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Abstract: Predictive Maintenance (PdM) is the newest strategy for maintenance management in
industrial contexts. It aims to predict the occurrence of a failure to minimize unexpected downtimes
and maximize the useful life of components. In data-driven approaches, PdM makes use of Machine
Learning (ML) algorithms to extract relevant features from signals, identify and classify possible
faults (diagnostics), and predict the components’ remaining useful life (prognostics). The major
challenge lies in the high complexity of industrial plants, where both operational conditions change
over time and a large number of unknown modes occur. A solution to this problem is offered by
novelty detection, where a representation of the machinery normal operating state is learned and
compared with online measurements to identify new operating conditions. In this paper, a systematic
study of autoencoder-based methods for novelty detection is conducted. We introduce an architecture
template, which includes a classification layer to detect and separate the operative conditions, and
a localizer for identifying the most influencing signals. Four implementations, with different deep
learning models, are described and used to evaluate the approach on data collected from a test rig.
The evaluation shows the effectiveness of the architecture and that the autoencoders outperform the
current baselines.

Keywords: novelty detection; anomaly detection; autoencoder; predictive maintenance; Industry 4.0

1. Introduction

Malfunctions in manufacturing plant equipment may cause unexpected production
stops, which are associated with huge costs, including the loss of production and time, the
loss of effort to the identification of the failure’s cause and repair, the waste of those products
produced right after bringing back the system before normal operations due to low quality,
costs of repairs, and deterioration of equipment [1]. In other words, maintenance directly
impacts productivity since the failure of a component may cause unplanned production
downtimes, the duration of which may vary depending on the type of needed action and
the availability of spare parts. Besides, an item not working correctly may compromise the
output quality of a production system and the safety of the working environment.

The digitalization of current manufacturing industries offers a remarkable opportunity
for system health management [2]. Machinery is equipped with sensors able to collect data
at high frequencies; machinery in the same shop floor communicate and are connected to a
central server, where the data of machinery installed in other plants can converge. In other
words, Industry 4.0 technologies, like Industrial IoT, cloud computing, edge computing,
and Big Data Analytics, enable the collection of a large amount of data from online condition
monitoring systems. The knowledge of the exact assets’ health condition in a given time
instant has become an essential driver in maintenance management, since it provides the
opportunity of setting efficient, just-in-time, and just-right maintenance strategies, resulting
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in the maximization of the production profits and the minimization of all cost and losses,
including asset ones [3]. Smart factories implementing evolute maintenance strategies
show a 25–30% decrease in maintenance activities, a 35–45% breakdown, a 20–25% increase
in production, and an investment return [4].

The massive amount of collected data contains valuable information and knowl-
edge supporting condition-based maintenance and health monitoring [5]. In this con-
text, the transformation of raw data into knowledge is usually referred to as Prognostics
and Health Management (PHM), which uses Big Data Analytics and Machine Learning
(ML) algorithms to perform fault diagnostics and prognostics. In real scenarios, an
Industrial PHM system should [6]:

1. Include fault detection algorithms that can detect anomalies in the streaming data;
2. Include fault diagnosis algorithms that can classify the detected changes;
3. Consider incremental learning to deal with unlabeled datasets and any novel operat-

ing conditions of the machinery.

In the last few years, a large number of approaches (partially reviewed in the related
work section) have been proposed to deal with fault detection and diagnosis via the
experimentation of supervised techniques for anomaly detection and classification. Only
recently have aspects related to the concept drift and the concept evolution that may occur
in streaming data acquired a paramount importance in PHM. Indeed, there are two typical
problems to address in real-world scenarios. The first is that of industrial secrecy, for
which the real operating conditions in which the machine operates, i.e., the recipes, are
not intended to be explicit in the data analysis. The second is that of the change in the
environmental conditions in which the machinery operates. The machines are tested in
laboratories with conditions different to those of production. The plants are dissolved in
different areas with different environmental conditions. In all these cases, the problem to
be faced is that of “novelty detection”.

Novelty detection is the task of recognizing that test data differ in some respect
from the data that are available during training [7]. The functionalities for a novelty
detection system can be, in principle, provided by a classification model built on the
datasets describing the operation conditions of the machinery under analysis. Nevertheless,
its construction should consider that that the training dataset may not include all possible
conditions that a component may experience during its life. The goal then is to recognize
unknown behaviors and distinguish them from anomalies. In addition, they have to be
complemented by mechanisms to automatically re-train the model as the novel behaviors
are detected [8].

In this paper, we introduce a PHM system to perform novelty detection, based on
autoencoders (AEs). They are neural architectures that, in the encoding phase, compress the
input data into a compact vector representation and, in the decoding phase, reconstruct the
original data starting from this intermediate representation [9,10]. In the context of novelty
detection, these architectures can be used to identify new operating conditions by analyzing
the reconstruction error, i.e., the possible error made by the decoder in reconstructing the
input data. If the error exceeds a specified threshold, the processed input does not refer
to any condition encountered in the training phase. Otherwise, the decoder would have
correctly reproduced the input. In particular, this paper introduces an architecture template
that extends the usual AE capability to:

1. Act as a classifier by identifying the condition in which the component is working,
both known and unknown.

2. Deal with variable sampling windows, which represent a critical aspect in streaming
applications. Since the streaming inference may be considered automatic labeling [11],
a change in component or system behavior should be detected as soon as possible
to collect correctly labeled datasets. To this purpose, the ideal situation is to apply
the model to each arriving point. However, given the high sampling frequencies of
sensors, the algorithm’s execution time may be larger than the time between the two
consecutive samples. Therefore, identifying the optimal sampling window means
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finding a trade-off between the necessity of having a fast response and the necessity
of having the algorithm’s response before the arrival of the next point.

3. Detect the most anomalous/distinctive sensor(s) for each state of a multivariate time
series. Detecting a change in the data streams is not sufficient for fault diagnosis, since
it does not provide any information about the detected novel behavior’s location or
cause. Therefore, a further analysis aiming to find which variable mainly contributes
to the change in the data streams is necessary.

A systematic study of the AE-based architecture template is proposed, by evaluating
four implementations, each one with a different DL model (Fully Connected, CNN, LTSM,
and BiLSTM), against an emblematic dataset composed of nine multi-variate time series.
The dataset was generated through a test rig built in the Department of Industrial Engi-
neering of the University of Bologna. It describes four operating conditions, one of them
including anomalies. The dataset can therefore reproduce many of the operating conditions
that need to be addressed by novelty detection approaches. The code implementing the AEs
and used for the experiments is available at https://github.com/softlab-unimore/AE4ND
(accessed on 10 April 2022).

This is not the first paper using AEs in the novelty detection field. In Refs. [12,13],
an AE has been introduced for fault detection scenarios. Nevertheless, the paper differs
from the former for the experimentation of four DL models and the ability to perform
novelty detection and from the latter for the unsupervised nature of our proposal. Our
study confirms the finding of the other approach, that AEs are an effective solution to the
novelty detection problem.

The rest of the paper is organized as follows. In Section 2, related works on novelty
detection will be revised. In Section 3, the proposed architecture template for Novelty
Detection is described. Section 4 introduces the experimental environment and Section 5
the evaluation. In Section 6, we point out some of the lessons learned. Finally, conclusions
and future research directions will be highlighted in Section 7.

2. Related Works

Unlike anomaly detection and outlier detection, novelty detection aims to find a set
of points not explained from the diagnosis model, instead of one single point differing
from the nominal or known data [8]. In addition, novelty detection is also included in
multi-class systems, where two or more normal classes exist, and a condition is considered
novel if it differs from all of the known classes [14]. In other words, the problem becomes
recognizing novelties and, at the same time, classifying the known instances into two or
more diverse classes.

To this aim, traditional classification and clustering-based approaches are adopted for
system Health Monitoring in industrial environments. In these cases, novelty detection
approaches may be classified according to two criteria: the learning paradigm, which can
be supervised or unsupervised, and the necessity of a training phase before the streaming
application. Hence, three different approaches can be distinguished:

1. Classification-based with training on one or more classes (e.g., COMPOSE [15,16]);
2. Clustering-based with training on one or more classes (e.g., OLINDDA, MINAS [17–19]);
3. Clustering-based that can be applied from scratch (e.g., ADP [20]).

In addition, classification-based approaches may adopt an incremental or non-
incremental learning paradigm, depending on whether the classification model is re-
trained when a novel class is detected. On the contrary, all clustering-based approaches
adopt an incremental learning paradigm.

More recently, deep-learning models—such as autoencoders networks [12,13,21] and
Generative Adversarial Networks (GAN) [22]—have been used in this field. GAN-based
approaches have been proposed as anomaly detection systems, to learn a latent feature
space of a generative network G so that the latent space well captures the normality
underlying the given data. Some form of residual between the real instance and the
generated instance is then defined as an anomaly score. Nevertheless, the training of GANs
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can suffer from multiple problems, such as failure to converge and mode collapse, which
leads to large difficulties in training GAN-based anomaly detection models. Moreover,
the generator network can be misled and generate data instances out of the manifold of
normal instances, especially when the true distribution of the given dataset is complex
or the training data contain unexpected outliers. Autoencoders have been experimented
in the field of the novelty detection. In particular, ref. [12] proposes an unsupervised AE
LSTM architecture for the novelty detection task, intending to identify novel conditions
in the machinery, but without focusing on the ability to distinguish the existing operating
ones. The main paper innovation consists of the introduction of a supervised neural
network that analyzes the incoming time series, classifying the type of fault in a supervised
manner. Instead, ref. [13] introduces an AE architecture that combines the novelty detection
part with the diagnosis (classification) part of the operating state. The innovation of
the proposed architecture is the combination of the two metrics in a single optimization
function. The approach requires labels on the data. As highlighted in the introduction,
our approach follows this line of research by introducing a template architecture based
on an autoencoder implemented with different deep learning models able to recognize
novel operating conditions and classify the current one among the ones learned in a
unsupervised manner. It relies on online learning: once a novel status is found, a retrain is
needed. It differs from the current approaches in depth and breadth. We differ in depth
since we propose a technique that is able to detect novel operating conditions, classify the
current conditions and discover the signal that has most contributed to the inference in
an unsupervised manner. We differ in breadth since we provide an extensive evaluation
that includes many operating conditions (with anomalies) and compares the results with
other systems.

3. An Architecture Template for Novelty Detection

Being able to recognize novel operating states where the machinery is working and
clearly separate them from anomalies is one of the main problems affecting predictive
maintenance in modern industry. The existing approaches, partially reviewed in the related
work section, monitor the input signals (frequently in the form of multivariate time series)
and behave like a binary classifier, showing when a signal is representing a known or novel
status of the device.

Nevertheless, with only this information, it is not possible to evaluate complex sce-
narios such as the ones used in production systems. An architecture template for novelty
detection should be able to do the following:

• Analyze big and heterogeneous data. Sensors on the machinery generate a large and
complex amount of data that make ineffective manual inspections and analyses by
experts. Supervised approaches need labeled data, the production of which requires
a tremendous user effort. In many cases, actual machine operating states may vary,
requiring additional labeling steps and model retraining. In other cases, the approaches
should work with data collected at different sampling frequencies.

• Identification of the real conditions in which the component is working. A binary
classifier recognizes the difference between a novel or known operating status. An
effective tool should also classify the possible real conditions and infer the one where
the system is actually working.

• Explain the novelty. A novelty detection approach has to motivate the reasons why a
new operating condition is inferred.

Autoencoders (AEs) aim to learn some low-dimensional feature representation space
on which the given data instances can be well reconstructed. This is a widely used technique
for data compression or dimension reduction. AEs have been experimented with in the
anomaly detection field. Here, the learned feature representations are enforced to learn
the important regularities of the data to minimize reconstruction errors. Nevertheless,
anomalies are difficult to reconstruct from the resulting representations and thus have large
reconstruction errors.
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In this paper, we propose to extend a generic AE model in order to make an effective
implementation of the architecture template for finding novel operating conditions that
satisfy all desiderata. An AE is composed of an encoding and a decoding network. The
encoder maps the original data onto a low-dimensional feature space, while the decoder
attempts to recover the data from the projected low-dimensional space. The parameters of
these two networks are automatically learned, without any user intervention, through a
reconstruction loss function. The main extensions we propose are shown in Figure 1 and
consist of a Scorer that analyzes the reconstruction error (the error made by the decoder
component in reconstructing the multivariate time series provided as an input); a Classifier
that exploits the low-dimensional encoding of the input to recognize the actual operating
condition; and a Localizer that recognizes the signal mainly supporting the inference of the
novel condition, thus explaining the model behavior. A scaler is inserted at the beginning
of the pipeline to normalize the input signals and evaluate their contribution without the
biases that would result from different range values.
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Figure 1. Autoencoder Architecture Template.

The Scorer is based on the computation for each signal of the mean absolute error
(MAE) that measures the extent to which the generated output intensities are symmetrically
close to the input intensities. In this way, a higher-than-training intensity is penalized by
the same amount as an equally valued lower intensity. The evaluation is applied to all
features and the average MAE is computed to be directly used as a novelty score. A novel
condition is detected if the score is greater than a user-defined threshold. In our experiments,
we adopted a threshold based on the maximum reconstruction error computed on the
validation set. This value is increased by an α score (we experimented with two values of α
score in our implementation, 0.02 in operating conditions with anomalies, 0.10 in the other
scenarios) to reduce the number of false positives.

We provide two implementations for the Classifier, based on a supervised and an
unsupervised approach, respectively. The supervised approach is based on a feed-forward
neural network that we train in our implementation on the series generated by the encoder
and on labels provided by experts to identify the operating conditions. The unsupervised
approach is always built upon the series generated by the encoder and relies on a clustering
algorithm. The optimal number of clusters (i.e., operating conditions) is automatically
selected through the elbow method. In Section 4, we experiment with three metrics for the
creation of the clusters.

The Localizer relies on the reconstruction error to compute the signals that mainly
contributed to the inference. This component computes the error on the raw input signals,
and not on the transformed version as for the Scorer. In this way, the impact of the normal-
ization processes introduced by the data transformer component and the AE network is
reduced and the error computation is more reliable. Figure 2a,b show the reconstruction of
the input signals performed by the localizer. The plots refer to a CNN-based AE, trained
on the signals from the operating conditions C1, C2, and C4 and aimed at identifying the
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condition C3 as a new condition. Figure 2a refers to the reconstruction of the input signals
of a time series of status C2 (composed of 9 input signals), which are part of the series
used for the training. Figure 2b shows the original and reconstructed signals on C3. The
number on the top of each plot is the mean reconstruction error. Figure 2a shows that the
model can learn the input signals, and the error is generally low. Figure 2b shows that the
reconstructed signals are not able to infer the actual signal. In particular, the higher error is
measured on Y3, which represents one of the main reasons for the prediction of C3 as a
novel state.
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4. Experimental Environment

To experiment with the architecture template described in Section 3, we implemented
four AE versions, each one using a different DL technology. In particular, Section 4.1 intro-
duces our implementations based on (1) a Feed-forward fully connected Neural Network;
(2) a Convolution Neural Network; (3) a LSTM Neural Network; and a BiLSTM Neural
Network. The experiments are performed against the dataset described in Section 4.2
obtained through an experimental platform developed in the Department of Industrial
Engineering of the University of Bologna.

4.1. The AE Models

The experimentation of four models is justified by the trade-off they offer between
complexity (in terms of the amount of data required and time/computational power for
performing their train) and accuracy of the results. We expect that better results will be
given by RNN AEs since they are based on networks specially designed for managing data
sequences. Nevertheless, they are heavy to train on larger training sets and longer input
sequences than other kinds of models. FC AEs are the simplest ones, but their use in many
domains showed a correlation between the results achieved and the window size [23,24].
CNN AEs seem to offer an excellent compromise between simplicity and quality of results.
Through the padding and kernel size, the input signal is split, thus creating an encoding
that can potentially better generalize than FC approaches by identifying many patterns
in the multivariate series. All architectures are trained for 300 epochs by using an Adam
optimizer with a learning rate of 0.0004, a batch size of 64, and an early stopping strategy
after 20 steps. Thus, in order to avoid the exploding gradients problem, we apply gradient
clipping and normalization, which is quite common in long sequences.
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Fully Connected AutoEncoder. A Fully Connected (FC) AutoEncoder [8] relies on
Multilayer Perceptrons, or MLPs, to encode and decode the input data and intermediate
representations respectively. During the encoding and decoding phase, the time series
moves from the input layer through the hidden layers to the output layer, and the recon-
structed signal of the output layer is measured against the original one. Then, it learns the
time series representations by equally considering all time points without analyzing the
signal temporality.

Experimented implementation. The FC-AE is composed of 3 layers for the encoder,
with 200, 200, and 100 neurons; and 3 layers for the decoders with 100–200 neurons in the
first two layers and 200 neurons per signal in the last layer. Note that the number of neurons
in the last layer of the decoder depends on the selected window size. In our evaluations,
we experimented the approach with several window sizes. Each layer applies a ”tanh”
activation function and a dropout of 0.2 is applied to the first layer for the encoding and
decoding phases.

CNN AutoEncoder. A CNN AutoEncoder [10] applies temporal convolutive filters
to an input organized in a grid to derive an intermediate representation that encodes
the spatial proximity information of the original data (encoding phase) and adopts an
inverse strategy to re-expand this intermediate knowledge. This allows the model to learn
position and scale patterns and to extract spatial information along the time dimension. The
distinguishing aspect of this approach is to learn time patterns by looking at the neighbor
elements in the same and in other signals.

Experimented implementation. The implementation is based on 2 temporal convolu-
tions in the encoding step and 3 transpose convolutions in the decoding step, with 32, 16,
16, 32, 9 filters respectively (since the multivariate time series analyzed are composed of
9 signals). Each layer applies a “relu” activation function and a “valid” padding and stride
of 2 and a dropout of 0.2 is applied to the first layer in the encoding and the second layer in
the decoding modules.

RNN AutoEncoder. The RNN AutoEncoder [9] (LSTM and BiLSTM in our case)
is based on a recurrent connection of hidden representations generated from multiple
MLPs, which is exploited to compress and reconstruct data while preserving their se-
quence and order of occurrence. RNNs show several nice properties, such as strong
prediction performance as well as the ability to capture long-term temporal dependencies
and variable-length observations. Recurrent neural networks explicitly handle the order
in input observations. They learn long-term correlations in a sequence and are capable
of accurately modeling complex multivariate sequences in several scenarios. However,
the training time and the exploding gradient problem (i.e., when large error gradients
accumulate and result in very large updates to neural network model weights during
training) could become problematic for managing long time series.

Experimented implementation. We provide two implementations, one based on the
LSTM technology, and the second on the BiLSTM. The LSTM-AE is based on stacked
LSTMs with two layers in both encoding and decoding steps, with 200, 100, 100, and
200 neurons in each LSTM cell, and two fully connected layers at the end of the decoding
phase with 16 neurons and 9 neurons (the number of signals in the dataset time series).
Each layer applies a “tanh” activation function and a dropout of 0.2 is applied at the end
of the encoding phase. The BiLSTM-AE is similar to LSTM-AE architecture, with the only
difference being the application of a bidirectional connection in each stacked LSTM layer.

4.2. The Dataset

The platform used for the creation of the first dataset is composed of an asynchronous
motor, a gearbox made of two pulleys that exchange the rotation through a belt, two shafts
that share the motion thanks to a couple of gears, and an electromagnetic brake. The
platform and its mechanical scheme are depicted in Figure 3. The platform is provided with
three triaxial accelerometers, which are placed on the bearing’s support, next to the second
pulley and the two gearboxes, respectively. They have a sampling frequency of 12.8 kHz
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per axis and an acceleration range of 500 Gpeak. A complete description of the platform
can be found in [11]. For the purposes of experimentation, tests in four distinct operating
conditions and a fault condition were conducted. The rotational speed is fixed at 660 rpm,
while the distance between the pulley and the braking torque varies. The parameters and
the duration of each condition are shown in Table 1. Note that each batch has a length of
10 min. A representation of the raw signals in the four operating conditions is provided
in Figure 4. The considered signals represent a multi-variate series where each feature is
an acceleration. As can be seen, while the accelerations in the first operating condition
are rather stable, significant oscillations occur in the other conditions, but only state C4
describes an anomalous operation of the machinery (i.e., states C1–C3 represent normal
operating conditions). The anomalies in state C4 are caused by the unforeseen overheating
of the electric motor, which led to the sudden shutdown of the system.
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Table 1. Dataset Description.

Operating
Condition

Distance between
Pulleys (mm)

Braking Torque
(Nm)

Duration
(min)

C1 27.33 0.1 70
C2 27.33 0.5 150
C3 27.54 0.1 70
C4 27.54 0.1 30
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5. Experimental Evaluation

The experiments proposed in this section evaluated the ability of AEs in addressing
the desiderata for a novelty detection system introduced in Section 3. In particular, there
are three research questions that we address:

- (RQ1) Are AEs effective and robust in detecting novel operating conditions? (Section 5.1)
- (RQ2) Is it possible to classify the operating conditions of a machinery with an approach

based on AEs? (Section 5.2)
- (RQ3) Can the AEs provide valuable explanations for their predictions? (Section 5.3)
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5.1. Effectiveness and Robustness of the AEs in Novelty Detection

Three experiments are performed in this section to address RQ1. The first experiment
(Section 5.1.1) evaluates the effectiveness of AEs in the novelty detection task. Then, two ex-
periments evaluate the robustness of the approach in discriminating between anomalies and
novel conditions (Section 5.1.2), and in working with varying window sizes (Section 5.1.3).

5.1.1. Evaluating the Novelty Detection Task in Normal Operating Conditions

Description. In this section, we evaluate only the first three operating conditions
of the dataset, which refer to “normal” statuses of the machinery, where no anomaly is
generated. We experimented with six scenarios (see Table 2), generated through all possible
permutations of the conditions. In each scenario, the operating conditions described in
the dataset are alternatively evaluated as part of the known set (i.e., the past operating
condition) or the novel set. Scenario S12, for example, considers C3 as a known status,
and C1 and C2 as novel conditions to detect. Two experiments were performed. In the
first, the ability of the AE models is evaluated by detecting the novel state. We trained the
AE models with the time series representing the known sets and we evaluated them with
the ones in the novel sets. The training set constitutes 10 min of the known sets specified
in the scenarios randomly selected. The test set is composed of the remaining data (from
the known and novel sets). Column Novel in Table 3 shows the results of this experiment
in terms of F1 score by considering a window size equal to 200 (100 s). In the second
experiment, the ability of AEs to detect already existing operating conditions is evaluated.
The input conditions belonging to the known sets are in this case also used to evaluate
the approach. The training and test sets are built as for the previous experiment. Column
Known in Table 3 shows the results of these experiments in terms of F1 score. Table 4 shows
the F1 score obtained by averaging the results on the known and novel sets, thus providing
an overall evaluation of the behavior of the approach.

Table 2. Scenarios used for the evaluation of the novelty detection task with no anomaly.

Scenario Known Set Novel Set

S12 C3 C1, C2
S13 C2 C1, C3
S23 C1 C2, C3
S1 C2, C3 C1
S2 C1, C3 C2
S3 C1, C2 C3

Table 3. Evaluation of the effectiveness in normal operating conditions: F1 Score on the Known and
Novel sets.

Scenario
FC CNN LSTM BiLSTM PCA SVM Cluster

Known Novel Known Novel Known Novel Known Novel Known Novel Known Novel Known Novel

S12 99.22 99.83 99.29 99.84 99.34 99.85 99.60 99.91 5.90 90.21 15.86 0 66.57 94.69
S13 100 100 100 100 100 100 99.98 99.98 8.36 65.56 32.82 40.80 75.07 82.02
S23 100 100 100 100 100 100 100 100 0 87.57 80.07 95.49 91.90 97.92
S1 100 100 100 100 100 100 99.81 99.47 69.77 61.21 48.76 0 99.64 99.02
S2 100 100 98.74 99.08 100 100 99.89 99.92 86.31 92.03 39.68 22.47 100 100
S3 100 100 100 100 100 100 100 100 68.95 55.09 62.24 51.47 100 100

Average 99.87 99.97 99.67 99.82 99.89 99.98 99.88 99.88 39.88 75.28 46.57 35.04 88.86 95.61
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Table 4. Evaluation of the effectiveness in normal operating conditions: average F1 score.

Scenario FC CNN LSTM BiLSTM PCA SVM Cluster

S12 99.52 99.56 99.60 99.76 48.06 7.93 80.63
S13 100 100 100 99.98 36.96 36.81 78.54
S23 100 100 100 100 43.78 87.78 94.91
S1 100 100 100 99.64 65.49 24.38 99.33
S2 100 98.91 100 99.90 89.17 31.07 100
S3 100 100 100 100 62.02 56.85 100

Average 99.92 99.75 99.93 99.88 57.58 40.80 92.24

The AE models are compared with three state-of-the-art approaches. Firstly, the
Principal Component Analysis (PCA) is frequently used in exploratory data analysis
because it reveals the inner structure of the data and explains the variance in the data. PCA
looks for correlations among the variables and determines the combination of values that
best captures differences in outcomes. For anomaly detection, each new input is analyzed,
and the anomaly detection algorithm computes its projection on the eigenvectors, together
with a normalized reconstruction error. The normalized error is used as the anomaly score.
The higher the error, the more anomalous the instance is [25]. The One-Class Support Vector
Machine is another unsupervised learning algorithm that is trained only on the “normal”
data, in our case the negative examples. It learns the boundaries of these points and is,
therefore, able to classify any points that lie outside the boundary as outliers [26]. Online
clustering can be considered a distance-based novelty detection approach, in which the
“normal” class is characterized by a small number of prototype points in the data space [9].
During the prediction step, the distance between the “normal” points and new points is
computed. A threshold is fixed to determine whether the current pattern belongs to the
same cluster as the normal one, or creates a new cluster.

Discussion. The average results reported in Table 4 show that our approach largely
outperforms the state-of-the-art approaches in all scenarios. High F1 score values (100% in
most of the cases) are measured with all deep learning implementations. The evaluation
in Table 3 shows that, conversely from the competing approaches, the AEs perform well
in both tasks of recognizing a novel or a known operating condition. We observe that,
to be fair, we applied the same hyper-parameters to all AE approaches in all scenarios
(i.e., the ones selected via a grid search analysis to maximize the overall accuracy on
all scenarios). The performance of the AE approaches can be significantly improved by
applying hyper-parameter fine-tuning to the specific datasets.

5.1.2. Evaluating the Novelty Detection Task with Anomalies

Description. This experiment extends the one in Section 5.1.1, by including C4 in the
scenarios under evaluation. C4 describes a novel operating condition, but it differs from
the other ones for the existence of anomalies in the signals. As in Section 5.1.1, we consider
all possible scenarios created from all k-permutations of the time series describing the
operating conditions (see Table 5).

Table 5 reports the results of the experiments for each scenario in terms of F1 score, by
considering a window size equal to 200 (100 s) and the problem of detecting an existing op-
erating condition (Known column) or a new operating condition (Novel column) separated.
Table 6 averages the result obtained for each scenario.

Discussion. The introduction of an operating condition with anomalies decreases the
overall quality of the results reached, as shown in Tables 6 and 7, even if in all scenarios they
largely outperform the competing approaches. As expected, we observe the main decreases
in scenarios where C4 is part of the training set (S123, S12, S13, S23, S1, S2, and S3). The FC
AE is the model that mainly suffers the noise of the anomalies, showing a drop in the F1
score equal to 9.91% (from 99.92% to 90.01%). The other AE shows a very limited decrease
(less than 5%). The baseline does not show the same behavior. Some of the approaches
largely decreased the performance (the drop in the performance of the CLUSTER is more
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than 33%). Only the SVM was demonstrated to be resilient to the anomalies, showing a
small increment of the F1 score (from 40.8% to 41.37%). The breakdown of the results in
Table 6 shows that for each scenario, almost all AEs outperform the baselines in both the
detections of known and novel conditions.

Table 5. Scenarios used for the evaluation of the novelty detection task with anomalies.

Scenario Known Set Novel Set

S123 C4 C1, C2, C3
S124 C3 C1, C2, C4
S134 C2 C1, C3, C4
S234 C1 C2, C3, C4
S12 C3, C4 C1, C2
S13 C2, C4 C1, C3
S14 C2, C3 C1, C4
S23 C1, C4 C2, C3
S24 C1, C3 C2, C4
S34 C1, C2 C3, C4
S1 C2, C3, C4 C1
S2 C1, C3, C4 C2
S3 C1, C2, C4 C3
S4 C1, C2, C3 C4

Table 6. Evaluation of the effectiveness in normal conditions with anomalies: F1 Score on the Known
and Novel sets.

Scenario
FC CNN LSTM BiLSTM PCA SVM Cluster

Known Novel Known Novel Known Novel Known Novel Known Novel Known Novel Known Novel

S123 35.19 94.14 100 100 28.62 91.90 96.41 99.89 23.94 89.45 0 41.19 5.68 0.70
S124 100 100 99.79 99.96 99.88 99.97 100 100 5.90 90.88 14.94 0 66.57 95.07
S134 99.09 99.10 94.72 94.34 99.38 99.39 99.66 99.67 8.36 68.48 32.55 46.44 75.07 83.89
S234 100 100 100 100 100 100 100 100 0 88.44 80.07 95.83 91.90 98.08
S12 92.08 98.06 98.88 99.70 97.44 99.32 97.92 99.46 52.50 75.36 1.44 0.99 37.28 21.38
S13 100 100 100 100 100 100 100 100 100 100 47.33 43.56 70.42 4.21
S14 96.78 92.24 95.46 88.52 98.43 96.42 98.83 97.38 69.77 66.53 48.03 12.40 99.64 99.22
S23 47.25 43.33 99.27 99.76 96.90 98.95 96.57 98.84 69.28 83.23 92.02 97.66 39.32 0
S24 99.95 99.97 97.97 98.65 99.53 99.69 99.73 99.82 86.31 92.82 39.49 32.16 100 100
S34 96.38 89.07 95.68 86.56 96.02 87.8 95.36 85.94 68.95 61.65 62.24 58.15 98.82 96.77
S1 100 100 100 100 100 100 100 100 92.53 83.46 58.34 0 86.28 17.07
S2 99.00 99.21 85.72 85.20 97.01 97.56 97.11 97.76 91.88 92.72 38.81 18.85 60.75 0
S3 100 99.99 100 100 100 100 99.84 99.42 87.49 0 63.64 51.13 87.76 0
S4 95.51 43.96 97.84 75.23 98.14 79.83 94.19 56.83 89.88 33.79 60.69 20.31 96.68 9.75

Average 90.09 89.93 97.52 94.85 93.67 96.49 98.26 95.36 60.49 73.34 45.69 37.05 72.58 44.72

5.1.3. Window Size Invariance

Description. In this experiment, we evaluate the capability of the AE approaches of
being invariant to the window size. Six window sizes are selected (ranging from 40 records
per window–20 s to 360 records–180 s) and the same experiment for detecting the known
and novel sets as in Sections 5.1.1 and 5.1.2 was performed.

Discussion. The results of the experiments show that AE-based approaches outperform
the competing approaches independent of the window size. Nevertheless, they suffer from
the noise that slightly decreases the average F1 score and increases the standard deviation.
In detail, if we consider AEs and normal operating conditions (Table 8), the larger the
window sizes, the better the results obtained. The same does not happen for the baseline,
where the performance of SVM is window size invariant, and the other approaches decrease
with the increase in the size. Moreover, the AE models offer low values for the standard
deviation, thus showing that they do not depend on the data analyzed. The same does not
happen for the baseline where the standard deviation assumes values greater than 25%.
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Table 7. Evaluation of the effectiveness in operating conditions with anomalies: average F1 score.

Scenario FC CNN LSTM BiLSTM PCA SVM Cluster

S123 64.67 100 60.26 98.15 56.70 20.59 3.19
S124 100 99.88 99.93 100 48.39 7.47 80.82
S134 99.10 94.53 99.38 99.66 38.42 39.49 79.48
S234 100 100 100 100 44.22 87.95 94.99
S12 95.07 99.29 98.38 98.69 63.93 1.22 29.33
S13 100 100 100 100 100 45.44 37.32
S14 94.51 91.99 97.42 98.11 68.15 30.21 99.43
S23 45.29 99.52 97.93 97.71 76.25 94.84 19.66
S24 99.96 98.31 99.61 99.77 89.56 35.83 100
S34 92.73 91.12 91.91 90.65 65.30 60.20 97.80
S1 100 100 100 100 87.99 29.17 51.67
S2 99.11 85.46 97.29 97.43 92.30 28.83 30.38
S3 100 100 100 99.63 43.75 57.39 43.88
S4 69.73 86.53 88.99 75.51 61.84 40.50 53.22

Average 90.01 96.19 95.08 96.81 66.91 41.37 58.66

Table 8. Average F1 score and standard deviation for each window size in normal operating conditions.

Window
FC CNN LSTM BiLSTM PCA SVM Cluster

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

40 99.48 0.62 99.37 0.65 98.88 1.19 94.89 9.19 90.12 6.56 40.83 25.14 97.31 2.54
80 99.71 0.49 99.63 0.45 99.56 0.32 99.16 0.75 76.67 8.72 39.82 25.36 96.15 4.40

120 99.99 0.02 99.99 0.02 99.86 0.27 99.29 0.95 67.24 12.07 40.25 25.78 94.95 5.76
200 99.92 0.18 99.75 0.41 99.93 0.15 99.88 0.14 57.58 17.26 40.80 25.58 92.24 9.13
240 100 0 99.86 0.3 100 0 99.61 0.59 55.39 16.71 41.36 25.38 90.76 11
360 100 0 100 0 100 0 99.94 0.13 52.96 14.58 45.10 26.62 87.54 14.8

Average 99.85 0.22 99.77 0.31 99.71 0.32 98.80 1.96 66.66 12.65 41.36 25.64 93.16 7.94

A similar evaluation is possible for the analysis of the operating condition with
anomalies (Table 9). We observe that the overall performances of the Aes decrease (with an
increase in the standard deviation), the performance of SVM and PCA is stable in terms of
F1 score, and shows an increase in the standard deviation for the PCA, and the CLUSTER
approach largely decreases with a large increase in terms of standard deviation.

Table 9. Average F1 score and standard deviation for each window size in operating conditions
with anomalies.

Window
FC CNN LSTM BiLSTM PCA SVM Cluster

Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

40 78.86 25.41 82.15 21.20 69.89 29.53 67.33 29.66 59.31 30.62 41.75 25.57 60.57 33.50
80 85.66 19.10 88.51 13.05 82.23 23.60 80.14 27.10 62.67 23.91 41.33 25.63 60.89 32.77
120 90.27 14.61 92.11 12.61 88.61 18.16 93.25 15.56 63.30 18.48 41.39 25.73 59.96 32.53
200 90.01 16.63 96.19 5.11 95.08 10.17 96.81 6.35 66.91 19.15 41.37 25.79 58.65 31.80
240 96.47 4.59 90.28 14.65 89.67 19.78 94.89 13.55 67.95 19.79 41.46 25.66 58.07 31.46
360 92.44 17.99 96.96 4.65 84.95 23.1 94.21 12.47 69.47 21.97 42.63 26.23 56.49 30.74

Average 88.95 16.39 91.03 11.88 85.07 20.72 87.77 17.45 64.94 22.32 41.66 25.77 59.11 32.13

5.1.4. Lesson Learned

The experiments demonstrate that AEs can effectively address novelty detection
tasks, as they achieve the highest F1 scores in all scenarios outperforming the baselines.
The experiments also demonstrate that AE is a robust technology: the results are not
largely affected by the task addressed (know status or novel status), by the implementation
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(four deep learning techniques are evaluated), the quality of the dataset (scenarios with
and without anomalies have been tested), and the dimension of the signals (we evaluated
the approach varying the window size).

From the industrial perspective, the proposed approach gives the opportunity to
automatically assign a label to the acquired signals, indicating the correct machinery
operating condition, regardless of the dataset available during the model training phase. In
this way, the secrecy of the implemented machinery setting is kept, and only the change
from one condition to another, both know and novel, is recorded in the dataset to facilitate
the subsequent activities of fault detection and diagnosis. In addition, results show that
AEs outperform baseline approaches in performing a simultaneous analysis at a system-
level and component-level. Indeed, although it decreased with respect to the previous
experiment, a higher F1 score is obtained, even if both nominal conditions corresponding
to the system setting and the anomalous condition corresponding to the motor fault, are
considered during model training.

5.2. Evaluating the Classification of the Operating Condition

In this section, the ability of AEs to detect the current operating condition is
evaluated. Two experiments evaluate the unsupervised (Section 5.2.1) and supervised
(Section 5.2.2) techniques.

5.2.1. Unsupervised Implementation

Description. This experiment aims to evaluate the implementations proposed for the
unsupervised classifier. The model is based on a hierarchical clustering technique applied
to the encoding of the time series generated by the AE encoder. The evaluation takes into
account many settings by varying the AE model and the metrics adopted to evaluate the
clusters. Tables 10–12 show the accuracy obtained by considering different window sizes,
averaging the results obtained in all scenarios, and adopting the homogeneity score, rand
score, and adjusted mutual information as metrics. The column RAW is the reference
baseline obtained by applying the hierarchical clustering technique to the (original) input
time series.

Discussion. The results show that the baseline is outperformed by our approach
independently of the selected window size and metrics. The BiLSTM-based AEs provide
the best results (by considering the average and the best performance obtained with the
smallest window size) with all metrics. Note that, different to the AE methods, the RAW
approach is almost not sensitive to the window size.

Table 10. Accuracy obtained by the unsupervised classifiers: Homogeneity Score.

Window Raw FC CNN LSTM BiLSTM

40 83.77 89.14 85.35 82.04 100
80 83.67 93.68 86.66 94.87 94.34

120 84.47 98.5 88.44 88.64 96.49
200 86.35 97.43 86.02 84.07 94.71
240 83.93 93.27 88.03 95.90 93.86
360 83.57 98.74 89.74 92.68 97.54

Avg 84.29 95.13 87.37 89.70 96.16
Std 1.06 3.77 1.65 5.75 2.34
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Table 11. Accuracy obtained by the unsupervised classifiers: Adjusted Rand.

Window Raw FC CNN LSTM BiLSTM

40 88.67 95.28 88.91 89.81 100
80 88.53 97.59 94.66 98.20 98.03

120 89.05 99.29 95.07 93.29 98.79
200 89.61 98.66 89.30 90.55 98.11
240 89.32 97.39 94.84 98.64 97.64
360 88.47 99.34 94.12 95.12 99.32

Avg 88.94 97.93 92.82 94.27 98.65
Std 0.46 1.54 2.89 3.74 0.89

Table 12. Accuracy obtained by the unsupervised classifiers: Adjusted Mutual Information.

Window Raw FC CNN LSTM BiLSTM

40 89.3 92.92 90.57 87.19 100
80 89.31 94.79 90.58 95.76 95.15

120 89.69 98.76 92.19 87.89 96.99
200 91.13 97.92 91.01 88.75 95.71
240 89.13 94.48 91.63 96.58 94.92
360 89.29 99.73 91.51 94.30 98.54

Avg 89.64 96.43 91.25 91.75 96.89
Std 0.75 2.73 0.64 4.26 2.03

5.2.2. Supervised Implementation

Description. This experiment evaluates a classifier trained on the encodings generated
by the AE approach and using target classes provided by the user. In particular, the
implemented classifier is based on a Feed-Forward Fully Connected Neural Network. The
network is composed of 1 layer with 64 neurons. Table 13 shows the accuracy obtained as
the mean on all scenarios with a window size equal to 200 (Acc 200), and the mean/standard
deviation on all scenarios with all evaluated window sizes. Table 14 shows the F1 score in
classifying the different operating conditions by considering a window size equal to 200
and all evaluated window sizes.

Table 13. Evaluation of the supervised classifier: Accuracy.

Supervised Raw FC CNN LSTM BiLSTM

Acc 200 97.61 99.63 98.34 98.13 99.60
Acc Avg 97.48 99.08 98.78 98.52 98.86
Acc Std 0.24 0.58 0.66 0.26 0.51

Table 14. Evaluation of the supervised classifier: F1 score for each class.

Conf. Raw FC CNN LSTM BiLSTM

C1 100 100 100 97.90 100
C2 98.81 99.65 99.47 99.38 99.62
C3 97.23 100 97.27 99.23 100
C4 78.42 97.18 85.90 83.87 96.91

Avg 200 93.62 99.21 95.66 95.10 99.13
Std 200 10.19 1.36 6.61 7.51 1.49

Avg all 93.22 97.91 96.96 96.1 97.02
Std all 9.82 3.91 4.96 5.29 4.44

Discussion. The classifier shows a high accuracy score in all AE implementations.
The low standard deviation measure shows the window size invariance of the approach.
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As expected, the F1 score measured when detecting C4 is largely lower than the other
operating conditions. This is due to the anomalies existing in the C4 operating condition
that make the classification process more complex.

5.2.3. Lesson Learned

AEs can effectively recognize the operating conditions where the device is being
worked on. The results registered in the experiments show high levels of accuracy and F1
score, making possible the application of the technology in real world scenarios. AEs largely
overcome the competing approaches in both supervised and unsupervised scenarios. The
approach is robust with respect to the window size selected.

From the industrial point of view, the AEs allow the detection of faults regardless of
whether it has already occurred in the past. In particular, the supervised implementation
is used for fault diagnosis, so that it is possible to stop the machinery before severe con-
sequences occur once the failure is classified. On the other hand, when the unsupervised
implementation is used and a novel condition is detected, an alarm can be generated to
suggest a double check by the machinery operator. In the meantime, the observations are
automatically labeled as “novel” to facilitate the subsequent model re-training.

5.3. Evaluation Localization Task

Description. The experiment evaluates the capability of the AE architecture to re-
construct the multivariate time series, using the reconstruction error for each feature of
the time series, i.e., for each sensor of the machinery. This allows us not only to identify
the presence of a never-seen-before operating condition, but also to identify the most
anomalous signal that distinguishes the status. This evaluation allows us to understand
if the experimented AE models can separate the features of the multivariate series and to
identify the most anomalous signal with respect to the normality learned during training.
The sensor that measures the strongest variation for each status has been identified in the
laboratory. Table 15 provides a simple analysis of the signals for each operating condition.
In particular, it shows the minimal distance from each signal in each operating condition
to the other signals in the other conditions. The higher the distance, the easier the task
of recognizing the most meaningful feature. The difference between the maximum and
the minimum distance roughly shows how easy the task is to perform. According to the
distance, the identification of the most relevant signal is easier for condition C1 (and then
C2) than for the other conditions. The experiment consists of the selection of the signal that
maximizes the reconstruction error. Table 10 shows the results in terms of precision at the
first, third, and fifth levels.

Table 15. Input signals on the operating conditions.

Features C1 C2 C3 C4

Acceleration X1 0.009515 0.002341 0.002009 0.002009
Acceleration Y1 0.012629 0.006512 0.003413 0.003413
Acceleration Z1 0.005493 0.009277 0.005493 0.009277
Acceleration X2 0.008993 0.002243 0.002243 0.006444
Acceleration Y2 0.000181 0.000181 0.012083 0.005866
Acceleration Z2 0.009027 0.005133 0.004702 0.004702
Acceleration X3 0.015048 0.003005 0.003005 0.004736
Acceleration Y3 0.003957 0.003795 0.015512 0.003795
Acceleration Z3 0.024635 0.001038 0.001339 0.001038

Avg 0.009942 0.003725 0.005533 0.004587
Std 0.007089 0.002850 0.004936 0.002459
Min 0.000181 0.000181 0.001339 0.001038
Max 0.024635 0.009277 0.015512 0.009277
Diff 0.024455 0.009096 0.014174 0.008238
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Discussion. Table 16 shows a large dependence of the results from the DL model used
and that only in a few configurations (FC for condition C1, FC and LSTM for C3) is the
approach able to identify as the first result the most relevant signal. A different situation
occurs if we consider the first three results (p3): for all operating conditions, there is almost
an implementation that obtains a high precision level (greater than 0.9). Moreover, as we
were expecting, the performance on C4 and on C2 was lower than on the other conditions.
In particular, on C4, only the CNN-based AE obtained a high precision score. This is due
to the particular implementation of CNNs that base (through the padding and the kernel)
their learning approach on all the signals simultaneously.

Table 16. Precision @k for most anomalous signal.

C1 C2 C3 C4

Precision FC CNN LSTM BiLSTM FC CNN LSTM BiLSTM FC CNN LSTM BiLSTM FC CNN LSTM BiLSTM

p1 93.84 1.89 87.88 33.78 54.99 67 39.77 34.31 100 40.38 95.02 12.77 0 59.57 5.91 0
p3 99.94 20.33 100 100 91.77 94.48 87.38 82.47 100 100 100 36.27 0.35 94.36 17.11 4.89
p5 100 58.85 100 100 98.74 99.28 98.96 96.95 100 100 100 72.62 25.62 99.74 26.06 18.87

Lesson Learned

The experiments show that AEs allow users to find the signals that have the largest
impacts on the predictions, thus providing model explanations and allowing localization
of the fault when it happens for the first time (novel condition).

6. Discussion

In this paper, a study on the methods used to determine the operating conditions
in which machinery works is conducted. There are two relevant aspects to identifying a
system’s operating condition. First, it affects the behavior of components, meaning that
their failure modes, progression, and thresholds depend on processed materials, products,
or environmental factors. Although many efforts have been dedicated towards building
models that are independent of the system’s condition, industrial data collected from
machinery are difficult to analyze if no information about the setting is provided. For
instance, a sudden jump in the temperature values collected from an extruder, which in
fact corresponds to a change in the processed material, might be confused with an anomaly
if the information concerning the setting change is not provided. Second, the absence of
information about the machinery setting may represent a limit for machinery producers
that want to offer a full maintenance service to their clients. Machinery producers cannot
know the actual operating conditions of their equipment, and their clients (machinery users)
are not willing to share sensitive information that can be extracted from the knowledge of
the implemented setting, e.g., the number of pieces per product type, or the production
rate. Hence, datasets collected from machinery working in their operating environment
may refer to different use modes, which are unknown to the producer.

This results in the impossibility of building general diagnostic and prognostic models
that can be used for the same type of machinery operating in different environments. There-
fore, it is fundamental to recognize when a setting change occurs in an unsupervised way
or to determine whether the component behavior in that setting has already been analyzed
(whether the operating condition is known). In this way, it is possible to automatically label
the dataset with a class corresponding to the operating condition and increase knowledge
about the machinery behavior in the actual operating condition.

The proposed autoencoder-based architecture allows the approach to perform
three distinct tasks, i.e., classification, novelty detection, and localization, which sup-
port the collection of labeled datasets and the detection of novel situations. In particular,
the classification task is to identify which operating condition among those known at the
moment of the model training is implemented in any given moment. Novelty detection
is to determine whether the operating condition implemented at that moment were not
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included in the classification model training, and therefore is novel. Finally, localization is
to determine which signals are most involved in the novelty detection.

As demonstrated in the previous section, the deep learning models outperform tradi-
tional methods in establishing the working condition of a given system. From experiments
conducted in Section 5, it emerges that when no fault occurs in one of the components, the
proposed approach classifies the distinct settings of the machinery with a high accuracy and
precisely recognizes novel conditions with respect to those used during the model training
(See Table 3). Similar results are obtained even considering a sudden fault in one of the
components (See Table 5). In particular, if the fault (C4) is included in the training set, i.e., if
the fault mode has already occurred in the past, both known and novel operating conditions
are correctly detected, and the autoencoder-based approach provides better results than
traditional approaches. However, in cases where the fault is not known at the moment of
training, the ability to detect the condition C4 decreases as more operating conditions are
considered in the training phase (look at the last scenario of Table 4). This result suggests
that the proposed approach is able to determine the operating condition of the system,
but has to be improved in order to perform a system-level analysis and component-level
analysis simultaneously. Improvements in this direction will be the objective of further
research. From the experiment conducted in Section 5.1.2, it emerges that the window size
does not affect the performance of autoencoder-based approaches, which implies a lower
dependency of the model from the parameters set by the user.

In Section 5.2, the performance of the classification of the operating conditions are
evaluated. The results show that the classification accuracy is high for all conditions except
for condition C4. This means that when only considering a system-level analysis, the
proposed approach recognizes exactly the current operating condition. In other words, a
dataset collected during the machinery functioning in its actual environment is correctly
and automatically labeled with the operating condition it refers to.

Finally, the performance of the localization task is evaluated. The goal of this analysis
is to determine whether there exists a signal, or a subset of signals, that mostly contributes
to the novel condition detection. This evaluation is important for two reasons. First,
selecting a smaller subset of input signals would reduce the quantity of data to transfer
and analyze. Second, it helps to identify which signals are more relevant for the setting
recognition problem, which is particularly important in making the results of deep learning
approaches easier to interpret. However, considering the results summarized in Table 10, it
emerges that the most relevant signals depend on both the model used and the condition
implemented. Hence, the localization task is useful in identifying the signals that determine
the change of the setting, but cannot be used as a feature selection method.

7. Conclusions

In this paper, we proposed the adoption of autoencoder-based architectures for ad-
dressing the novelty detection task. We introduced an architecture template that extends
autoencoders, providing novelty detection, classification of the operating condition, and
explanation of the inference. Four implementations, with autoencoders based on different
kinds of deep learning models, were evaluated on a complex dataset, composed of novel
conditions and including anomalies. The experiments demonstrated that our proposal
outperforms state-of-the-art techniques in recognizing and classifying operating conditions
and is able to find the most important signals in the series. Further assessments in other
scenarios will be conducted in the future to verify the generality of our proposal.
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