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Abstract: Deep reinforcement learning-based approaches to mapless navigation have relied on the
distance to the goal state being known a priori or that the distance to the goal can be obtained at each
timestep. In artificial or simulated environments, obtaining the distance to the goal is considered
a trivial task. Still, when applied to a real-world scenario, the distance must be obtained through
complex localization techniques, and the use of localization techniques increases the complexity of
the agent design. However, for agents navigating in unknown environments, using information
about the goal to either form part of the state representation or act as the reward mechanism is usually
expensive for both the robot design and for computing costs. This paper proposes using a pre-trained
Siamese convolutional neural network (SCNN) to estimate the distance between an agent and its
goal, thus enabling agents equipped with onboard cameras to navigate an unknown environment
without needing localization sensors. This technique can be applied to environments where a goal
location may be unknown, and the only information regarding the goal maybe a description of the
goal state. Our experiments show that the Siamese network can learn the distance between the agent
and its goal using relatively few training samples. Therefore, it is useful for mapless navigation using
only visual state information and reduces the need for complex localization techniques.

Keywords: few-shot learning; mapless navigation; reinforcement learning; Siamese convolutional
neural networks; mobile robot

1. Introduction

Artificial Intelligence seeks to answer the question of how an agent can perceive,
understand, predict and manipulate an environment it is placed in [1]. An autonomous or
mapless navigation system, which implicitly performs localization and mapping, equips
the mobile robot to determine its actual position within the reference frame environment
and autonomously move to the desired target position [2]. However, the traditional
navigation approach consists of algorithms that include simultaneous localization and
mapping (SLAM), path planning and motion control, as highlighted in References [2,3].
Moreover, these methods rely on high-precision global maps or positioning systems, such as
GPS, with high limitations in terms of visual capability in unknown environments. Research
in the application of mapless navigation to many dynamic real-world scenarios has attracted
attention from the research community [4], with more diverse approaches to finding robust
alternative solutions being proposed. Machine learning is a sub-field of artificial intelligence
(AI) and is the study of theories and algorithms that mimic how the brain learns. Machine
learning (ML) allows machines to mimic intelligence without explicit rules defining their
behavior [5]. At its core, machine learning is a function approximation. The field of ML is
vast and ever growing but can be broadly divided into three sections, namely:
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• Supervised learning methods are concerned with inferring a function from input–
output pairs. The learning exhibited by these methods is achieved by optimizing a
loss function computed from the output produced from the model and the expected
output or ground truth.

• Unsupervised learning techniques attempt to learn the hidden structure present in
training data without the use of an explicit error/reward signal. These techniques
attempt to learn the structure naturally present in the training set and achieve this
without an error or reward signal.

• Reinforcement learning (RL) attempts to learn a policy, that maps percepts to actions
by interaction with the environment. The RL algorithms are inspired by behavioral
psychology and attempt to answer the question of how an agent placed in an environ-
ment can learn to behave optimally.

For a machine learning algorithm to generalize beyond the data it was trained on, the
number of data samples used for training must be relatively large. Few-shot learning aims
at learning models in environments where large datasets are not readily available because
of privacy, safety or ethical concerns [6]. Supervised agents receive training information
in the form [x, y], where x denotes a vector of features that describes the problem being
solved by the agent. The variable y denotes the ground truth for the observed values in x.
Similarly, the following also applies:

• For an agent tasked with classifying images, the vector x consists of pixel intensities.
The ground truth is a discrete value representing the class that the image belongs to.

• An agent classifying bank transactions as fraudulent or not, uses data related to
transactions to form x. The ground truth y for each x is either a 1, meaning that
the transaction data in x represents a fraudulent transaction or a 0, meaning that x
represents a valid transaction.

• A robot navigating in an environment makes use of various sensor readings to form x.
In the case of the robot navigating, defining a ground-truth becomes challenging.

An agents success or failure rate at a given task is highly related to how well the
task is described using the feature vector. When the task to be performed by the agent
is not governed by a set of rules or in cases when the construction of such rules are
infeasible, methods are required that learn a function mapping x to y through interaction
with the environment. Reinforcement learning techniques are able to learn mapping
functions directly from the environment the agent is placed in by performing actions in the
environment and observing their outcomes. An agent placed in an unknown environment
is faced with decision making under uncertainty and the sequential nature of states it
observes. The uncertainty of moving between states can be modeled using a Markov Chain
(MC). A Markov Decision Process (MDP) is a Markov Chain (MC) with external actions
(A) and an agent that can act in the environment [7]. A Markov Decision Process (MDP) is
a controlled Markov chain described by the 5-tuple (S, A, T, p, r) [8]. Where in this case
the parameters

• S denotes the set of states observable in the environment;
• A denotes the set of possible actions that can be performed;
• T is the set of time-steps in which decisions must be made. When a set of goal states

exists the process terminates whenever these states are reached;
• p denotes the probability of transitioning from one state to another, and
• r denotes the reward function.

Reinforcement learning methods are applicable when the agent does not know the
transition and reward functions in advance [8]. Reinforcement learning differs from the
traditional learning paradigms such as, instead of learning mapping functions by observing
large samples of pre-labeled examples, the objective is to learn behavioral policies through
interaction with the environment [9,10]. The learner is not told which actions to take but
must learn which actions yield the most reward by selecting an action and observing the
reward [11]. In the reinforcement learning setting, an agent is placed in an environment
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where it can perform a set of actions A = [a1; a2; a3; ...; ak] where k denotes the number
of actions possible in the environment. At each timestep t the agent observes the current
state of the environment st, selects an action at and receives a reward rt that indicates the
desirability of the action taken [12]. The task of the agent is to perform actions, observe
the resulting states and rewards and learn a control policy through trial and error, which
maximizes the agent’s reward over time [12,13]. Figure 1 illustrates an agent interacting
with its environment. The agent observes the state st of the environment, performs an
action at, and receives a reward rt.

Figure 1. An agent interacting with its environment.

The value of starting at an arbitrary initial state st and following a policy π from that
state onward is defined as:

Vπ(st) =
∞

∑
i=0

γirt+i (1)

A Siamese convolutional neural network (SCNN) is a class of neural network architec-
ture that learns a target function that maps inputs into an output space where a distance
metric approximates the semantic distance between the inputs in the embedded feature
space [14]. The distance measure may be the Euclidean distance, Manhattan distance,
cosine similarity, or Canberra distance [15]. In this study, we make use of the Euclidean
distance between the two embedding. Semantic distance is a term often used in natural
language processing to refer to the similarity or likeness of two inputs. Given two inputs x1
and x2, we expect that the semantic distance between the two should be small if x1 and x2
are similar and large if otherwise. When using SCNNs, this notion of distance is encoded in
the output layer which measures the similarity between the two feature vectors produced
from the convolutional layers. Each input x to the Siamese neural network is fed into a
separate but identical convolutional network, making the two networks the same ensures
that if x1 and x2 are from the same class they cannot be placed far away from one another
in the output space [16]. The Siamese CNN is depicted in Figure 2.

Figure 2. Siamese convolutional neural network.
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Given two images I1 and I2, and a model M, parametrized by a set of weight and bi-
ases θ. The SCNN produces the distance between feature vectors according to Equation (2),
where f (I1) and f (I2) are the outputs produced from the convolutional layers of the SCNN.

M(θ, I1, I2) = || f (I1)− f (I2)||1 (2)

where,

• θ represents the SCNN weights and biases;
• I1 and I2 represent the goal and state images, respectively;
• f denotes the convolutional feature encodings obtained from the SCNN.

Let Y = 0 when inputs I1 and I2 represent the same class and Y = 1 otherwise. The
SCNN attempts to learn a function such that M(θ, I1, I2) is small when Y = 0 and large
when Y = 1.

Navigation in an environment is a fundamental capability of intelligent organisms [7].
This study aims to demonstrate how a mobile agent equipped with an onboard camera and
a pre-trained Siamese convolutional neural network, can navigate from an arbitrary start
state to a goal state. We assume that the goal/goal state is provided to the agent beforehand.
In Equation (1) the sequence of rewards r is generated by starting at a state s ∈ S and
following policy π until the episode terminates [13]. This value corresponds to the expected
gain according to the specified criterion [8]. In this article we explore the use of a SCNN
model to estimate a reward function that is able to guide a mobile robot equipped with an
onboard camera from a start state to a goal state. For mapless navigation, a reward function
defined by the distance between the agent and its goal is rt =

1
dist(st ,G)

. Substituting the
new definition of reward into the definition of a states value, we obtain a value estimate
that takes into account the distance between the agent and its goal (Equation (3)).

Vπ(st) =
∞

∑
i=0

γi 1
dist(st, G) t+i

(3)

where,

• π represents a policy; a function mapping states to actions;
• Vπ(st) denotes the agents value estimate; how much reward can be expected from

starting in state st and following policy π;
• dist(st, G) represents the Euclidean distance between the current state and the goal state.

Equation (3) provides a value estimate that is large when the distance between the
agent and its goal is small, and small as the agent moves further away from its goal; this
definition of value assumes that the distance between the agent and its goal dist(st, G) can
be found at every timestep t. In this work, we demonstrate modifying the value estimate
by replacing the reward estimate with the similarity estimate produced in Equation (2)
to obtain Equation (4). This provides us with a ‘distance’ estimate that does not rely on
localization techniques, and it is accessible at every t and can guide our agent towards its
goal G.

Vπ(st) =
∞

∑
i=0

γi 1
M(θ, st, G) t+i

(4)

The main technical contributions of this paper can be summarized as follows:

• Identify a reformulation of an agent’s value function that takes into account the
distance between the agent and its goal;

• Propose the use of a SCNN to estimate the distance between an agent and its goal;
• We demonstrate that the distance function can used to guide the agent towards its goal;
• We demonstrate that given a relatively small sample size for training, the Siamese

convolutional neural network is able to outperform state-of-the-art convolutional
neural networks pre-trained on large samples with complex architectures. In this
study, we make use of ResNet18 and a KNN baseline model for comparison.
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The rest of the article is structured as follows: Section 2 provides an overview of the
recent related work from the mapless navigation literature. In Section 3, a discussion of the
materials and methods used in this study is presented. A summary of the experimental
results and discussion of the study findings is discussed in Section 4. Finally, the concluding
remarks and future research directions are presented in Section 5.

2. Related work

A fundamental capability of robots that operate in the real world is obstacle avoidance.
Obstacle avoidance is typically tackled by approaches based on ranging sensors [17,18].
In Reference [17], the authors proposed a dueling deep double Q-network for obstacle
avoidance in indoor environments using only a monocular camera; their approach takes as
input an RGB image and outputs linear and angular steering commands. The researchers
designed their reward signal to ensure that the robot moves/explores as fast as possible, by
penalizing the agent for simply rotating on the spot. This demonstrates how agent behavior
can be affected by both the state representation and the reward signal.

In their paper, ref. [19] make use of 174,554 images to train a convolutional neural
network to output one of six steering instructions. The researchers report that the network
is able to guide the agent, namely a micro aerial vehicle (MAV) from a start state to a goal
state 70–80 percent of the time. This demonstrates that supervised methods are able to be
applied to mapless navigation tasks at the cost of large amounts of training data needed to
fine-tune a pre-trained CNN. Furthermore, the authors demonstrated how the navigation
task can be solved using a supervised learning approach.

Departing from traditional supervised learning techniques for navigation, Refer-
ence [20] make use of fuzzy logic rules combined with tabular Q learning to solve the
task of mapless navigation in static environments. The authors encode domain expertise
into the design of their agent in the form of fuzzy logic rules that guide navigation in the
environment. Inputs to the model are the distance to the agent’s goal and the angle between
the agent and goal, the model then outputs steering angle and velocity. The authors in [20]
used the number of episodes before the agent finds the goal to measure the performance of
their agent.

Learning from exploration eliminates the need for complex pre-trained models that
require large amounts of training data. The authors in [21] used a deep Q-network to
demonstrate how machine learning can be applied to learn to control a robotic manipulator
from visual input only. The DQN requires no prior knowledge aside from the number of
actions available to the agent [21]. The authors made use of the distance change between
the agent’s end-effector and the goal as reward signal at each time step t.

To solve the mapless navigation task, the authors of [22] used sensor fusion, in which
laser scan readings are combined with RGB-D images. The inputs to their Asynchronous
Advantage Actor-Critic network are the last four sensor values and the orientation to the
agent’s goal. Training of their agent is done in simulation for 20,000 episodes and the use
of a turtlebot to test their algorithm in a real-world setting.

In [23], the authors employed the concepts of a deep Q network to solve the mapless
navigation task. The authors pre-train a model consisting of two convolutional layers
followed by two fully connected layers in simulation and transfer the model to a real
robot. The agent was trained for 50,000 episodes in a simulation using only images as state
representation. The researchers verify the feasibility of training deep reinforcement learning
agents in simulation and transferring it to real-world robots for autonomous navigation in
the environments that it was not originally trained on.

Visual navigation is the problem of navigating in an environment using only camera
input. In their paper, the authors of [24] used a modified version of the Actor-Critic
algorithm to demonstrate autonomous indoor navigation. Their network was designed to
improve the visual navigation task by incorporating image segmentation and depth map
prediction. The researchers were able to speed up training by using pre-trained networks
to achieve these tasks. At a given time step, the reward received by the agent in [24] is
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defined as the pixel difference between the observed states at st and st+1. To solve the
problem of partial observability, the agent makes use of a long short-term memory (LSTM)
cell and demonstrate that this out-performs stacking of recent frames. The authors used
20,000 images from the SUNCG dataset to pre-train their network over the course of two
days. Similarly, the authors in [25] proposed the implementation of a few-shot adaptation of
visual navigation skills to new observations using meta-learning. Additionally, the authors
introduced a learning algorithm that enables rapid adaptation to new sensor configurations
or target objects with a few shots. Notably, their results showed that their approach was
able to adapt the learning navigation policy with only three shots for unseen situations
using different target colors.

In [10], an Actor-Critic network which accepts as input information regarding the
current state of the agent and the goal was implemented. The researchers concatenated two
convolutional feature vectors using the Hadamard product. The researchers demonstrated
using a car navigating in a city as their agent. More so, that combination of state information
with goal information allows the agent to learn near-optimal navigation policies. The state
representation of the agent at a time step t is defined by a 256 by 651 gray scale image. The
autonomous car agent in [10] can perform three actions in its environment, namely, turn
left, move forward, and turn right. The authors focused on multigoal learning, and limit
their training and testing to the CARLA simulation environment.

To navigate in an environment without a map, Reference [26] make use of an LSTM-
based A2C network which accepts as input 30 laser scan readings combined with the
distance and angle to the agent’s goal. The authors demonstrated that the use of an LSTM
network enables state-of-the-art navigation and generalization in the partially observable
navigation setting. The authors of [26] make use of 2D simulators to train their model in
several different environments before placing their learned network parameters onto a
real robot.

To solve the problem of goal-driven mapless navigation in both aerial and water
environments, Reference [27] proposed two Actor-Critic-based network architectures. The
networks proposed accept as input 20 range readings, linear velocity of the agent, agent’s
altitude, yaw, the agent’s relative position with regards to the target/goal and the agent’s
relative angle with regards to the goal. The researchers make use of ROS and Gazebo to train
their model in two environments. The agent is trained for 1000 episodes and 2500 episodes,
respectively. In Reference [28] the authors make use of A Deep Deterministic Policy
Gradient network that maps depth images to actions. The authors highlight that to achieve
goal-oriented navigation, the state information st must be combined with information
about the goal.

Reviewing the latest research done on mapless navigation, it becomes apparent that
the distance between an agent and its goal plays a very important role in the outcome of
the navigation task, this distance is not always known. Supervised learning approaches
to navigation as demonstrated by [19] show that using enough data samples, an agent is
able to learn the policy mapping visual input to steering commands. The approach taken is
80 percent accurate but requires large amounts of training data. A Deep Neural Network
(DNN) is a universal function approximator that can approximate any function given
enough data. In their paper, [20] demonstrate how the task can be solved using tabular Q-
Learning, which is able to approximate the policy mapping states to actions using a lookup
table approach. A state is encountered and the action with the highest Q value is selected
and performed. When using tabular Q-Learning, policies that are able to be learnt are not
as expressive as using a DQN and it imposes the limitation that the state representation st
needs to be in a form that can fit into a table. The authors of [21] demonstrate how visual
input can be processed using a DQN to move a robotic manipulator. Along with the state
representation st, it becomes apparent that an agent’s behavior may also be modified by
changing the representation of the reward signal rt. In the mapless navigation setting the
reward rt is usually a function of the agent and its goal [10,20–22,26]. In this article we
demonstrate how the need for many data samples demonstrating the mapless navigation
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task can be removed and learned by the agent through trial and error. We show that using
a relatively small dataset a reward function can be learned that rewards the agent for states
close to the goal and penalizes states far from the goal.

3. Materials and Methods

Mapless navigation in the domain of robotics refers to navigation in an unknown
environment without the use of a predefined model of the environment. Mapless navigation
can include object avoidance and a goal state. The former serves to navigate an agent in
an environment while avoiding collision with obstacles in the environment. Mapless
navigation with the inclusion of a goal state aims to navigate an agent in an environment
from an arbitrary start state to the goal state. Traditional supervised learning methods have
been applied to solve the problem but require large amounts of training data to generalize
unseen environments. Recently, few-shot learning method has been proposed to solve the
problem of data deficiency. Few-shot learning allows for function approximation from
fewer examples, in this work we propose the use of a Siamese convolutional neural network
that makes use of two identical neural networks to learn feature embedding. Reinforcement-
learning-based approaches to mapless navigation have relied on the distance to the goal
state being known a priori, or that the distance to the goal can be obtained at each timestep.
In simulated environments, obtaining the distance to the goal is a trivial task but when
applied to the real-world the distance to the goal must be obtained through complex
localization techniques. The use of localization techniques increases the complexity of the
agent’s design. For agents navigating in unknown environments, using information about
the goal to either form part of the state representation or act as the reward mechanism
is expensive in terms of robot design and computing cost. In this work, we make use of
a pre-trained Siamese convolutional neural network to navigate our agent from a start
to goal state. We demonstrate that the Siamese network is able to learn the ‘distance’
between the agent and its goal using relatively few samples for training, allowing for
mapless navigation using only visual state information thus reducing the need for complex
localization techniques.

3.1. Data Collection

For training of the proposed SCNN we use a dataset of 89 images. Our network is
trained using goal-background pairs. Examples of samples from the training data are
shown in Figures 3–5.

Figure 3. Samples labelled ‘goal’.

The samples shown in Figure 3 belong to the ‘goal’ class as a result of having the goal
present in the frame.
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Figure 4. Samples labeled ‘background’.

Figure 5. The agent’s goal state.

We apply up–down flips combined with left–right flips and 45 degree rotations to
increase our sample size. Example augmentations are shown in Figure 6.

Figure 6. Image augmentations for three example images.

3.2. Proposed Solution Architecture

The Siamese convolutional network is a convolutional neural network that accepts
two inputs and outputs a dissimilarity score for the two inputs. In our case the two inputs
during training are the ‘background’ and ‘goal’ images. We used the dissimilarity score
to replace dist(st, G). We set the ground truth for images belonging to the same class
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as 0 and 1 for images from different classes. We made use of transfer learning to test a
RESNET18-based Siamese network. The output layer is modified to provide a dissimilarity
estimate by replacing the final layer with a fully connected layer that outputs a 100-D
vector. We also tested our own custom network that consists of four convolutional layers
and one max pooling layer. We trained our Siamese networks using a dataset of 89 images
using the contrastive loss. For our custom network we used a constant learning rate of
0.0001 and a batch size of 2 for 120 epochs. For the pre-trained networks we made use
of a cyclical learning rate. We fine-tuned the ResNet18 model by freezing all the layers
and only allowing parameter updates in the final layer, the training and validation curves
are shown in Figure 9. Using ResNet18 we also fine-tuned the network end-to-end by
allowing parameter updates through the entire network, the results are shown in Figure 10.
To provide dissimilarity estimates, the network is modified to output a 100-D feature
vector and then calculates the Euclidean distance between the two encodings. We started
training with a learning rate of 0.0001 decreasing the learning rate by a factor of 0.1 every
50 episodes. After 100 epochs the loss was oscillating around a single value and we stopped
the training.

During training the Siamese network calculates the distance between the convolutional
feature encodings produced by each image, namely, the goal and state. This encodes a
distance measure into the calculation of the reward. The DQN accepts the current state st
and provides Q-value estimates for each possible move. The possible moves are forward,
rotate left, rotate right. The DQN outputs three values corresponding to each possible
action, namely, Q(st, left), Q(st, forward) and Q(st, right). We use an epsilon-greedy action
selection strategy with an epsilon of 0.6 during training to allow the agent to search its
environment. The epsilon-greedy strategy ensure that the agent does not just select the
action corresponding to the maximum Q-value for each state, an epsilon of 0.6 means that
the agent will choose a random action with probability 0.6. Our DQN consists of two
convolutional layers, each producing 16 and 32 feature maps, respectively.

The physical agent is implemented using a Raspberry Pi 4 micro controller with 2 GB
of RAM. The agent is equipped with two DC motors which are controlled L298N motor
controller circuit. We make use of two ultrasonic range sensors used to detect when the
agent is close to obstacles, the range readings do not form part of the state representation
st. The state st is provided by a Microsoft HD Webcam. The physical agent can be seen
in Figure 7. All coding necessary for controlling of motors and implementation of deep
Q-network and Siamese convolutional neural network is implemented using Python.

Figure 7. Physical agent implementation.

The proposed solution architecture is shown in Figure 8, it consists of a pre-trained
SCNN that estimates the reward r obtained by our mobile agent. The reward estimates
combined with the Q-Value estimates produced by the DQN can be used to guide our
mobile agent towards its goal state.
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Figure 8. Proposed solution architecture.

Our custom SCNN architecture, shown in Figure 2 forms the reward mechanism
of our agent. The custom SCNN is used to approximate the distance between the agent
and its goal, dist(st, G). The DQN network hyper-parameters are summarized in Table 1.
The SCNN architecture is summarized in Table 2. The DQN architecture is summarized
in Table 3.

Table 1. DQN hyperparameters.

Parameter Value

gamma 0.999
epsilon 0.6
alpha 0.0001

batch size 4
target network update 10
max steps per epoch 200

Table 2. SCNN architecture.

Layer Input Channels Output Channels Window/Kernel Size Padding

Conv2D 3 16 3 True
Conv2D 16 32 3 True

MaxPool2D 32 32 2 False
Conv2D 32 16 3 False
Conv2D 16 8 3 False

Table 3. DQN architecture.

Layer Input Channels Output Channels Window/Kernel Size Padding

Conv2D 3 16 5
Conv2D 16 32 5
Linear 32768 3 n/a

4. Results and Discussion

In this section, we present the results from training of our proposed solution. Figure 9
shows the training (red) and validation (blue) error over epoch.
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Figure 9. Learning curves when finetuning ResNet18 as feature extractor.

The loss over epoch when fine tuning the ResNet18-based network using our dataset
is shown in Figure 10. We allowed parameter updates in all the layers of the network,
fine-tuning the entire network with our dataset. The learning curves show that the dataset
is not sufficiet for training a large network such as ResNet18. We stopped the training loop
after 100 epochs.

Figure 10. Learning curves when training ResNet18-based SCNN.

We trained our own custom network for 120 epochs, the learning curves are shown in
Figure 11. After 80 epochs the gap between the learning curves becomes greater, the model
was starting to overfit the training data.

Figure 11. Loss over epoch for custom network.

We made use of a threshold value to ensure that states that had the goal present but
were far from the goal did not receive any reward. To obtain the optimal value, we tried
various values and observed the accuracy score. The results are shown in Table 4. The
Siamese network accepts two input images, the network produces a dissimilarity score, the
values that fall below the threshold value are predicted as 0 and those that are above the
threshold are predicted as 1.
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Table 4. Accuracy scores for various threshold values.

Score Threshold Classification Accuracy

0.1 49.53
0.2 49.53
0.3 49.53
0.4 49.53
0.5 49.53
0.6 76
0.7 52.8
0.8 50.47
0.9 50.47
1.0 50.47

In our case the problem is a regression task and not a classification problem. We make
use of classification accuracy and MSE to select a model for final use. The MSE measures
how ‘tight’ predictions are to the ground truth, in our case we require a model that produces
scores close to zero for states that are very similar and scores close to 1 for states that are
very dissimilar. Results of testing the network when no goal is present in the state are
shown in Figure 12. The image on the right is the agent’s goal, the image on the left is the
current state the agent is perceiving through its camera.

Figure 12 shows that using our dataset and SCNN architecture, our agent is able to
learn a mapping that resembles a distance function, that is the agent that receives less
reward for a state that is far away and more reward for states that are closer to its goal.
A threshold value (Table 4) is used to ensure that the agent does not receive rewards for
states where the goal is present in the field of view but far away in terms of distance.
Table 5 presents the training time obtained in the cause of the experiment for the different
architectures used in this study.

Figure 12. Dissimilarity scores for states at various distances from goal.

Table 5. Training time for architectures used in this study.

Algorithm Average Training Time (s)

SCNN with ResNet18 base (layers frozen) 75.046
SCNN with ResNet18 base 371.412
Custom SCNN architecture 9.6437278
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4.1. Discussion

We have demonstrated how a Siamese convolutional neural network (SCNN) can be
used to estimate the distance between a mobile agent and its goal. The agent is equipped
with an onboard camera to capture frames. The results demonstrate that using a relatively
small sample of goal–background pairs we can learn a similarity function, this function
can then be used to estimate the similarity between an agents current state st and its goal.
Figures 9 and 10 show the learning curves when using pre-trained models to estimate
rewards, Figure 11 demonstrates that with the given data samples a network with fewer
parameters is able to learn the function well. Figure 12 shows reward estimates when
the agent is provided with its goal state and must estimate reward for states at varying
distances from the goal; demonstrating that the learned reward function is able to encode
a notion of distance. Table 4 displays classification accuracy scores for various threshold
values from 0.1 to 1.0. The inclusion of a threshold value allows the agent to control how
similar states must be to the goal to receive reward. States far away from the goal receive
less reward than states closer to the goal. We use a Raspberry Pi 4 to implement a physical
agent and show that using the SCNN architecture the agent is able to navigate towards
its goal.

In this article we have demonstrated that the reward mechanism rt can be replaced by
1

dist(st ,G)
and that the distance between the agent and its goal (dist(st, G)) can be estimated

using a neural network architecture that is able to learn from fewer samples. In our work,
we have used a modified form of the value of a state st following a policy π (Equation (1))
to guide our agent towards its goal. We have shown that the use of a threshold value can
be used to control how similar a state must be to its goal in order to receive reward.

4.2. Limitations of the Study

Our visual approach to navigation is able to guide an agent from a start state to a
goal state using only visual input obtained from an onboard camera. The performance of
a visual approach may be affected by obstacles that may be present in the environment.
To detect obstacles in the agent’s environment, we have made use of ultrasonic range finders
to identify when our agent is close to obstacles. As a result of training the agent in the
real-world setting, we use a threshold value for the distance readings to avoid physically
damaging our agent when it collides with obstacles. We attempted to demonstrate a
simpler approach to mapless navigation using only visual sensory input, we have kept our
agent design simple and relatively inexpensive. We experienced some difficulty with the
longevity of the motors we decided to use to control our agent, this may be handled by
training in simulation and transferring learned knowledge to our physical agent, however,
a trade-off exists because transferring knowledge from simulation to the real world is
challenging. Our agent may receive reward for states in which the goal is present, we
combat this by applying a threshold to the similarity score produced by our SCNN, which
is used ensure the agent is rewarded for states that are close. Consider cases in which the
agent may be very close to the goal but it may be facing in an opposite direction and never
obtain a frame where the goal is present. Our agent has been trained for indoor navigation
and due to resource constraints we have not investigated outdoor environments and tested
whether our agent is able to navigate in unseen environments. This may be alleviated by
increasing the sample used for training and providing a more diverse set of examples from
varying environment, both indoor and outdoor.

5. Conclusions and Future Work

Mapless navigation refers to navigation of an agent in an environment without a
model of the environment. The distance to the goal in a mapless navigation task is used to
inform the agent’s navigation. The agent can use this distance measure to select actions
that bring it closer towards its goal. In simulated environments, obtaining this distance is
trivial. In real-world settings this distance is found using localization techniques such as
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LIDAR and GPS. For agents in the real world not equipped with localization sensors, the
mapless navigation task cannot rely on this distance measure to select actions.

In this paper, we have demonstrated how a pre-trained SCNN can be used to estimate
the distance between an agent and its goal, enabling agents equipped with onboard cameras
to navigate in an unknown environment without the need for localization sensors. This
technique can be applied to environments where the location of a goal may be anonymous,
and the only information regarding the goal may be a description of the goal state. Examples
of such environments are:

• An agent tasked with locating a bomb may not know where the bomb is but may have
some examples of what a bomb looks like;

• An agent tasked with helping an elderly person navigate their environment may not
know where all the obstacles/items are located around it but it has a description given
to it of what it needs to find;

• An agent tasked with guarding a premises from intruders may not know where the
intruder is located but given examples of previous intrusions, it can locate and detain
the intruder.

As future research perspectives, it is worth noting that our agent was able to make in-
formed decisions that bring it closer to its goal using the SCNN. Therefore, we would like to
highlight here some promising areas of future improvement upon our agent design, namely:

• LSTM layers in the DQN architecture would enable a sort of memory for an agent and
would make more of the environment ‘visible’ to the agent at each t. The inclusion of
LSTM layers would increase the complexity of the network and may increase time
needed to learn the task.

• Using visual input as a state representation can be difficult when the goal is blocked
by obstacles in the environment and is not visible to the agent. In future works we
would like to incorporate more information into st to overcome the problem of partial
observable environments.

• In this article the two networks used are treated separately. In future work, the
networks may be combined and their parameters updated as one. This would enable
learning the task ‘on-the-fly’.

• In this work, we have made use of a pre-trained SCNN which may still require effort
to collect a few samples of data for pre-training. We have taken a few-shot learning
approach, in future works one-shot and zero-shot approaches can be explored to
reduce the need for a dataset for pre-training.

• We make use of the Euclidean distance to calculate the distance between the embed-
ding produced by the SCNN. In future we would like to explore the effects of various
distance metrics on the navigation task.

• Imitation learning is a technique to learn models from a human teacher. In future
works on mapless navigation we would like to explore a few-shot variant of imitation
learning which is able to learn navigation policies from a single demonstration of
navigation in an environment.

• The design of our agent was kept simple to demonstrate cost-effective mapless naviga-
tion in indoor environments. This may be enhanced to include outdoor environments
with varying terrain and conditions by incorporating larger wheels with a track or
tyre and stronger motors.

• The current study focused primarily on the DQN algorithm as a result of its relatively
simple and intuitive nature. Since its inception, the DQN has been improved upon
and as such we would like to test how our method performs when used with other
algorithms from the RL literature.

• Multi-agent systems make use of multiple agents working together to achieve a goal.
Multiple agents contributing towards the same goal may be useful in environments
that are large or complex to navigate or where there are multiple goals to achieve.
In future works we would like to incorporate mobile robots with drones. The mobile
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robot would observe the states obtainable from the ground and the drones obtained
from the air. The drone would also allow for more of the state to be visible to the
ground agent at the same time.
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