–Altman analysis also proved that the early warning result of case analysis
is very reliable. Compared with other meta-heuristic optimization algorithms such as GA,
PSO, GSA, and WOA, QPSO had the smallest calculation error and could find the best
calculation parameters of LSSVM as quickly as possible. Compared with BPNN and ELM,
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the proposed model had a better computational performance. The influence of the ratio
setting of the training set and testing set on the early warning results was also discussed.

Although the engineering practice data collected in this study met the needs of this
study, there was still a gap in the ideal number of samples. In the future, more relevant
engineering practice materials (such as subway station projects in different countries or
different regions) could be obtained to further verify the scientificity, effectiveness and
advancement of this research method.

Author Contributions: Conceptualization, L.Z., S.W. and H.W.; methodology, L.Z.; software, H.W.
and M.W.; validation, J.W., L.Z. and H.W.; formal analysis, L.Z. and J.G.; investigation, H.W.; data cura-
tion, L.Z. and H.W.; writing—original draft preparation, J.W., L.Z., M.W., and H.W.; writing—review
and editing, J.W., S.W. and M.W.; supervision, J.W.; project administration, J.W.; funding acquisition,
J.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science and Technology Project of Wuhan Urban and Rural
Construction Bureau, China (201943), and the 2018 Special Research Project of China Construction
Third Engineering Bureau (20181208).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The MATLAB programs and case analysis data used to support the
findings of this study are available from the corresponding author upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haddad, E.A.; Hewings, G.J.D.; Porsse, A.A.; Van Leeuwen, E.S.; Vieira, R.S. The underground economy: Tracking the higher-

order economic impacts of the Sao Paulo Subway System. Transp. Res. Part A Policy Pract. 2015, 73, 18–30. [CrossRef]
2. Zhou, Z.; Irizarry, J.; Li, Q. Using network theory to explore the complexity of subway construction accident network (SCAN) for

promoting safety management. Saf. Sci. 2014, 64, 127–136. [CrossRef]
3. Merz, B.; Kuhlicke, C.; Kunz, M.; Pittore, M.; Babeyko, A.; Bresch, D.N.; Domeisen, D.I.V.; Feser, F.; Koszalka, I.; Kreibich, H.; et al.

Impact Forecasting to Support Emergency Management of Natural Hazards. Rev. Geophys. 2020, 58, e2020RG000704. [CrossRef]
4. Liu, L.; Wu, H.; Wang, J.; Yang, T. Research on the evaluation of the resilience of subway station projects to waterlogging disasters

based on the projection pursuit model. Math. Biosci. Eng. 2020, 17, 7302–7331. [CrossRef]
5. Sjekavica Klepop, M.; Radujkovic, M. Early Warning System in Managing Water Infrastructre Projects. J. Civ. Eng. Manag. 2019,

25, 531–550. [CrossRef]
6. Qiu, H.; Yu, X.; Dong, J. Risk Factor Prediction Model of Oil and Gas Construction Project Based on Combination Mathematical

Model. Ekoloji 2019, 28, 4033–4043.
7. Senthil, J.; Muthukannan, M. Predication of construction risk management in modified historical simulation statistical methods.

Ecol. Inform. 2021, 66, 101439. [CrossRef]
8. Yadav, A.K.; Chandel, S.S. Identification of relevant input variables for prediction of 1-minute time step photovoltaic module

power using Artificial Neural Network and Multiple Linear Regression Models. Renew. Sustain. Energy Rev. 2017, 77, 955–969.
[CrossRef]

9. Shen, T.; Nagai, Y.; Gao, C. Design of building construction safety prediction model based on optimized BP neural network
algorithm. Soft Comput. 2020, 24, 7839–7850. [CrossRef]

10. Yaseen, Z.M.; Ali, Z.H.; Salih, S.Q.; Al-Ansari, N. Prediction of Risk Delay in Construction Projects Using a Hybrid Artificial
Intelligence Model. Sustainability 2020, 12, 1514. [CrossRef]

11. Liu, P.; Xie, M.; Bian, J.; Li, H.; Song, L. A Hybrid PSO-SVM Model Based on Safety Risk Prediction for the Design Process in
Metro Station Construction. Int. J. Environ. Res. Public Health 2020, 17, 1714. [CrossRef] [PubMed]

12. Yusuf, F.; Olayiwola, T.; Afagwu, C. Application of Artificial Intelligence-based predictive methods in Ionic liquid studies: A
review. Fluid Phase Equilibria 2021, 531, 112898. [CrossRef]

13. Huang, J.; Liang, Y.; Bian, H.; Wang, X. Using Cluster Analysis and Least Square Support Vector Machine to Predicting Power
Demand for the Next-Day. IEEE Access 2019, 7, 82681–82692. [CrossRef]

14. Zeng, F.; Nait Amar, M.; Mohammed, A.S.; Motahari, M.R.; Hasanipanah, M. Improving the performance of LSSVM model in
predicting the safety factor for circular failure slope through optimization algorithms. Eng. Comput. 2021. [CrossRef]

15. Cui, G.; Xiong, S.; Zhou, C.; Liu, Z. Research on HC-LSSVM Model for Soft Soil Settlement Prediction Based on Homotopy
Continuation Method. Appl. Sci. 2021, 11, 10666. [CrossRef]

16. Zhu, X.; Ma, S.-q.; Xu, Q.; Liu, W.-d. A WD-GA-LSSVM model for rainfall-triggered landslide displacement prediction. J. Mt. Sci.
2018, 15, 156–166. [CrossRef]

http://doi.org/10.1016/j.tra.2014.12.011
http://doi.org/10.1016/j.ssci.2013.11.029
http://doi.org/10.1029/2020RG000704
http://doi.org/10.3934/mbe.2020374
http://doi.org/10.3846/jcem.2019.10404
http://doi.org/10.1016/j.ecoinf.2021.101439
http://doi.org/10.1016/j.rser.2016.12.029
http://doi.org/10.1007/s00500-019-03917-4
http://doi.org/10.3390/su12041514
http://doi.org/10.3390/ijerph17051714
http://www.ncbi.nlm.nih.gov/pubmed/32150993
http://doi.org/10.1016/j.fluid.2020.112898
http://doi.org/10.1109/ACCESS.2019.2922777
http://doi.org/10.1007/s00366-021-01374-y
http://doi.org/10.3390/app112210666
http://doi.org/10.1007/s11629-016-4245-3


Appl. Sci. 2022, 12, 5712 22 of 22

17. Noori, A.M.; Mikaeil, R.; Mokhtarian, M.; Haghshenas, S.S.; Foroughi, M. Feasibility of Intelligent Models for Prediction of
Utilization Factor of TBM. Geotech. Geol. Eng. 2020, 38, 3125–3143. [CrossRef]

18. Sun, J.; Wu, X.; Palade, V.; Fang, W.; Lai, C.-H.; Xu, W. Convergence analysis and improvements of quantum-behaved particle
swarm optimization. Inf. Sci. 2012, 193, 81–103. [CrossRef]

19. Alajmi, M.S.; Almeshal, A.M. Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO
Method. Materials 2020, 13, 2986. [CrossRef]

20. Yang, L.; Fu, Y.; Wang, Z.; Zhen, X.; Yang, Z.; Fan, X. An Optimized Level Set Method Based on QPSO and Fuzzy Clustering.
IEICE Trans. Inf. Syst. 2019, E102D, 1065–1072. [CrossRef]

21. Sun, J.; Fang, W.; Wang, D.; Xu, W. Solving the economic dispatch problem with a modified quantum-behaved particle swarm
optimization method. Energy Convers. Manag. 2009, 50, 2967–2975. [CrossRef]

22. Singh, J.; Verma, A.K.; Banka, H.; Singh, T.N.; Maheshwar, S. A study of soft computing models for prediction of longitudinal
wave velocity. Arab. J. Geosci. 2016, 9, 224. [CrossRef]

23. Hyungju, K.; Stein, H.; Bouwer, U.I. Assessment of accident theories for major accidents focusing on the MV SEWOL disaster:
Similarities, differences, and discussion for a combined approach. Saf. Sci. 2016, 82, 410–420. [CrossRef]

24. Li, W.; Zhang, L.; Liang, W. An Accident Causation Analysis and Taxonomy (ACAT) model of complex industrial system from
both system safety and control theory perspectives. Saf. Sci. 2017, 92, 94–103. [CrossRef]

25. Zhang, S.; Sunindijo, R.Y.; Loosemore, M.; Wang, S.; Gu, Y.; Li, H. Identifying critical factors influencing the safety of Chinese
subway construction projects. Eng. Constr. Archit. Manag. 2021, 28, 1863–1886. [CrossRef]

26. Yue, Y.; Xiahou, X.; Li, Q. Critical Factors of Promoting Design for Safety in China’s Subway Engineering Industry. Int. J. Environ.
Res. Public Health 2020, 17, 3373. [CrossRef]

27. Wu, H.; Wang, J. Assessment of Waterlogging Risk in the Deep Foundation Pit Projects Based on Projection Pursuit Model.
Adv. Civ. Eng. 2020, 2020, 2569531. [CrossRef]

28. Liu, X.; Chen, H. Integrated assessment of ecological risk for multi-hazards in Guangdong province in southeastern China.
Geomat. Nat. Hazards Risk 2019, 10, 2069–2093. [CrossRef]

29. Xia, C.; Nie, G.; Li, H.; Fan, X.; Yang, R. Study on the seismic lethal level of buildings and seismic disaster risk in Guangzhou,
China. Geomat. Nat. Hazards Risk 2022, 13, 800–829. [CrossRef]

30. Zhou, M.; Kuang, Y.; Ruan, Z.; Xie, M. Geospatial modeling of the tropical cyclone risk in the Guangdong Province, China.
Geomat. Nat. Hazards Risk 2021, 12, 2931–2955. [CrossRef]

31. Wu, H.; Wang, J. A Method for Prediction of Waterlogging Economic Losses in a Subway Station Project. Mathematics 2021,
9, 1421. [CrossRef]

32. Zhang, H.; Yu, T. Prediction of subgrade elastic moduli in different seasons based on BP neural network technology. Road Mater.
Pavement Des. 2018, 19, 271–288. [CrossRef]

33. Ahmadi, H.; Ahmadi, H.; Baghban, A. Modeling vaporization enthalpy of pure hydrocarbons and petroleum fractions using
LSSVM approach. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 569–576. [CrossRef]

34. Bujang, M.A.; Omar, E.D.; Baharum, N.A. A Review on Sample Size Determination for Cronbach’s Alpha Test: A Simple Guide
for Researchers. Malays. J. Med. Sci. 2018, 25, 85–99. [CrossRef]

35. Salemi, A.; Mikaeil, R.; Haghshenas, S.S. Integration of Finite Difference Method and Genetic Algorithm to Seismic analysis of
Circular Shallow Tunnels (Case Study: Tabriz Urban Railway Tunnels). KSCE J. Civ. Eng. 2018, 22, 1978–1990. [CrossRef]

36. Mikaeil, R.; Haghshenas, S.S.; Sedaghati, Z. Geotechnical risk evaluation of tunneling projects using optimization techniques
(case study: The second part of Emamzade Hashem tunnel). Nat. Hazards 2019, 97, 1099–1113. [CrossRef]

37. Huang, G.; Huang, G.-B.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48.
[CrossRef]

38. Verma, A.K.; Sirvaiya, A. Comparative analysis of intelligent models for prediction of Langmuir constants for CO2 adsorption of
Gondwana coals in India. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 97–109. [CrossRef]

http://doi.org/10.1007/s10706-020-01213-9
http://doi.org/10.1016/j.ins.2012.01.005
http://doi.org/10.3390/ma13132986
http://doi.org/10.1587/transinf.2018EDP7132
http://doi.org/10.1016/j.enconman.2009.07.015
http://doi.org/10.1007/s12517-015-2115-x
http://doi.org/10.1016/j.ssci.2015.10.009
http://doi.org/10.1016/j.ssci.2016.10.001
http://doi.org/10.1108/ECAM-07-2020-0525
http://doi.org/10.3390/ijerph17103373
http://doi.org/10.1155/2020/2569531
http://doi.org/10.1080/19475705.2019.1680450
http://doi.org/10.1080/19475705.2022.2041109
http://doi.org/10.1080/19475705.2021.1972046
http://doi.org/10.3390/math9121421
http://doi.org/10.1080/14680629.2016.1259122
http://doi.org/10.1080/15567036.2019.1587103
http://doi.org/10.21315/mjms2018.25.6.9
http://doi.org/10.1007/s12205-017-2039-y
http://doi.org/10.1007/s11069-019-03688-z
http://doi.org/10.1016/j.neunet.2014.10.001
http://doi.org/10.1007/s40948-016-0025-3

	Introduction 
	Related Work 
	Early Warning Index System 
	Risk Identification Based on Accident Causation Theory 
	Early Warning Index System 
	Acquisition Methods of the Index Data 
	Classification of Early Warning Levels 

	The Early Warning Model 
	Introduction to QPSO 
	Introduction to the LSSVM 
	The Proposed Prediction Model 

	Case Analysis 
	Project Overview and Data Acquisition 
	Data Preprocessing and Correlation Analysis 
	Early Warning of Construction Safety Risks 
	Reliability Analysis of Early Warning Results 

	Discussion 
	Computational Performance of Different Optimization Algorithms 
	Computational Performance of Different Prediction Methods 
	The Influence of the Different Ratios of Training Sets and Test Sets 

	Conclusions 
	References

