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Featured Application: Wind turbine performance monitoring through a computationally
affordable method.

Abstract: Wind turbine performance monitoring is a complex task because of the non-stationary
operation conditions and because the power has a multivariate dependence on the ambient conditions
and working parameters. This motivates the research about the use of SCADA data for constructing
reliable models applicable in wind turbine performance monitoring. The present work is devoted to
multivariate wind turbine power curves, which can be conceived of as multiple input, single output
models. The output is the power of the target wind turbine, and the input variables are the wind
speed and additional covariates, which in this work are the blade pitch and rotor speed. The objective
of this study is to contribute to the formulation of multivariate wind turbine power curve models,
which conjugate precision and simplicity and are therefore appropriate for industrial applications.
The non-linearity of the relation between the input variables and the output was taken into account
through the simplification of a polynomial LASSO regression: the advantages of this are that the input
variables selection is performed automatically. The k-means algorithm was employed for automatic
multi-dimensional data clustering, and a separate sub-model was formulated for each cluster, whose
total number was selected by analyzing the silhouette score. The proposed method was tested on
the SCADA data of an industrial Vestas V52 wind turbine. It resulted that the most appropriate
number of clusters was three, which fairly resembles the main features of the wind turbine control.
As expected, the importance of the different input variables varied with the cluster. The achieved
model validation error metrics are the following: the mean absolute percentage error was in the order
of 7.2%, and the average difference of mean percentage errors on random subsets of the target data
set was of the order of 0.001%. This indicates that the proposed model, despite its simplicity, can be
reliably employed for wind turbine power monitoring and for evaluating accumulated performance
changes due to aging and/or optimization.

Keywords: wind energy; wind turbines; power curve; SCADA; data analysis; multivariate regression

1. Introduction

Wind power is currently considered as the most promising source of renewable
electricity in the world. Nevertheless, due to the non-stationary conditions to which wind
turbines are subjected, performance monitoring and early fault diagnosis are non-trivial
tasks. For this reason, despite wind turbines’ substantially constituting a mature technology,
the O&M costs can still reach the order of 25% of the overall life-cycle costs [1,2].

In the wind energy practitioners’ community, the standard for the evaluation of wind
turbine performance is the analysis of the power curve, i.e., the curve displaying the relation
between the wind flow intensity and the power output: the IEC recommends the binning
method [3], consisting of averaging the power measurement per wind speed intervals
of 0.5 m/s or 1 m/s. In general, the averaging or discretisation of wind turbine data [4]
provides meaningful indications. The power curve analysis has the great advantage of
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simplicity, but the drawback is that it does not account for the fact that the power of a
wind turbine has a multivariate dependence on the environmental conditions and working
parameters [5]. Furthermore, the undisturbed wind flow is not measured directly: it is
estimated through a nacelle transfer function based on downwind measurements collected
behind the rotor span [6–8].

The widespread diffusion of Supervisory Control And Data Acquisition (SCADA) has
been a turning point and has projected wind energy into the era of data. SCADA systems
record a vast set of environmental, operational, mechanical, electrical, and thermal data
with a frequency in the order of Hertz and store them upon averaging with a time basis of
a few minutes (typically ten). Wind turbine performance monitoring and fault diagnosis
have been therefore gradually evolving into data analysis problems: the general concept
is that anomalous performance or incoming damages are individuated by analyzing the
residuals between the measurements and data-driven normal behavior model [9–17]. The
critical points as regards this kind of approach are repeatability, generalization, supervision,
and absence of theoretical standards, and the literature is focused on these aspects. Given
these considerations, also the study of wind turbine power curves has become substantially
a problem of data analysis and interpretation [18–24].

A recent line of research about wind turbine power curves regards multivariate
approaches [25–31]: the general idea is that the power of a wind turbine is the output of a
data-driven model, which has further input variables in addition to the wind speed. Despite
it have been shown that the wind speed can account for up to the 99% of the variance of the
power [32] and therefore further input variables can explain not more than the residue of
1%, this can be decisive in order to obtain data-driven models whose average error metrics
are sufficiently low to guarantee a robust monitoring of wind turbine performance. For a
recent review about multivariate wind turbine power curves, refer to [33].

From the discussion in [33], it arises that the literature about wind turbine multivariate
power curves is at its early stages, but some evidence has been gradually accumulating:

• Due to the complexity of the wind flow at the microscale level, meteorological mast data
can be useful only for modeling the power of a wind turbine that is sited extremely close to
the mast [6]. For application in real-world large wind farms, meteorological mast data are
not appropriate for wind turbine power curve models [34];

• Consequently, the most meaningful additional input variables for modeling the power
of a wind turbine are the working parameters.

In regard to the latter point, the blade pitch and the rotational speed have been
individuated as the most relevant operation variables to be employed in a multivariate
wind turbine power curve model. This is definitely reasonable, given that the theoretical
expectation is that the power of a wind turbine is (Equation (1)):

P =
1
2

πR2ρv3Cp(β, λ). (1)

In Equation (1), P is the produced power and depends on the rotor radius R, the air
density ρ, the wind speed v, and the power factor Cp, which depends on the blade pitch
angle β and the tip-speed ratio λ (or, in other words, the rotational speed ω). The role of
the rotational speed and blade pitch in data-driven models for the power was explored in
detail in [5]: in that study, the rotor speed and blade pitch were added once at a time to a
Gaussian process regression for the power of a wind turbine. The main result was that the
inclusion of both variables reduced the error metrics and the rotational speed was slightly
more influential than the blade pitch. The use of these two variables was discussed also
in [29,31,35].

A further relevant technical development for multivariate wind turbine power curve
models is data clustering [36]. Actually, it is likely that employing more than one sub-
model might be more convenient than employing one model for all the power curve span.
This is reasonable, because between the cut-in and the rated wind speed, it is possible to
distinguish three operation regions, which have different features:
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• Near the cut-in (approximately between 3 m/s and 5 m/s of wind intensity), the
rotational speed of a wind turbine is practically fixed and the blade pitch varies;

• In the full aerodynamic load region (approximately between 5 m/s and 9 m/s of wind
speed), the wind turbine attains the maximum possible aerodynamic efficiency by
varying the rotational speed and holding the blade pitch practically fixed;

• In the partial aerodynamic load region (approximately above 9 m/s of wind intensity),
the rotational speed is held fixed at the rated speed and the load is varied by regulating
the blade pitch.

Based on these considerations, the objective of the present study is formulating a
multivariate method for data-driven wind turbine power curve analysis, which can be
easily implemented in industrial applications. Therefore, each building block of a good
multivariate wind turbine power curve model was simplified as much as possible. This
was performed as follows:

• The selection of the input variables was drastically simplified. Based on considerations
similar to [5], the selected covariates of the model are wind speed, blade pitch, and
rotor speed;

• The structure of the model was selected according to a compromise. It is evident
that a linear model would be too simple: this was observed also in the recent
study [31]. Nevertheless, it is worth exploring if it is possible to account for non-
linearity in a simplified way, namely through a polynomial in the above indicated
input variables. Therefore, a polynomial LASSO regression was selected. The advan-
tage of this kind of model structure is that a selection of the covariates is substantially
performed when the coefficients of the polynomial are set. A covariate, which was
excluded from the model, has a vanishing coefficient in the polynomial;

• The data clustering was performed using the k-means algorithm on a reference data
set: it was selected because it is a very well-established method, which can easily be
implemented in industrial applications. The number of clusters was set automatically
by computing the average silhouette score for each cluster number arrangement.

The peculiarity and the innovativeness of the present study can therefore be indi-
viduated in a complex application (data-driven multivariate wind turbine power curve),
characterized by several critical points, which must be mastered in depth, in order to
provide solutions to each building block of the problem, which can be as simple as possible.
This approach is novel in the scientific literature, because the applications of data clustering
and non-linear multivariate power curves are at their early stages, and it is interesting for
the industry because the use of data-driven models for custom wind turbine performance
monitoring has been gradually becoming a necessity. The general structure of the method
is summarized in the workflow of Figure 1.

The study is organized as a test case discussion, based on the analysis of the SCADA
data of a Vestas V52 wind turbine sited in Italy (850 kW rated power): the data were
provided by the Lucky Wind company. Practically, the goodness of the proposed approach
is discussed through the analysis of the most common performance metrics (MAE, MAPE,
RMSE) for the validation of the data-driven model. Furthermore, a method for analyzing
the accumulated performance change is proposed: it is based on the analysis of how
the MAPE changes in two subsets of the target data set. This procedure is useful in the
applications for individuating small performance changes accumulated along a relatively
long period: this can happen in the form of performance improvement due to technology
optimizations [37] or, vice versa, in the form of performance worsening [38,39], which can
occur due to the aging of the machine.

The work is therefore organized as follows: In Section 2, the test case and the data set
are described. In Section 3, the method is described. The results are collected in Section 4,
and the conclusions are drawn in Section 5.
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Figure 1. The workflow of the proposed method.

2. The Test Case and the Data Sets

The wind turbine of interest is sited in Italy and the model type is Vestas V52. The
rated power is 850 kW; the cut-in wind speed is 4 m/s; the rated wind speed is 14 m/s. The
rotor diameter is 52 m.

Two data sets were employed:

1. D1 goes from 1 January 2019 to 31 December 2019;
2. D2 goes from 1 January 2020 to 31 December 2020.

The available validated measurements have 10 min of sampling time, and those at
disposal for the present study are:

1. Produced power P;
2. Undisturbed wind speed v∞ reconstructed by the nacelle anemometer;
3. Rotor speed ω;
4. Blade pitch β;
5. Ambient temperature T.

The data pre-processing was based on the following steps, which are easily replicable
in industrial applications:

• The data were filtered on the wind turbine’s normal operation using the appropriate
runtime counter provided by the SCADA system;

• Industrial wind farms rarely operate under curtailment dictated by grid requirements,
and this is the case also for the present wind turbine. This aspect has nothing to do
with wind turbine performance, and therefore, operation under curtailment should
be filtered out for the purposes of the present work. This can be done by noticing
that a wind turbine operates in derated conditions by pitching anomalously with
respect to the normal. Therefore, the average wind speed/blade pitch [40] can be used
for individuating outliers associated with derating. The filtering can be practically
performed by eliminating time steps where the blade pitch deviates more than a
threshold (2◦ in this study) with respect to the average blade pitch for the given
wind speed;

• For each wind turbine, data were filtered between cut-in and the rated speed because
the power monitoring becomes trivial above the rated speed.

Upon filtering, D1 constitutes 18,000 samples and D2 19,930 samples. A summary of
the features of the data sets is reported in Table 1.
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Table 1. Features of the data set.

Data Set Data Points Use Measurements

D1 18,000 Training P, v∞, ω, β, T.

D2 19,930 Validation P, v∞, ω, β, T.

The dependence of wind turbine power on environmental conditions is a widely
debated issue, in particular as regards the external temperature [41]. Given the ap-
plied point of view of the present study, the simplest method was selected: it consists
of the renormalization of v∞ by considering the effect of air density as indicated in
Equations (2) and (3):

vc = v∞

(
ρ

ρre f

) 1
3

(2)

ρ = ρre f
Tre f

T
(3)

where vc is the corrected wind speed, ρ is the air density measured on site,
ρre f = 1.225 kg/m3 is the air density in standard conditions, Tre f is the absolute tem-
perature in standard conditions (288.15 K), and T is the absolute ambient temperature
measured on site.

An example of the raw data set and of the pre-processed data set (resulting in D1) is
reported in Figure 2.

Figure 2. Example of the raw data and of the pre-processed (D1) data.

3. Methods
3.1. General Description

As supported also by Figure 1, the proposed method involves a complex framework
because two data sets were employed for the training and application of clustering and
regression. The peculiarity of this work is that each building block of this complex problem
was simplified as much as possible, given the knowledge of the critical points of mul-
tivariate data-driven wind turbine power curve models and of the limits within which
simplifying is acceptable.

In summary, the steps of the method are the following:

• Divide D1 into clusters using the k-means algorithm, with k = 2, . . . , 20;
• For each k, compute the average silhouette score;
• Select the value of k that gives the highest average silhouette score;
• Apply the k-means algorithm to the data set D2, using the value of k selected above

and using the corresponding centroids C as initial values;
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• For each cluster of the D1 data set, train a LASSO regression and fix the hyperparame-
ters and the coefficients through K-fold cross-validation (with k = 10);

• For each cluster of the D2 data set, simulate the output using the corresponding
regression trained with the D1 data;

• Compute the error metrics by elaborating the difference between the measurements
and estimations on the D2 data set.

3.2. Data Clustering

The data set D1 was divided into clusters based on the well-known k-means algorithm [42].
This algorithm has been selected because it can be easily implemented in industrial appli-
cations using most statistical packages. Furthermore, the drawbacks of the algorithm are
mitigated for the present applications: severe outliers are filtered out in the pre-processing
phase, and therefore, the centroids selection should be reliable; furthermore, the dimen-
sionality issue is contained by the fact the selected possible covariates are nine (Table 1). It
should be noticed that the literature on the application of clustering algorithms to multi-
variate wind turbine power curves is at its early stages; for example, the k-means algorithm
was applied in the recent paper [43] and a more sophisticated fuzzy clustering was applied
in [44]. Based on these considerations, it was considered of interest for the purposes of the
present study to apply the k-means algorithm, but it is clear that the applications of smarter
methods (as hierarchical clustering [45,46]) would be a valuable step forward.

The algorithm starts from N possibly multi-dimensional observations (x1, x2, . . . , xn),
and the objective is partitioning the observations into k groups in order to minimize the
within-cluster sum of squares (variance), as indicated in Equation (4):

arg min
k

∑
i=1

∑
x∈Si

‖x−mi‖, (4)

where (S1, . . . , Sk) is the data partitioning and mi is the data average in the i-th partition.
The standard algorithm starts from an initial set of k means and assigns each observation to
the cluster having less distance with respect to the mean: for each observation addition, the
centroids (i.e., the means) are re-computed, and the algorithm stops when the assignments
no longer change.

In this study, the selection of the number of clusters was performed automatically
through the analysis of the silhouette score [47]. For each i-th observation associated with
the j-th cluster, the silhouette score is defined in Equation (2):

s(i) =


1− a(i)

b(i) , a(i) < b(i)

0, a(i) = b(i)
b(i)
a(i) − 1, a(i) > b(i),

where a(i) is the mean distance between the i-th observation and all the other data points
in the same cluster and b(i) is the minimum of the mean distances between the i-th
observation and all the points for each other cluster. a(i) and b(i) were computed using
the Euclidean distance, but there are other possible choices that have been explored in
the literature [48,49]. Given the definition in Equation (2), it arises that −1 ≤ s(i) ≤ 1:
s(i) approaching one means that the observation is well associated with a cluster; s(i)
approaching −1 means that the observation should rather be assigned to a neighboring
cluster. The silhouette coefficient for a given clustering of the observations can be computed
as the average of the silhouette scores (Equation (2)) over all the observations.

In this study, k ranging from 2–20 was contemplated, and the configuration with the
highest silhouette coefficient was selected: this procedure was applied on the reference D1
data set, and the obtained centroids were fed as input for the clustering of D2 (with the
same number of clusters as D1).



Appl. Sci. 2022, 12, 72 7 of 17

3.3. Polynomial LASSO Regression

Given M covariates xi, with i = 1, . . . , M, the LASSO regression is a particular way of
establishing a multivariate linear model (Equation (5)) between the set of xi and the target y.

y = xβ + ε, (5)

In this study, a model for each of the k clusters was set using the reference D1 data set.
The target of the models is the power P of the test case wind turbine, and the covariates
x are listed in Table 2: the set of covariates includes the wind speed vc, the blade pitch
β, and the rotor speed ω up to third power. This was done because the relation between
the wind speed and the power is non-linear, and it can be approximated as cubic at least
in a part of the power curve; furthermore, it is known that the power factor of a wind
turbine depends non-linearly on the blade pitch β [38]. Therefore, the objective of the
present regression structure is inquiring if it is possible to approximate with a polynomial
the non-linear dependence of the power P on the wind speed and on the most influential
working parameters (blade pitch β and rotor speed ω).

Table 2. Covariates of the LASSO regression.

Covariate Variable

x1 vc

x2 β

x3 ω

x4 v2
c

x5 β2

x6 ω2

x7 v3
c

x8 β3

x9 ω3

The LASSO regression algorithm selects the β coefficients by adding one covariate
at a time, so that the added covariate has the highest correlation with the target y. The
coefficients are set by minimizing the cost function in Equation (6):

J =
1

N1

N1

∑
i=1

(yi − ŷi)
2 + λ

M

∑
i=1
|βi|, (6)

where N1 is the number of observations in the training data set D1 and the estimation ŷi is
given in Equation (7):

ŷi =
M

∑
j=1

xj
i β j. (7)

The LASSO regression, expressed in terms of the covariates, is basically a multivariate
linear regression where the coefficients are set by minimizing the squared sum of errors with
a bound on the norm of the coefficients of the regression. The rationale for selecting this
method in the present work is that the penalty on the norm of the coefficients (Equation (6))
forces the coefficients of the covariates having a minor contribution to the model to be
exactly zero: this substantially acts as a simple feature selection algorithm, which can easily
be implemented in applications, and this is the reason why this was considered appropriate
for the purposes of the present work.

To set the hyperparameter λ, k-fold (with k = 10) cross-validation was performed [50].
Equation (7) was employed for simulating the output on the target data set D2, and
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the performance of the model, given the residuals between the model estimated and
measurements (Equation (8)), was quantified through the most common metrics: MAE
(Equation (9)), MAPE (Equation (10)), and RMSE (Equation (11)).

R(x) = y(x)− ŷ(x) (8)

MAE =
1

N2

N2

∑
i=1
|Ri| (9)

MAPE =
100
N2

N2

∑
i=1

|Ri|
yi

(10)

RMSE =

√
∑N2

i=1(Ri − R̄)2

N2
, (11)

where N2 is the number of observations in the D2 data set and R̄ is the average residual,
which is given in Equation (12):

R̄ =
1

N2

N2

∑
i=1

Ri. (12)

The metrics in Equations (9)–(11) can be computed on the whole D2 data set or
separately for each of the k clusters and provides an estimate of the average model precision
in simulating each single measurement of power P. Since the performance changes of
a wind turbine can be very small (order of a percent or less of the power P) and can be
due to control and technology optimization [37] or, vice versa, to aging effects [38], it can
be practically of interest to understand the capability of the model in detecting a small
accumulated effect along a large data set.

For this reason, following [51,52], one can divide the data set D2 into two subsets
(indicated with subscripts 1 and 2) and compute the quantity in Equation (13):

∆ = MAPE2 −MAPE1. (13)

Since, to the knowledge of the wind turbine owner and of the authors, there have
been no events at the test case wind turbine during D2, ∆ was theoretically expected to be
vanishing, and therefore, the obtained results for ∆ can be interpreted as the sensitivity of
the model, i.e., a lower bound on the accumulated performance change that can be detected.
The subdivision of D2 into two random subsets can be performed an arbitrary number of
times, and ∆ can be computed for each time and averaged on the runs (thus obtaining a ∆̄
as in Equation (14)): M = 1000 runs were selected for this study.

∆̄ =
1
M

M

∑
i=1

∆i (14)

4. Results
4.1. Data Clustering

In Figure 3, the average silhouette score for the clustering of the D1 data set is reported,
with the number of clusters k ranging from 2–20; given this, the selected number of clusters
is three.

In Figure 4, the best-performing clustering (silhouette coefficient equal to 0.84) of the
reference data set D1 is reported in the power curve plot. It arises that the clustering fairly
resembles the operation regions: near cut-in (pitch control), full load region (fixed pitch
and variable rotor speed), and partial load region (pitch control and fixed rotor speed). In
Figure 5, the corresponding plot for the data set D2 is reported: the clusters are set starting
from the centroids computed for the data set D1.
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Figure 3. The average silhouette score for the D1 data set, with the number of clusters k ranging from
2–20.
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Figure 4. The best-performing clustering for the data set D1.
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Figure 5. Clustering of the data set D2 starting from the centroids of the D1 data set.

It is evident that Figures 4 and 5 are qualitatively very similar. In order to have a deeper
insight into this aspect, the k-means algorithm with three clusters was run independently
on the data set D2, and this classification was compared against the one obtained by starting
with the centroids of the D1 data set. It arises that these two classifications coincide up to
96%, but this is not guaranteed if the method of this work is extended to a higher number
of covariates.
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4.2. Polynomial LASSO Regression

In Table 3, the coefficients of the LASSO regression are reported: as indicated in
Section 3.3, they were computed from the reference data set D1. It is interesting to notice
that for Cluster 1, there is a weak dependence of the power P on the rotor speed ω, and
this is consistent because the wind turbine basically operates at a fixed rotor speed in that
region. As regards Cluster 3, the coefficient of the v3

c covariate was set to zero, which is
reasonable because, near the rated power, the power P grows more slowly than v3

c .

Table 3. Coefficients of the LASSO regression, trained on the D1 data set.

Covariate Cluster 1 Cluster 2 Cluster 3

x1 −4.5 150.3 −0.12

x2 −7.9 −18.6 1.8

x3 0 −123.9 −956.2

x4 5.5 0 3.1

x5 −0.9 −3.1 −7.0

x6 0.3 0 0

x7 −0.2 −0.2 0

x8 0.6 3.4 0.4

x9 0 0 0.5

Intercept −96.8 1119.6 16,362.0

The results for the K-fold cross-validation for the three clusters are reported in Table 4,
in the form of the average RMSE and associated standard deviation. From Table 4, the
proposed model behaved better in the near-rated region (Cluster 3) with respect to the
moderate wind intensity region of Cluster 2: this is a non-trivial result because in previous
studies [31], it has been highlighted that the near-rated regime is particularly critical
to simulate.

Table 4. Results of the K-fold cross-validation for the three clusters: D1 data set.

Cluster Average RMSE (kW) Std. Dev of RMSE (kW)

1 15.5 9.2

2 31.4 4.1

3 28.7 6.2

In Figure 6, the measured and simulated D2 data are reported, grouped into clusters.
Figure 7 reports a zoom on an excerpt of the data from Figure 6, in order to appreciate the
capability of the model in reproducing the behavior of the measured data.

In Table 5, the results are reported as regards the model errors when simulating the
output on the target data set D2: the main result is that on average, the single measurement
of the power P can be simulated with a 7.2% percentage error. An interesting aspect is that
the absolute errors do not increase from Cluster 2 to Cluster 3 and decrease in percentage
(up to 2.8% on average), consistent also with Table 4; this is noticeable because, typically,
the most challenging operation region for modeling the power P is the near-rated power
(as discussed for example in [31]). The overall result for the MAE is noticeable as well,
because it means that the power P can on average be predicted with an absolute error of
12 kW, which is 1.4% of the rated power of the test case wind turbine.
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Figure 6. Measured and simulated power P for the data set D2; data are divided according to the
three clusters.
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Figure 7. Measured and simulated power P for the data set D2: zoom on a data subset.

Table 5. Metrics of the model errors on the target D2 data set.

Metric Overall Cluster 1 Cluster 2 Cluster 3

MAE (kW) 12.0 8.2 17.8 18.0

MAPE (%) 7.2 9.0 5.4 2.8

RMSE (kW) 16.3 11.4 21.8 21.9

Figure 8 allows a visualization of the model properties depending on the operation
regime: it consists o the plot (for data set D2) of the residuals R (Equation (8)), averaged
in intervals of measured power P whose amplitude is 10% of the rated. The average
absolute residual was in general of the order of 5 kW and increased at the crossroad
between Cluster 2 and Cluster 3; this is reasonable because, in this region, the wind turbine
control switches from variable rotor speed and fixed pitch to rated rotor speed and pitch
control. It is reasonable that the weak point of the proposed method is cluster merging;
multi-dimensional measurements at the crossroad of two clusters should likely be assigned
partially to both of them, for example through a fuzzy membership function. Nevertheless,
this was considered out of the scope of the present study because simple methods, easily
implementable in the industry, were selected.
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Figure 8. Average residual R (Equation (8)) as a function of the measured power P: D2 data set.

Table 6 reports the results for the average difference of MAPE when dividing D2 into
two random subsets: this procedure was applied to the whole data set D2 and separately
for each cluster. These results clearly indicate that the proposed method is appropriate for
detecting accumulated performance changes with a high sensitivity: this can be particularly
useful for analyzing wind turbine aging and/or retrofitting.

Table 6. Results for the average difference of the MAPE when dividing D2 into two random subsets.

Metric Overall Cluster 1 Cluster 2 Cluster 3

∆̄ (%) 0.0002 0.003 −0.006 0.002

4.3. Comparison against Benchmark Models

In order to support the usefulness of the approach proposed in this work, in this
subsection, the comparison against benchmark models is pursued. The same kind of
procedure is adopted, as depicted in Figure 1: the unique difference is given by the fact
that the LASSO regression of Section 3.3 is substituted by other types of regression. For
brevity, the reported information about this benchmark regressions is essential, since the
selected models are well known in the literature.

The benchmark models are the following:

• Univariate LASSO: For each cluster, a LASSO regression similar to the one in Section 3.3
was set up. The set of possible covariates from which the regression starts is given
by
(
vc, v2

c , v3
c
)
. Given that, as supported also in [32], the wind speed is the most

important input variable for a power curve model; this benchmark was selected in
order to analyze how much improvement is obtained when the same kind of regres-
sion is maintained and the most important operation variables are included (as in
Section 3.3);

• Multivariate support vector regression: This benchmark is obtained by setting up a
multivariate SVR for each cluster. The input variables are the corrected wind speed vc,
the blade pitch β, and the rotor speed ω. In this case, the non-linearity is accounted
for implicitly by the model, and there is no relevance in feeding as the input higher
powers of the input variables;

• Multivariate Gaussian process regression: This benchmark is similar as the previous,
but the regression is based on the Gaussian process.

The two multivariate benchmarks were selected because they have been widely em-
ployed for multivariate wind turbine power curve models [5,18,31], and it is therefore
interesting to inquire to what extent the error metrics worsen when the simplifications of
this work are adopted.
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The results for univariate LASSO are reported in Table 7. Comparing against Table 5,
the overall MAE and RMSE were one third higher, and this was due mainly to the increased
errors in Clusters 2 and 3, for moderate and high wind speeds.

The results for the multivariate SVR and GPR are reported respectively in
Tables 8 and 9 and were quite similar. By comparing against Table 5, the overall MAE and
RMSE were lower for the model proposed in this work; this is a remarkable result, given
the simplification of the LASSO regression of Section 3.3. The unique substantial advantage
of the multivariate SVR and GPR was a lower overall MAPE, and this was likely due to
the behavior of the models in Cluster 1, where the average power was lower.

In general, the comparison of Tables 5, 7–9 indicates that there was a substantial
improvement provided by the multivariate models with respect to the univariate one.
Furthermore, the comparison between the multivariate models indicated that there were
no evident error metrics worsening due to the simplifications of the regression proposed in
this work.

Table 7. Metrics of the univariate LASSO model errors on the target D2 data set.

Metric Overall Cluster 1 Cluster 2 Cluster 3

MAE (kW) 16.1 8.9 26.0 16.1

MAPE (%) 6.9 7.2 8.0 4.3

RMSE (kW) 24.9 12.6 35.9 36.2

Table 8. Metrics of the multivariate SVR model errors on the target D2 data set.

Metric Overall Cluster 1 Cluster 2 Cluster 3

MAE (kW) 13.7 8.0 22.5 21.6

MAPE (%) 6.2 6.8 6.9 3.2

RMSE (kW) 20.2 11.8 28.9 27.2

Table 9. Metrics of the multivariate GPR model errors on the target D2 data set.

Metric Overall Cluster 1 Cluster 2 Cluster 3

MAE (kW) 13.6 8.0 22.3 21.3

MAPE (%) 6.8 7.8 6.8 3.2

RMSE (kW) 19.7 11.6 28.4 26.6

5. Conclusions and Further Directions

In the present study, a method for multivariate wind turbine power monitoring was
proposed. The objective was conjugating simplicity, which can be exploited in industrial
applications, with the awareness of the critical points regarding wind turbine multivariate
power curves. Actually, in the present study, a meaningful simplified solution was proposed
for the following points:

• Set of covariates: The method employs wind speed, blade pitch, and rotor speed
and accounts for the dependence on the external temperature by renormalizing the
wind speed;

• Model structure: The non-linearity was taken into account through the simplification
of a polynomial up to cubic terms in the above-listed input variables. A LASSO
regression was performed, which allows formally maintaining the structure of a
linear regression;

• Input variables’ selection: Through the K-fold cross-validation of the LASSO regres-
sion, the irrelevant input variables were discarded by setting to zero the corresponding
coefficient in the polynomial;
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• Data clustering: The well-established k-means algorithm was employed to divide
the multi-dimensional data appropriately, and a separate sub-model was set up for
each cluster.

The method was tested on real-world data from a Vestas V52 wind turbine owned by
the Lucky Wind company and sited in Southern Italy. The reference data set was employed
for training the k-means algorithm and selecting the optimal data clustering (based on
the silhouette coefficient): k = 3 was selected, and this qualitatively coincides with the
main different control regions of a modern wind turbine. Subsequently, a polynomial
LASSO regression for the power of the wind turbine was performed for each obtained
cluster: the reference data were used for selecting the input variables and setting the
regression coefficients through the K-fold cross-validation. The performance of the model
was quantified by analyzing the discrepancy between the measurement and simulation in
the target data set.

It resulted that the mean absolute error of the model in the validation data set was
12 kW (1.4% of the rated power), corresponding to a mean absolute percentage error of
7.2%. The absolute errors did not increase in the near-rated region with respect to the
moderate wind speed region (Cluster 3 against Cluster 2), and therefore, the percentage
errors decreased, reaching 2.8% on average. This result is interesting because it is typical
that, vice versa, the near-rated region is the most critical as regards power monitoring.
It was noticeable that, despite the simplifications of the proposed methods, the obtained
average error metrics were competitive with the state-of-the-art in the literature, as can be
argued by the discussion in Section 4.3 and by comparing against Table 1 in [33].

Furthermore, an analysis was devoted to monitoring the accumulated performance.
The rationale for this analysis was that the order of magnitude of some performance
changes possibly occurring in a wind turbine’s lifetime is particularly small, but affects all
the observations from a given moment. Therefore, monitoring small performance changes
along long periods requires shifting the focus to the difference accumulated in a period
against a reference one. To this aim, the target data set considered in this study was
randomly split in two, and it was observed that the proposed method had a remarkably
high sensitivity because the average accumulated percentage difference that it is possible
to detect was of the order of 0.001%.

Therefore, the main lesson from this study, which can be particularly useful in the
wind energy practitioners community, is that for application purposes, a multivariate wind
turbine power curve model does not need to be overly complicated, but should rather
contribute intelligently to each of the critical points regarding this type of problem.

The approach of this work was mainly methodological, but it should be emphasized
that it has several practical applications. For example, a similar, albeit more complex
method, was employed in [38,53] for quantifying the effect of aging on wind turbine
performance. A further application of the present study, which is being pursued at present,
is the estimation of the effects of icing on wind turbine performance. Actually, the increasing
exploitation of wind energy in harsh environments due to increasing demand for renewable
energy production has been posing the issue of characterizing the performance of wind
turbines in extreme conditions. Blade icing can likely be individuated as reduced rotor
speed, and consequently extracted power, for a given wind speed [54–56]: therefore, a
model similar to the one proposed in the present paper should be useful to individuate the
behavior of a wind turbine in icing conditions.

Furthermore, a topic that has been recently attracting attention in the wind energy
literature is the effect of static and dynamic yaw error on wind turbine performance [57–60];
the incorporation of such an effect in multivariate wind turbine power curve models would
be a valuable development. Finally, a useful remark is that the the number of possible
covariates could be enlarged quite arbitrarily; in that case, a dimension reduction algorithm
such as principal component analysis [61] should be included in the modeling chain.
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Nomenclature
The following abbreviations are used in this manuscript:

Abbreviation Meaning
GPR Gaussian Process Regression
IEC International Electrotechnical Commission
LASSO Least Absolute Shrinkage and Selection Operator
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Squared Error
O&M Operation and Maintenance
RMSE Root Mean Squared Error
SCADA Supervisory Control And Data Acquisition
SVR Support Vector Regression
Symbol Meaning
k Number of clusters
C Centroids of the clusters
s Silhouette score
y Output of the regression (measured)
ŷ Output of the regression (estimated)
x Input of the regression
β Coefficients of the regression
λ Hyperparameter of the regression
N Number of data points
K Number of folds
Symbol Meaning
v∞ Wind speed measured by nacelle anemometer
vc Wind speed renormalized with the external temperature (Equations (2) and (3))
T External temperature
β Blade pitch angle
ω Rotor speed
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