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Featured Application: In neurodegenerative diseases and neurorehabilitation, follow-up requires
instrumental evidence besides clinical cognitive and motor scores. fMRI is frequently not suit-
able, either because patients are not eligible for an MRI or because it is prone to motion arti-
facts. The fNIRS technique attenuates these limitations since brain activations can be measured
in a more versatile experimental setting, even if restricted to cortical activity. Therefore, the
roadmap towards full clinical acceptance of fNIRS aims to provide an additional and more flex-
ible solution to fMRI when not available or feasible, but it needs standard signal processing
and protocols. This study provides comparisons of alternative processing methods in the above
applicative perspective.

Abstract: Functional Near-Infrared Spectroscopy (fNIRS) captures activations and inhibitions of
cortical areas and implements a viable approach to neuromonitoring in clinical research. Compared
to more advanced methods, continuous wave fNIRS (CW-fNIRS) is currently used in clinics for its
simplicity in mapping the whole sub-cranial cortex. Conversely, it often lacks hardware reduction of
confounding factors, stressing the importance of a correct signal processing. The proposed pipeline
includes movement artifact reduction (MAR), bandpass filtering (BPF), and principal component
analysis (PCA). Eight MAR algorithms were compared among 23 young adult volunteers under
motor-grasping task. Single-subject examples are shown followed by the percentage in energy reduc-
tion (ERD%) statistics by single steps and cumulative values. The block average of the hemodynamic
response function was compared with generalized linear model fitting. Maps of significant activa-
tion/inhibition were illustrated. The mean ERD% of pre-processed signals concerning the initial raw
signal energy reached 4%. A tested multichannel MAR variant showed overcorrection on 4-fold more
expansive windows. All of the MAR algorithms found similar activations in the contralateral motor
area. In conclusion, single channel MAR algorithms are suggested followed by BPF and PCA. The
importance of whole cortex mapping for fNIRS integration in clinical applications was also confirmed
by our results.

Keywords: continuous wave functional near-infrared spectroscopy; rehabilitation monitoring;
brain activation mapping; motor tasks; functional near-infrared signal processing; movement artifact
removal; hemispheric hemodynamic response; clinical fNIRS translation

1. Introduction

For more than two decades, functional Near-Infrared Spectroscopy (fNIRS) has be-
come a valuable tool for non-invasively estimating the Hemodynamic Response Function
(HRF) and mapping cerebral cortex activations [1]. The phenomenon of HRF had been
observed many decades earlier in invasive experiments investigating the fine functional
mapping of the exposed cortex. However, in that context, the HRF was just one of the
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many intrinsic or dye-enhanced optical responses available to investigators [2–5]. The
feature which allows HRF to be accessible to fNIRS and other non-invasive transcranial
measurements is the critical variation of perfusion to even modest increments in the lo-
cal oxygen consumption. This is probably needed to compensate for transport delays
from vessels to cells and is driven by powerful neuro-vascular coupling mechanisms [5].
Briefly, neuro-vascular coupling actively enhances the regional cerebral blood flow and
volume. A peak in oxygenated hemoglobin concentration [HbO2] having a time delay
of 4–5 s after neuronal activation is shown. Venous outflow increases, causing a drop in
deoxygenated (alias, reduced) hemoglobin concentration [HbR]. Next, the hemodynamic
equilibrium recovers its baseline within 10–12 s. Accordingly, HRF-related signals are
powerful, yet indirect markers of neural activity with a fair spatial resolution (order of
10 mm) but limited time resolution (order of seconds, compared to the 1 ms of neural action
potentials). Nonetheless, functional imaging has gained a prominent position in studying
brain anatomic-functional organization, functional and practical connectivity, and their
damage associated with neural pathologies [6].

The first alternative approach to fNIRS for monitoring regional blood volume changes
was based on blood labeling radiotracers in Single Photon Emission Computed Tomogra-
phy and Positron Emission Tomography [7]. Despite the limitation in both space and time
resolution of nuclear imaging, these pioneering studies paved the way to the actual appli-
cation of functional imaging. The advent of functional MRI (fMRI) [8] offered better space
and time resolution, as well as complete non-invasiveness and improved signal-to-noise
(SNR) ratio. Indeed, fMRI is currently the gold standard in the non-invasive investigation
of neural activity, even if the unique quantification capabilities of nuclear medicine should
not be forgotten. fMRI is based on the blood-oxygen-level-dependent (BOLD) contrast,
which reflects up to 4–5% of the overall anatomical contrast. The BOLD signal is due to
the washout, which augments the local magnetic field homogeneity and, ultimately, the
signal level due to its paramagnetic properties. This method is characterized by a good
spatial resolution (i.e., order of 10 mm) in functional mapping without any depth resolution
limits due to the ability to map the whole cortex as well as subcortical and spinal gray
matter layers. However, particularly in clinical setups, fMRI presents applicative short
comes of MRI scanner complexity and costs, difficulties with non-cooperating subjects,
claustrophobia, and high sensitivity to motion artifacts. In addition, the high magnetic field
environment causes problematic multi-modal integration with EEG.

Conversely, fNIRS presents clinical application potentials which may overcome some
of the fMRI limitations. With respect to poorly cooperating subjects, fNIRS cannot be
performed, which represents a real opportunity to overcome the motion artifact sensitivity
and practical or environmental eligibility, such as the presence of mental implants or
suffering from claustrophobia [9,10]. This technology measures attenuation changes of at
least two NIR-wavelengths around the isosbestic point at 805 nm, where HbO2 and HbR
absorbances are equal. In this way, depending on the employed fNIRS technology, either
absolute or relative concentration changes can be measured and employed to estimate
HRF associated with functional activation. The main advantage of using fNIRS in clinical
applications compared to fMRI is its higher tolerability. Indeed, functional measurements
are acquired in an open environment and by only employing an EEG cap coupled to
NIR-optodes, namely, either sources or detectors. This approach allows us to map brain
activity according to measurement channels given by neighboring source and detector
pairs, hence having a spatial resolution of 3–4 cm. Although movement related artifacts are
still an issue, they are reduced to the sole coupling between a subject’s scalp and fNIRS-
cap, thus avoiding the rigid head binding imposed by a fMRI setup. As a result, fNIRS
functional and resting-state acquisitions can be also performed in impaired subjects who
cannot prevent head movements. Patients’ watching and care is also not restricted as in
an MRI tunnel, and claustrophobic distress is avoided.

Conversely, the main fNIRS limitation is related to its surface approach opposed to the
volumetric sensitivity of fMRI. Hence, only the sub-cranial cortex is sensed by NIR-light,
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leaving out activations in the mesial cortex, in deep scissures, and in all the deep gray
matter nuclei. Interestingly, the cortex areas sensed by fNIRS and EEG are almost the
same, and the two systems are often integrated with negligible interference. This potential,
though beyond the scope of this study, further increases the interest in clinical fNIRS
applications [11].

Despite the above technical and portability advantages, fNIRS translation to clinics is
still hindered by its limited spatial resolution and SNR due to motion artifacts (MAs) and
intrinsic physiological interference over the acquired signal. Moreover, with reference to
the signal preprocessing and analysis, a standard procedure is still missing due to a wide
heterogeneity of available instrumentation and research objectives, which translates into a
poor impact on interpretation and reproducibility of results [12]. Consequently, fNIRS is
still not approved for stand-alone diagnostic and therapeutic procedures. Therefore, careful
preprocessing of the signal is required prior to HRF estimation. As mentioned before, this
process is still opened to active biomedical research and is far from the established standards
required by clinics. As will be discussed in Section 2.2, the small contribution of HbO2 and
HbR absorbance in the brain vessels, compared to all the other tissues (such as the scalp,
skull, liquor, and meninges) makes fNIRS highly sensitive to motion-related changes and
coupling of optodes. Hence, a major problem in fNIRS signal processing is associated with
the detection and reduction of related MAs. In addition, physiological confounding factors
(PCFs) not related to neurovascular coupling are generated by vascularized tissues (scalp
and meninges, mainly), which respond to systemic cardiovascular hemodynamics and
regulation, including the pulse, respiratory-related modulations, and slower vasomotor
mechanism such as Mayer waves, hence possibly misinterpreting results associated with
brain activation [13].

The problem with MAs and PCFs can be addressed by instrumental solutions, namely,
by employing fNIRS technologies able to estimate absolute concentrations of HbO2 and
HbR, e.g., Time-Domain fNIRS, which can resolve the penetration depth according to the
time-of-flight (TOF) of photons reaching the cortex [14], or Frequency-Domain NIRS that
employs intensity-modulated and phase-sensitive detection based on the mean TOF [15].
Other strategies provide adaptive cancellation of artifacts based on ancillary sensors to
regress superficial confounding factors from the fNIRS signal. Among these approaches,
and considering the clinical experimental setting, the best balance could be represented by
the short-separation channel regression [16,17], whose performances can be additionally
enhanced by movement sensors and hemodynamic sensors [18–20].

However, most commercial fNIRS instruments are based on Continuous Wave devices
(CW-fNIRS) and are often not coupled to a separate artifact sensing system. Therefore,
the present study addresses this condition, which leaves all the artifact removal burden
(and uncertainties) to preprocess the raw fNIRS signals. In this perspective, some of the
significant artifact reduction strategies will be presented, and results relevant to several
combinations of them will be compared in a group of healthy volunteers performing a
hand grasping motor task. Among the prospective benefits of this study, the presented
results can be taken as a justification for adopting specific preprocessing and analysis
pipelines because of further clinical studies, which may not employ a separate artifact
sensing system.

It is worth remarking that a thorough review of published fNIRS cleaning algorithms
is out of the study scope. In addition, experimenting with all possible combinations of
options in the various preprocessing steps might lead to many comparisons. Conversely,
we used only a small set of the main MA removal algorithms [21–25], adding some variants
explained in the Methods section, with a total of eight algorithms. The subsequent bandpass
filtering and principal component analysis (PCA) steps were uniformly repeated in the eight
compared pipelines. Despite the necessarily limited examples, we provide quantitative
comparisons relevant to the energy reduction of each step in each pipeline and the final
HRF outcome, aiming at giving the reader both a theoretical and an applicative perspective.
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2. Materials and Methods

In this section, we present the processing steps required for computing HbO2 and
HbR concentration changes in CW-fNIRS data, motivating them by discussing the compo-
nents, artifacts, and confounding factors of the raw optical density (OD) signal. A concise
description of the compared algorithms is then given. Finally, the experimental setup is
described, along with the comparison criteria.

2.1. Conversion to Optical Density and Concentration

According to the Beer–Lambert Law, absorbance is evaluated by the optical density (OD):

OD(λ, t) = log
(

I0(λ)

I(λ, t)

)
= log(I0(λ))− log(I(λ, t)) (1)

where I0(λ) is the non-attenuated light intensity and I(λ, t) is the sensed intensity at time t
after passing through a biological sample. In the context of NIRS, this equation needs to be
extended to the Modified Beer–Lambert Law (MBLL), introducing a scattering dependent
parameter to take into account the optical properties of diffusive media such as biological
tissues and the increase in photon pathlength compared to source–detector separation [26]
(see also Section 2.2). Namely, most commercial CW-fNIRS systems employ two NIR-
wavelengths placed within the optical window on opposite sides of the isosbestic point
(805 nm) for maximizing HbO2 vs. HbR discrimination [27]. Hence, the MBLL equation
considering only HbO2 and HbR chromophores is represented by the following equation

∆ODi,j(λ, t) = Li,j·DPF(λ)·(εHbO(λ)·∆[HbO2] + εHbR(λ)·∆[HbR]) (2)

where Li,j is the ith-source to jth-detector length measured at the scalp surface, and εHbO(λ)
and εHbR(λ) are the respective oxy- and deoxy-hemoglobin molar extinction coefficients.

DPF(λ) is the differential pathlength factor, a unitless scalar parameter whose Li,jDPF(λ)
product accounts for the longer travel of scattered photons. In CW-fNIRS the DPF(λ)
cannot be estimated directly; hence, tabulated DPFs derived from other studies from TD-
fNIRS, FD-fNIRS, ex-vivo and in-silico simulations are considered [28,29]. As a result,
CW-fNIRS studies cannot be said to be quantitative. Nonetheless, the appropriate use
of these factor permits an even scaling in the presence of different Lij distances and of
subjective differences in DPF(λ), which is strongly age dependent [28,30]. An absolute
quantification of HRF is beyond the scope of CW-fNIRS, which conversely addresses the
statistical significance of HRF deflections above confounding factors and noise. In addition,
in CW-fNIRS and limited to the target brain vessels, the scattering dependent parameter in
the traditional formulation of MBLL can be neglected since optical quantities are computed
differentially and scattering is limited compared to absorption effects due to only HbO2
and HbR (Equation (2)).

Finally, the MBLL for HbO2 and HbR results in a system of two linear equations in
two unknowns, namely, ∆[HbO2] and ∆[HbR] concentration changes, with solution

[
∆[HbR]
∆[HbO2]

]
=

[
εHbR(λ1) εHbO2(λ1)
εHbR(λ2) εHbO2(λ2)

]−1
 ∆OD(λ1)

DPF(λ1)·L
∆OD(λ2)

DPF(λ2)·L

 (3)

In this work, we selected the DPF value according on the work of Scholkmann and
Wolf [28], who proposed a general equation for the computation of age- and wavelength-
specific values based on published data. We are aware that the proposed equation was
designed for frontal cortex optical data. However, even if the employed fNIRS probe
addresses the whole superficial cortex (details are provided in Section 2.8), it is generally
assumed that this aspect does not drastically affect pre-processing and analysis since
relative (not absolute) functional activation is addressed.
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2.2. Comments on Artifact Sources

So far, the MBLL was considered as if the absorbance of tissues other than brain
vessels (BVs) was constant and was accordingly omitted in its differential expression
(Equation (2)). Conversely, motion dynamics m(t) cause large changes in the distance
∆Ltissue travelled through a given tissue; hence, measured ∆OD(λ, t) quantities are strongly
affected by underlying tissue distribution. In addition, the traditional fNIRS HRF is highly
contaminated by both extracerebral and cerebral components not directly related to evoked
brain activity and related to systemic hemodynamics s(t) [13]. Therefore, these changes
in the effective distance of photon travel are multiplied by the relevant linear attenuation
µtissue(λ) = εtissue(λ)·ctissue, which is here approximately assumed as a constant specific to
the tissue concentration, with the only exception of the blood compartment.

∆OD(λ, t) = DPF(λ)·∆Ltissue·µtissue(λ) + n(t) (4)

which in turn is subdivided according to tissues encountered along the photon path

∆OD(λ, t) = DPF(λ)·


∆LBV ·µBV(λ) + ∆Lskin(m(t))·µskin(λ)

+∆Lbone(m(t))·µbone(λ)
+∆Lliquor(m(t))·µliquor(λ)
+∆Lcells(m(t))·µcells(λ)

+∆Lblood(m(t), s(t))·µblood(λ)

+ n(t) (5)

The high sensitivity of effective distances ∆Ltissue to motion m(t) relates to geomet-
rical variations in source–detector coupling, even with minimal changes in the relative
source–detector distance and orientation. Namely, since absorption variations due to
brain perfusion changes are mainly referred to the BVs within the cortical layer, quan-
tification of relative changes in HbO2 and HbR concentrations can be corrected by in-
troducing a Partial Volume Factor PVF(λ), considering the Partial Pathlength Factor
PPF(λ) = DPF(λ)PVF(λ) to account for variations of optical pathlength over only the
cortical layer [30,31].

Classically, the source–detector coupling volume is depicted as a photon path whose
ends are the source and the detector, while the diffused photons enter the tissues, touching
the cortex in its deepest midway region. This schematically, yet clearly, shows the huge
weight of tissues other than BVs. Consequently, large unpredictable changes in the presence
of head acceleration forces and contraction of cranio–facial muscles can be expected. Fur-
thermore, several elements concur in the amplification of the unwanted artifactual changes
vs. the BVs pathways: (i) the effective lengths of surface tissues are heavily weighted by
the higher illumination density in external layers compared to the cortex; (ii) among them,
bone displays the highest linear attenuation, which is not sufficient to hinder transcranial
fNIRS (thanks to the NIR optical window), yet is several times higher than hemoglobin [32].

As for PCFs, according to Equation (5), the absorbance of blood compartments other
than BVs is lumped into a single term, which should mainly include skin and meninge
vessels responding to systemic circulation drives s(t). In addition, the extent of the s(t)
effects on BVs themselves (not shown in Equation (5)) is still an open question. Irrespective
of the driving mechanisms, the general criterion to separate PCFs is the hypothesis of
a generalized action on all optodes. Hence, all cleaning strategies share the removal of
common-mode components (details are provided in Sections 2.5–2.7).

2.3. The Proposed Order of CW-fNIRS Processing Steps

The unprocessed ∆OD signals at the two wavelengths were separately processed prior
to the application of MBLL. This choice was motivated by the unpredictable effect of biases
on both ∆OD signals while solving the MBLL (Equation (3)), which conversely represents
a mandatory linear operation of each single processing pipeline.

After a quality check of the raw signals (described at Section 2.4), the first actual signal
processing step performs MA reduction since it considers non-linear and time-variant
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operations over the ∆OD time course. In fact, all typologies of MA algorithms share the
detection of outlying features localized in time and their correction. Accordingly, our
suggestion is that no other processing algorithm should be applied prior to this step since
any previous cleaning or filtering might hinder the detection phase. Hence, the second
step was linear bandpass filtering (BPF), next followed by common-mode reduction of
physiological interference by principal component analysis (PCA). In principle, the linearity
of these steps should permit their full interchangeability. However, we preferred to filter
data before PCA since the latter method works on the global components of the signal (see
Section 2.7).

Finally, after MBLL application, the HRF can be estimated either by block averaging of
∆[HbO2] and ∆[HbR] across trials or through linear estimation models such as the General
Linear Model (GLM) [29]. While both approaches allow us to infer cortical activation and
test its statistical significance, block averaging does not impose any temporal constraints
over the shape of HRF. Conversely, the GLM approach allows us to model the measured
response as a linear combination of effects and confounding factors. In the results section,
we provide graphical and numerical evaluation of activation according to both approaches.

Pre-processing and analysis were conducted in Matlab R2018b (The MathWorks, Inc.,
Natick, MA, USA) through user-defined scripts integrating available functions of Homer2
developer’s version [33] and NIRS Brain AnalyzIR Toolbox [34]. In conclusion, the pro-
posed pipelines follow these consecutive stages: (1) MA reduction (herein eight variants);
(2) bandpass filtering; (3) reduction of physiological interference by PCA; (4) MBLL for
∆[HbO] and ∆[HbR] computation; (5) block averaging and significance tests of single
channel responses.

2.4. Channel Exclusion Criterion

Ahead of the signal processing pipeline, measurement channels presenting a low SNR
must be identified and excluded from further analysis, and participants presenting an over-
all low SNR across measurement channels must be excluded from further analysis in order
not to lead to misinterpretation of group-level results. In line with other studies [12,35], we
considered SNR to measure the local coefficient of variation above a given threshold Th:

CV%tw(t) =
STDtw(t)
AVGtw(t)

·100% > Th (6)

where subscript tw indicates the duration of the time window [t− tw/2; t + tw/2] in which
the standard deviation (STD) and average (AVG) statistics were computed. Namely, this
time window is set to all time periods where a functional task is performed (i.e., overall
duration of experimental blocks), hence obtaining the overall SNR of measurement channels.
Threshold Th was set to 7.5% within the range of previously published works [12,35].
Conversely, the former step of excluding participants from analysis due to an overall
low SNR can be performed according to visual inspection of the dataset. Besides visual
inspection, we decided to also perform this step automatically by labeling low SNR datasets
when CV%tw(t) > Th exceeded 10% of the overall number of measurement channels across
wavelengths. In this work, five out of 23 participants were excluded due to low channel-
wise SNR across the overall measurement channels (further details regarding the dataset
are presented in Section 2.8).

2.5. MA Reduction Algorithms

In general, MA reduction algorithms involve an identification step to test the presence
of outliers and label MA windows, which will be corrected in a second correction step.
Hence, MA reduction algorithms are time-variant (most often in on–off fashion) and non-
linear due to thresholding methods employed in the identification step.

Moreover, most algorithms separately label MAs in single channels (SCs). However,
the possible correlation of MA occurrence among channels is an open question. Hence, we
also tested multi-channel (MC) variants in which the SC labelling was propagated to all
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channels according to “OR” logical operator. In brief, MA labeling was extended to all time
windows where at least one of the signals showed outlier features. Our interest in such
variants was two-fold: (i) a large increase in labelled tracts passing from SC to MC would
indicate that MA timing is sparse through channels, thus contrasting the hypothesis of
common MA sources; (ii) the level of disruption in the useful HRF, which might be caused
by an overcorrecting MC strategy.

The correction algorithms of MA labelled windows were based on the reduction of
outlier features by substitution of the raw signal with common-mode dynamics found by
targeted PCA (tPCA, see Appendix A.3) [23] and spline interpolation [21]. Starting from the
original version of the Movement Artifact Reduction Algorithm (MARA) strategy proposed
by Scholkmann et al. [21], we also tested the hybrid version proposed by Jahani et al. [22] to
simultaneously detect baseline shifts and spike artifacts. As illustrated in the Appendix A,
the MA detection and the correction algorithms are found in the current literature. However,
we tested several combinations of identification and correction methods, some of which not
considered by the original works, and according to both the SC and the MC labeling. We
also considered two additional algorithms, namely, the Temporal Derivative Distribution
Repair (TDDR) [24] and a wavelet-based method [25], which conversely apply signal
decomposition methods to the overall signal trend rather than acting only on specific
MA windows. In conclusion, these MA algorithms paired to SC- vs. MC-labelling and
correction methods led to eight different variants, successively considered pipelines, to
discuss the results of HRF estimation. These algorithms are labelled as follows: SC-MARA-
Spline, SC-MARA-tPCA, MC-MARA-Spline, MC-MARA-tPCA, HybridMARA-Spline SG,
HybridMARA-tPCA SG, TDDR, and Wavelet.

2.6. Bandpass Filtering

Despite the large MA correction of any of the above algorithms, linear bandpass
filtering is still a good practice for reducing very slow drifts and high frequency noise.
In this study, the standard choice of 0.01–0.2 Hz bandwidth was adopted [36]. Although this
step might be trivial, we were interested in reporting how the amount of power reduction
introduced by filtering depended on the previous MA reduction step.

Moreover, both the high-pass fHP and the low-pass fLP frequency cutoffs deserve
some critical evaluation relevant to the experimental design (details in Section 2.8) and
to the final statistical assessment of HRF, respectively. In block-design experiments with
a repetition frequency fBD = (Ttask + Trest)

−1, having fBD > fHP is a requirement to not
filter out the addressed HRF task-driven oscillations. The motor task adopted for this study
considers Ttask = 10 s and Trest = 20 s, leading to fBD = 0.033 Hz � fHP. In the case
of a lower margin, it might be necessary to high-pass filter the HRF regressors, prior to
statistical analysis by the generalized linear model (GLM), or inverse-filter the HRF shape
extracted by block-averaging, to recover the unfiltered HRF shape.

Low-pass filtering at fLP = 0.2 Hz improves SNR. Apparently, the elimination of
oscillations shorter than 5 s should have no drawbacks given the slower HRF dynamics.
This holds if the final statistics are based on the block average. Conversely, detrimental
effects should be considered in case of GLM analysis, where statistical significance relies
on the whiteness of residuals and whose requirement is not satisfied by the low-pass filter
smoothing [37,38].

2.7. Reduction of Physiological Interference by PCA

PCA and correction by the removal of the largest components is one of the earliest
fNIRS signal conditioning methods [39]. Several studies have compared PCA to other MA
reduction algorithms; however, its limits in treating such unsmooth and heterogeneous
artifacts have been pinpointed (see the discussion on tPCA in Appendix A.3). Conversely,
PCA is fully valid in addressing the reduction of common-mode PCFs due to hemody-
namic activities other than the HRF [40]. The working principle consists of enhancing
the contrast of localized task-related activations by removal of the largest components of
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PCA, which are considered global effects common to all measurement channels. Indeed,
considering the more extended framework presented in Section 2.2, fNIRS measurements
are highly affected by extracerebral and non-evoked cerebral activity, making only the BPF
operation insufficient to estimate the corresponding HRF [13], especially for Mayer waves
and respiratory oscillation due to partial overlap with the frequency content of HRF [41].

Alternative methods, not applied in this study, that do not involve auxiliary measure-
ments of extracerebral and systemic activity are based on the extraction of a common-mode
component as a median of all signals (or all signals in one hemisphere), next regressing it
out from each channel (or each channel of the opposite hemisphere) [12]. Additionally, the
impact of slow-varying physiological oscillations and scalp-related superficial confounds
can be reduced by employing techniques such as Discrete Cosine Transform, pre-coloring,
and pre-whitening methods directly in subject-level analysis [42,43]. The critical parameter
in PCA cleaning is the amount of power to be deleted, which in the present study was
set to remove PCA components by up to 80% of the variance in the data, similar to other
studies [44]. The PCA method is particularly suited to remove physiological interference
over the considered experimental dataset, since we considered an fNIRS probe that almost
covers the whole subject scalp surface (details are presented in Section 2.8). Hence, the
largest PCA components do identify global variations of physiological oscillations, leaving
only 20% in the variance of the data as localized HRF-related activity.

2.8. Subjects and Experimental Set-Up

The presented pilot analyses were carried out on a group of 23 healthy young adults
(age 28.3 ± 4.0 years) aiming at setting up a processing pipeline suited to clinical ap-
plications employing CW-fNIRS instrumentation. Experimental data were acquired at
IRCCS Fondazione Don Carlo Gnocchi, Milan. The instrument was the NIRScoutX 32 × 32
(NIRx Medizintechnik, Berlin, Germany). This system performs functional measurements
at 760 and 850 nm wavelengths and employs LEDs as the source technology and avalanche
photodiodes as detectors. The head cap consisted of 32 detectors and 32 sources locations,
making a total of 102 measurement channels between them with a resulting sampling
frequency of 1.9531 Hz. The mean source–detector distance, referring to the virtual co-
registration of this configuration in the Colin27 atlas in AtlasViewer software package [45],
was 3.46 cm (Figure 1).
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Figure 1. Employed fNIRS probe configuration in the current study. (Left) Red and green dots indicate
the respective location of LED sources and fiber optics detectors according to the 10–10 reference
system labeling. (Right) Virtual co-registration of source (red dots) and detector (blue dots) locations
over the Colin27 anatomical template in the AtlasViewer software package [45].

The functional task consisted of a motor-grasping task where participants were asked
to alternatively move their left or right hand by repeatedly squeezing sponge balls placed
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in their palms. Together with the similar version of finger-tapping, this functional task
is widely used in fNIRS literature for assessing cortical activation associated with motor
functions over motor and somato-sensory areas mapping the hand [46]. A block-design
paradigm was adopted, and a schematic representation of the timing is presented in
Figure 2. Participants had to sit still in a dim light room watching a stimulus presentation
screen with a cross placed at its center, which represented the resting condition. Conversely,
the task condition was the repeated left vs. right grasp and release of the sponge ball when
the cross blinked at 0.8 Hz over the left vs. right side of the screen. The task condition lasted
10 s followed by 20 s of the resting condition, while stimulus presentation was randomized
between the hand movement and repeated 10 times. No adverse conditions were simulated
during the data acquisition.
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2.9. Signal Correction Metrics

The proposed comparison of pipeline variants (changing the MA reduction with
the same filtering and PCA) suffers from a lack of ground-truthing. A possible way to
systematically compare the results of different pipelines includes an assessment with
Receiving Operating Characteristics (ROC) curves of simulated data [34]. This process is
highly recommended to simulate HRF activation over resting-state data, which were not
available during data acquisition. Therefore, given this limitation, we monitored the effects
in energy reduction exerted by each step and its variants.

The Energy Relative Decrease (ERD) was tabulated over optical density at each step
of the processing pipeline—namely, at MA rejection, BPF, and PCA steps—with respect
to the starting energy of the un-processed optical density data as a percentage of energy
reduction. This concept can be summarized the following equation

ERDstep% =
E f ,step − Ei

Ei
100% (7)

where E f ,step and Ei indicate the respective mean total energy of the ∆OD signals ahead of
the single pre-processing step and prior to MA reduction.

The performances of the BPF filter step in the 0.01–0.2 Hz frequency range were
additionally tabulated according to the power ratio between filtered and unfiltered sig-
nals. More precisely, the Power Ratio within-band (PRwb) and outside-band (PRwb) (i.e.,
passband and stopband, respectively) was computed as a percentage ratio between the
mean Power Spectral Density (PSD) ahead and prior to the BPF step. This concept can be
summarized in the following equation

PRwb[%] =
FPSDwb
UPSDwb

100 (8)
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PRob[%] =
FPSDob
UPSDob

100 (9)

where FPSD and UPSD indicate the respective filtered and unfiltered PSD of ∆OD signals.
Finally, the resulting significant activations by block-average and group-level analysis

were compared, which provided an overall quality assessment since the expected activa-
tions presented high confidence in the simple motor task on healthy subjects. Hence, the
block-average outcomes of the differently cleaned fNIRS signal were plotted and visually
compared. The block average step was performed with Homer2 software (hmrBlockAvg
function), while group-level maps of activation were computed by means of the NIRS Brain
AnalyzIR Toolbox as a Mixed Effect Model (task condition as a Fixed effect, while intercept
was a random effect using subjects as a grouping variable). It is worth noting that for
performing group-level analysis and hence subject-level GLM analysis, the filtering step
was modified to HPF instead of BPF according to the motivations explained in Section 2.6.

A synthetic measure of SNR was extracted from block-averaged responses across
subjects according to the following equation

SNR [dB] = 10 log10

(
EBA(tactivation)

EBA(tbaseline)

)
(10)

where EBA(tactivation) and EBA(tbaseline) indicate the respective total energy of the block-
averaged response over equal time periods where we expect the maximum of activation vs.
return to baseline concentrations. Namely, tactivation was set in the 6–12 s range after the
stimulus onset, with tbaseline in the 24–30 s range.

3. Results

The results of fNIRS signal processing are given relevant to the group of 23 healthy
young adults (HYA). Examples of signals before and after each processing step, comparing
the diverse MA removals, are plotted. The effect of the successive steps is statistically
presented, focusing on the progressive reduction of signal energy through the cleaning
process. Finally, single subject examples and group average results are given relevant to
the HRF output by the various processing pipelines.

3.1. Motion Artifact Results

Limited to Hybrid-MARA and SC-MARA and MC-MARA, the detection of the MA
windows is compared in Figure 3. The percentage of the signal labelled MA was similarly
low in both Hybrid-MARA (1.10–0.90%, median–IQR), which is a SC-method, and SC-
MARA (0.32–0.42%, median–IQR). The two methods, conversely, diverged concerning
the average length of labeled windows (1.73–0.57 s for HybridMARA, 3.15–0.36 s for SC-
MARA) and the former showed a more focused MA detection, due to the combination of
both the local std (equal to MARA) and a gradient criterion.

With respect to MC-MARA, it is worth recalling that this variant was implemented
in this study to test the possible crosstalk of MAs among fNIRS channels. The percentage
of the signal labelled MA, after the MC “OR” logical operator, was abruptly increased
(6.46–5.85%, which was about 4-fold compared to SC), thus showing a large independence
among such artifacts in the various channels. The increased length of labelled tracts
(3.84–1.79 s) is a trivial consequence of this observation. This result does suggest that SC
MA reduction methods are well justified.

It is also worth noting that boxplots provided in Figure 3 only refer to the identification
step of the HybridMARA, MC- and SC-MARA algorithms. The results are identical between
the HybridMARA-tPCA SG vs. HybridMARA-splineSG algorithms, as well as the MC/SC-
MARA-tPCA vs. MC/SC-MARA-spline versions. Conversely, no boxplots were provided
for the Wavelet and TDDR methods since these algorithms do act on the overall trend of
the signal instead of separate segments. Therefore, computing the motion artifact length
and percentage over processed signals will give results close to 100% and the overall signal
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length. As a consequence, only three boxplots per motion artifact feature were presented in
Figure 3.
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Figure 3. Boxplot comparison of averaged MA percentage (left) and temporal length (right) across
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In Figure 4, an example of MA reduction across the eight algorithms is shown compar-
ing the signal before (i.e., blue line) and after MA correction (i.e., red line). For the first six
methods, the labelling of MA windows (1 for MA detected, yellow) is also added. This last
aspect is not presented for the last two since they analyze the overall features of the signal.
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Figure 4. Single-channel graphical representation of the effect of MA reduction over ∆OD signals
across pipelines. ∆OD signals are represented with respect to the unprocessed signal (blue line-input
signal) and after MA reduction (red line-output signal). Additionally, signal tracts labelled as MAs
are presented as squared waves (yellow line).

Largely different behaviors in baseline drift correction are also shown, which evidently
emphasizes the need for the subsequent BPF step, with respect to the HPF action. Inter-
estingly, all methods efficiently detected local anomalies, such as the MA spike at about
340 s. However, large differences are shown in the removal action. Namely, all six MARA
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variants appeared to exert heavy interpolation, which might eliminate useful signals if
occurring at high rates throughout the whole recording. Obviously, this risk might be
hugely amplified in MC logic. A more conservative cleaning is conversely shown by the
TDDR and the Wavelet methods.

3.2. Bandpass Filtering Results

The same example provided in Figure 4 but referring to the BPF step is shown in
Figure 5. Clearly, the HPF does eliminate the baseline drifts not removed by the MA
corrections due to their local and non-linear action. Results relevant to the LPF smoothing
are similar for all eight pipelines. However, the amount of removed HF noise presents
interesting differences. Namely, only the two Hybrid-MARA approaches appear to have
had significant smoothing in the previous MA reduction step when applying SG smoothing
as a last step of the algorithm scheme.
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Figure 5. Single-channel graphical representation of the effect of BPF over ∆OD signals across
pipelines. ∆OD signals are represented with respect to the MA-corrected signals (blue line-input
signal) and after BPF step (red line-output signal).

It is noteworthy that the wavelet method, which reduced MAs, did not perform
effective filtering in both the stop bands: LF, for baseline drift reduction, and HF, for signal
smoothing. This is a direct consequence of the data-driven setting of the normality range of
the method, with no a-priori definition of signal vs. noise scales. Therefore, the noisy scales
of slow baseline drifts and fast HF noise were preserved. Removal of unwanted bands was
left to the next BPF phase, which confirms the need of this further step.

The modification of the spectral content performed by the BPF is analyzed in Table 1,
where the I/O power ratio (output over input %) is shown both in the passband (within
band, PRwb) and stopband (outside the band, PRob), within and outside the f = [0.01− 0.2]
Hz range. Due to the BPF linearity, I/O differences should be attributed to the method-
specific impact of LPF and HPF transition bands in the specific algorithm. Apparently,
all methods, with the only exception of TDRR, displayed a large power content at the edges
of the passed bandwidth, where power loss occurred, compared to the ideal BPF. This led
to 20% or more power loss in the ideal passed bandwidth. Such non-ideal loss was reduced
to about 10% in TDRR. As for PRob, the ideal stopband behavior should be a 0% power
ratio, which should be best approximated away from the cutting edges. Therefore, the
larger values above 1% displayed by the Hybrid-MARA approaches should indicate the
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presence of significantly greater power in the outside band transition regions. These results
suggest that the BPF order and design could be profitably adapted to the previous MA
reduction step.

Table 1. Mean (std) Power Ratio at the passband (PRwb) and stopband (PRob) in the f = [0.01− 0.2]
Hz range across subjects and measurement channels. The leftmost column indicates the adopted MA
reduction algorithm prior to the BPF step.

PRwb PRob

SC-MARA-spline 80.43 (10.88) 0.95 (0.51)
MC-MARA-spline 77.30 (13.98) 0.53 (0.44)
SC-MARA-tPCA 77.62 (7.39) 0.95 (0.53)
MC-MARA-tPCA 74.87 (10.03) 0.57 (0.47)

HybridMARA-spline SG 76.13 (7.38) 1.28 (0.63)
HybridMARA-tPCA SG 77.56 (7.02) 1.34 (0.66)

TDDR 91.28 (2.95) 0.89 (0.46)
Wavelet 79.67 (5.70) 0.95 (0.39)

3.3. Final PCA Step

Figure 6 shows the output signal of the previous BPF step (i.e., blue line) and the
next PCA processing output (i.e., red line). On average, the four largest components of
PCA were deleted according to 80% of the variance in the data. The average number of
cancelled components was decreased to three in SC-MARA-Spline and MC-MARA-Spline.
It is highly likely that the local spline corrections resulted in high power in the highest
rank components including the large baseline drifts poorly reduced by this approach.
Accordingly, an augmented power of cancelled components could be considered for such
algorithms. Further, all algorithms displayed a similar and noticeable individual dispersion
in the number of cancelled highest rank components, ranging from a minimum of two to
a maximum of seven (IQR = 2 for MC/SC-MARA-spline, IQR = 4 for TDDR, IQR = 3 for
other methods).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 26 
 

HybridMARA-tPCA SG 77.56 (7.02) 1.34 (0.66) 

TDDR 91.28 (2.95) 0.89 (0.46) 

Wavelet 79.67 (5.70) 0.95 (0.39) 

3.3. Final PCA Step 

Figure 6 shows the output signal of the previous BPF step (i.e., blue line) and the next 

PCA processing output (i.e., red line). On average, the four largest components of PCA 

were deleted according to 80% of the variance in the data. The average number of can-

celled components was decreased to three in SC-MARA-Spline and MC-MARA-Spline. It 

is highly likely that the local spline corrections resulted in high power in the highest rank 

components including the large baseline drifts poorly reduced by this approach. Accord-

ingly, an augmented power of cancelled components could be considered for such algo-

rithms. Further, all algorithms displayed a similar and noticeable individual dispersion in 

the number of cancelled highest rank components, ranging from a minimum of two to a 

maximum of seven (IQR = 2 for MC/SC-MARA-spline, IQR = 4 for TDDR, IQR = 3 for other 

methods). 

 

Figure 6. Single-channel graphical representation of the effect of PCA over Δ𝑂𝐷 signals across 

pipelines. Δ𝑂𝐷 signals are represented with respect to the BPF signals (blue line-input signal) and 

after PCA step (red line-output signal). 

Despite the significant differences displayed in the single steps (MA, BPF, and PCA) 

the similarity of the final time courses of the eight pipelines (Figure 6, red lines) was re-

markable. However, the results must be related to the statistical analysis for inferring ac-

tivation vs. resting conditions and especially the overall localization of cortical activation 

as expected from the employed task. This is further evidenced by the final processing 

steps showing the HRF shapes and the significant group-level response maps, which are 

shown in Section 3.5. 

3.4. Step and Overall ERD Assessment 

Table 2 shows the percentage of ERD relevant to each method and each step: Table 

2a) displays the percentage of ERD referred to in the specific step related to its input value; 

Table 2b) provides the cumulative percentage of the ERD effect shown as the rest energy 

Figure 6. Single-channel graphical representation of the effect of PCA over ∆OD signals across
pipelines. ∆OD signals are represented with respect to the BPF signals (blue line-input signal) and
after PCA step (red line-output signal).



Appl. Sci. 2022, 12, 316 14 of 25

Despite the significant differences displayed in the single steps (MA, BPF, and PCA)
the similarity of the final time courses of the eight pipelines (Figure 6, red lines) was
remarkable. However, the results must be related to the statistical analysis for inferring
activation vs. resting conditions and especially the overall localization of cortical activation
as expected from the employed task. This is further evidenced by the final processing steps
showing the HRF shapes and the significant group-level response maps, which are shown
in Section 3.5.

3.4. Step and Overall ERD Assessment

Table 2 shows the percentage of ERD relevant to each method and each step: Table 2a)
displays the percentage of ERD referred to in the specific step related to its input value;
Table 2b) provides the cumulative percentage of the ERD effect shown as the rest energy
compared to the unprocessed ∆OD signal (i.e., raw signal = 100%). The HYA group
statistics, as the mean (std) across subjects and measurement channels, is reported. Table 2a
clearly demonstrates the large differences in signal cleaning through single steps among the
different methods. The highest impact in the MA reduction step was found in the global
approaches of TDRR and Wavelet. A lower, yet large impact was found in Hybrid-MARA,
with the lowest values in MARA. As for the last method, less impact was found in MC
variants compared to the SC original algorithms. This result is counterintuitive, since
the MC MA correction spanned larger time windows. However, this can be attributed
to some baseline drift amplification due to local MARA corrections, which is less critical
when longer windows are corrected after the MC MA detection logic. A significantly
larger final power decrease was shown by both global methods: maximal and significant in
TDRR; lesser yet noticeable in the wavelet method. Most likely, global methods, fixing a
data-driven normal range, are also compelled to cut out the tails (i.e., out of the fixed 90
or 95 central percentiles) of standard components while canceling out the truly artifactual
outliers. This eventually reduces the output signal power. However, it does not appear to
negatively affect the final SNR.

Table 2. Summary table of the percentage Energy Relative Decrease (ERD) over optical density
data along the pre-processing pipeline. Values are reported as mean (std) values across subjects
and channels. (a) Progressive ERD at the single pre-processing step: unprocessed optical density
(∆ODraw), after MA removal (∆ODMA), after BPF (∆ODBPF) and finally after PCA (∆ODPCA) as the
final step of the processing pipeline. (b) Cumulative ERD with respect to the unprocessed optical
density value (i.e., cumulative ERD = 100%).

(a) Single Step ERD [%] (b) Cumulative ERD [%]

∆ODraw to ∆ODMA ∆ODMA to ∆ODBPF ∆ODBPF to ∆ODPCA ∆ODMA ∆ODBPF ∆ODPCA

SC-MARA-spline −27.76 (17.12) −73.91 (10.84) −73.68 (18.44) 72.23 (17.12) 18.84 (8.92) 5.79 (8.22)
MC-MARA-spline −11.09 (26.09) −80.30 (10.26) −73.61 (18.39) 88.90 (26.09) 17.37 (9.64) 5.37 (7.79)
SC-MARA-tPCA −15.13 (23.40) −76.64 (11.02) −73.55 (18.40) 84.86 (23.40) 19.26 (8.85) 5.91 (8.19)
MC-MARA-tPCA −5.04 (31.95) −79.14 (9.88) −73.71 (18.46) 94.95 (31.95) 19.24 (8.31) 5.79 (7.72)

HybridMARA-
spline SG −30.96 (23.67) −73.01 (12.73) −73.95 (18.49) 69.03 (23.67) 17.93 (9.29) 5.58 (8.26)

HybridMARA-
tPCA SG −29.42 (18.06) −72.83 (11.94) −74.10 (18.52) 70.57 (18.06) 18.87 (9.12) 5.77 (8.23)

TDDR −60.28 (15.26) −72.35 (9.10) −73.71 (18.43) 39.71 (15.26) 10.88 (5.60) 3.51 (5.60)
Wavelet −39.79 (9.66) −75.02 (10.63) −74.04 (18.51) 60.20 (9.66) 15.48 (8.14) 4.88 (7.77)

Considering the last column of the cumulative percentage of ERD effects shown in
Table 2b as the output of the whole preprocessing pipeline, two aspects are impressive:
(i) the huge decrease of power finally obtained, which saves only about 5% of the raw
signal; (ii) the modest differences found in the final outcomes of the eight pipelines, which
further reassure us that essentially different MA approaches converge to similar outcomes,
if followed by proper BPF and PCA steps. Conversely, large differences are found in
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the partial ERD% outcomes described by Table 2a, which trivially reflects the different
single-step impacts.

3.5. Block Average and Group-Level Results

An example of the block average in a representative subject (i.e., subject #4, which
is the same one whose preprocessing steps were provided over Figures 4–6) is shown in
Figure 7 relevant to left-hand motor task and a measurement channel placed over the right
motor region (i.e., contralateral hemisphere to the hand performing the task).
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Figure 7. Subject-specific block-averaged responses across pipelines of ∆[HbO2] and ∆[HbR] re-
lated to left-hand motor grasp and a measurement channel placed over the right motor region
(i.e., contralateral hemisphere). (a) SC-MARA-spline, (b) MC-MARA-spline, (c) SC-MARA-tPCA,
(d) MC-MARA-tPCA, (e) HybridMARA-spline SG, (f) HybridMARA-tPCA SG, (g) TDDR, and
(h) Wavelet method.

As expected, a clear HRF is shown by the peak in ∆[HbO2] (i.e., red curve) kept by the
whole task duration and leading and trailing slope with the foreseen delayed dynamics.
A concomitant drop in ∆[HbR] (i.e., blue curve) is also seen, but with a two-/three-fold
scale reduction, which testifies to the regional cerebral blood flow increases. Dispersion of
the 10 task repetitions is represented by the thickness of the respective lines (mean ± SE),
which demonstrates a good SNR.

Interestingly, the whole cortex monitoring offered by the CW-fNIRS allows us to detect
of secondary effects such as the inhibition of the ipsilateral (i.e., left) motor cortex, as if the
activation of the left hand required to actively prevent the right hand from mirroring the
left hand (Figure 8). Such specular inhibitions were already observed in other cortical areas,
e.g., in the visual cortex under visual tasks [47,48] and push for further research under the
hypothesis of being a core mechanism of brain organization and cerebrovascular coupling.
It is worth remarking that the inhibitory HRF is consistently more than two-fold lower than
the contralateral excitatory one (peak value in 0.3–0.4 A.U. range in Figure 7, 0.1–0.2 A.U.
range in Figure 8). This effectively impacts the inhibitory ∆[HbR] amplitude, which is very
small. Therefore, the fMRI BOLD signal, based on the sole HbR and blind to HbO2, might
miss such inhibitory effects.

Further considering the example of subject #4 and the left motor cortex (i.e., Figure 7),
Figure 9 displays the comparison between the block average response and the GLM fitting
over the motor channel referred to Figure 7. The primary contralateral activation response
is shown, which highlights the good superposition in the peak phase of ∆[HbO2] and in the
drop phase of ∆[HbR]. However, some differences are displayed concerning the recovery
phase, which is shorter in the GLM fitting due to the temporal trend of the canonical HRF
(cHRF), which is derived from fMRI literature [49]. The latter displays broader plateaus
centered around the block average positive ∆[HbO2] and negative ∆[HbR] peaks. Such
secondary shape differences are well explained by the GLM a-priori assuming a fixed
standard HRF shape, which in turn is derived from the convolution of the cHRF with
the on-off square wave of task onset-offset. Clearly, such an a priori regressor locks the
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estimated shape and adapts only its amplitude. In this way, it retains details that are not
detected in the single subject or may be smeared by the block average computation.
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Figure 8. Subject-specific block-averaged responses across pipelines of ∆[HbO2] and ∆[HbR] related
to left-hand motor grasp and a measurement channel placed over the left motor region (i.e., ipsilateral
hemisphere). (a) SC-MARA-spline, (b) MC-MARA-spline, (c) SC-MARA-tPCA, (d) MC-MARA-tPCA,
(e) HybridMARA-spline SG, (f) HybridMARA-tPCA SG, (g) TDDR, and (h) Wavelet method.
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Figure 9. Visual comparison of subject-specific block-averaged response (dashed line) and GLM fitting
(bold line) across pipelines. These results are related to left-hand motor grasp and a measurement
channel placed over the right motor region (i.e., contralateral hemisphere) in accordance with Figure 7.

Importantly, all methods showed similar correspondences between the block-average
and the GLM fitting. Nonetheless, the TDRR and Wavelet algorithms displayed slightly
decreased response amplitudes (i.e., 0.4 A.U. vs. 0.3 A.U.), while keeping with the lesser
power of their preprocessed signals. However, such a signal decrease was not accompanied
by SNR drops.

Table 3 provides a numerical evaluation of the SNR of block averaged responses
across subjects. Results refer to measurement channels placed over the motor region,
following single subject representation of Figures 7 and 8. The SNR across task conditions
over the contralateral motor region was within the 8.99–14.67 dB range for ∆[HbO2] and
9.48–11.84 dB range for ∆[HbR], while ipsilateral activation presented reduced values in
the 3.69–8.22 dB range for ∆[HbO2] and 2.43–6.04 dB range for ∆[HbR]. Overall, median
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SNR values do not vary significantly across pipelines, confirming the graphical results
provided in Figures 7 and 8. Among MARA approaches, SC-MARA often presents the
highest median SNR value, both for tPCA and spline correction methods, while the lowest
values are mostly attributed to the MC-MARA algorithm. In general, even lower SNR
values are attributed to TDDR, since the decreased response amplitude compared to other
algorithms reduces the total energy in the activation range of 6–12 s. Conversely, Wavelet
methods provide SNR values more comparable to MARA methods, most probably due to a
lower total energy in the baseline range of 24–30 s.

Table 3. Median value of block-averaged responses of SNR [dB] across all subjects, motor task
conditions, and hemispheres. SNR was computed over motor channels displayed in Figures 7 and 8
and considered tactivation in the 6–12 s range after stimulus onset, with tbaseline in 24–30 s.

SNR Left Grasp
Left Hemisphere [dB]

SNR Left Grasp
Right Hemisphere [dB]

SNR Right Grasp
Left Hemisphere [dB]

SNR Right Grasp
Right Hemisphere [dB]

∆[HbO2] ∆[HbR] ∆[HbO2] ∆[HbR] ∆[HbO2] ∆[HbR] ∆[HbO2] ∆[HbR]

SC-MARA-spline 5.24 4.37 14.67 11.84 13.27 10.14 4.29 3.54
MC-MARA-spline 3.98 3.40 10.99 9.94 13.5 9.53 7.34 4.75
SC-MARA-tPCA 8.22 4.72 13.11 11.47 11.78 11.01 4.97 2.75
MC-MARA-tPCA 5.77 3.11 12.53 9.55 9.9 9.48 5.18 5.08

Hybrid MARA-
spline SG 5.41 5.15 11.54 9.92 12.29 11.12 4.16 3.66

Hybrid MARA-
tPCA SG 5.35 4.35 11.16 10.01 10.93 9.97 6.4 6.04

TDDR 4.52 2.43 8.99 11.15 9.17 9.60 3.69 3.50
Wavelet 5.39 3.52 11.51 9.62 13.77 10.94 6.63 5.19

The lack of substantial differences among different pipelines in the final single step
and cumulative ERD, block-averaged responses, and SNR over the motor area is mainly
related to the correspondence between the functional tasks and expected elicited brain areas.
The temporal course and statistical significance were not affected. Notwithstanding, we
suggest adopting preprocessing algorithms for MA reduction that present a channel-wise
approach, such as SC-MARA, HybridMARA, TDDR, and Wavelet methods to prevent
invasive interpolation over MA tracts which could lead to the loss of valuable signals if
occurring at high rates. Among them, we suggest adopting the TDDR and Wavelet methods
to increase the reproducibility since fewer parameters need to be set, supporting non-expert
users in the signal processing.

For a better quantification of the above comparisons, Pearson’s correlation and RMSE
were computed between the block average and the GLM fitting curve in each subject
and measurement channels, adapting the proposed approach by von Lühmann et al. [50].
All methods showed a significant linear correlation and Pearson’s coefficient r across task
and chromophores above the 0.6 (median in 0.613–0.682 range, IQR in the 0.287–0.328 range).
Conversely, RMSE values associated with significant r-values were higher for ∆[HbO2]
(median in 0.022–0.031 A.U. range, IQR in 0.020–0.030 A.U. range) than ∆[HbR] (median
in 0.009–0.014 A.U. range, IQR in 0.008–0.012 A.U. range). The reduced RMSE values in
∆[HbR] compared to ∆[HbO2] could be attributed to the amplitude inequality between
chromophores of block-averaged responses (Figures 7 and 9).

Passing to the whole HYA group analysis (alias, second level) of activation vs. resting
condition significance maps, all methods were able to localize the activated contralateral
motor region and the ipsilateral inhibition, as shown in Figures 10 and 11 for ∆[HbO2] and
∆[HbR], respectively. The shown maps report significant t-values corrected for multiple
comparison according to the Benjamini–Hochberg False Discovery Rate (pFDR < 0.05). The
t-test compared the average signal difference between the task and rest to the noise level at
rest. Positive t-values (i.e., red color scale) indicate activation sites, while negative values
(i.e., blue color scale) indicate inhibition. However, changing patterns were seen relevant to
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other regions, such as secondary motor areas, frontal cognitive areas, and sensory, parietal,
and occipital ones. Clearly, further research is needed to extend detection robustness
and reliability to ancillary areas, which play a central role in the study of neuro-plasticity
mechanisms addressed in neurological clinics.
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in light of the common absence of separate artifact sensing systems using a commercial 

CW-fNIRS instrumentation. In fact, Frequency or Time Domain fNIRS are still seldom 

Figure 10. Second-level activation vs. resting condition statistical maps related to the left-hand
motor grasp of ∆[HbO2]. Colorbars indicate significant t-values corrected for multiple comparisons
(pFDR < 0.05). Positive t-values indicate locations where the mean of ∆[HbO2] activation was
significantly higher than that in the resting condition, and conversely for negative values. (a) SC-
MARA-spline, (b) MC-MARA-spline, (c) SC-MARA-tPCA, (d) MC-MARA-tPCA, (e) HybridMARA-
spline SG, (f) HybridMARA-tPCA SG, (g) TDDR, and (h) Wavelet method.
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Figure 11. Second-level activation vs. resting condition statistical maps related to the left-hand
motor grasp of ∆[HbR]. Colorbars indicate significant t-values corrected for multiple comparisons
(pFDR < 0.05). Positive t-values indicate locations where the mean of ∆[HbR] activation was signifi-
cantly higher than that in the resting condition, and conversely for negative values. (a) SC-MARA-
spline, (b) MC-MARA-spline, (c) SC-MARA-tPCA, (d) MC-MARA-tPCA, (e) HybridMARA-spline
SG, (f) HybridMARA-tPCA SG, (g) TDDR, and (h) Wavelet method.

4. Discussion

In this study, we proposed a comparison of the most used artifact reduction strategies
in light of the common absence of separate artifact sensing systems using a commercial
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CW-fNIRS instrumentation. In fact, Frequency or Time Domain fNIRS are still seldom used
in clinical procedures because of their higher costs and complexity but indicate a promising
method for developing more robust and reliable optical brain imaging methods [14,15,51].
Technological developments in optical imaging are moving towards the promotion of High
Density Diffuse Optical Tomography (HD-DOT) techniques, which can cope with spatial
resolution problems of traditional fNIRS thanks to overlapping measurement channels.
HD-DOT allows us to have comparable localization of functional activation to fMRI, and
it has already been validated in retinopy, motor, and language paradigms [52]. However,
its clinical applications are still confined to specific fields, such as breast, muscle and
fluorescence imaging [53], epilepsy, and neonatal/infant brain injuries [52], with very few
exceptions in clinical neurology such as Parkinson’s Disease [54].

Although CW-fNIRS is still not suitable as a stand-alone diagnostic device, its in-
creasing use in different clinical and experimental domains requires that the technical
issues, such as MAs and PCFs, must come after patients’ tolerability and the opportunity
to perform multiple acquisitions in a clinical rehabilitation context.

Moreover, another CW-fNIRS advantage is the possibility of having a complete brain
cortex functional mapping, which is crucial when the study’s objective is to monitor
the brain plasticity mechanism due to rehabilitation programs [55–57]. Furthermore, for
these purposes, the focus is on differential changes in ∆[HbO2] and ∆[HbR] instead of
quantification of these chromophores.

Nowadays, MA and PCF removal is provided by integrating auxiliary measurements
such as short separation channels that have the exceptional advantage of regressing out
scalp hemodynamics in first- and second-level analyses [16,17,58]. This approach can be in-
tegrated with other physiological signals such as blood pressure, movement/accelerometer,
respiration, and photo plethysmography measurements [18].

However, these auxiliary measurements are not always available with commercial
systems or can be integrated within the experimental clinical set-up. Therefore, a systematic
evaluation of employed processing pipelines and related algorithms’ effect on optical
signals must be carefully considered. Indeed, as shown from our results, the impact on the
statistical significance and especially the localization of cortical activation can be greatly
affected. This is a severe issue for translating this technique in clinical neuroimaging. When
performing an assessment protocol in the context of a rehabilitation program, the activation
of additional cortical areas as a supporting brain source to execute a task is the actual matter
of research [59].

Emerging from our results (Section 3.5), the block-average response over the motor
areas and the respective SNR across all subjects did not produce substantial differences
among the different pipelines. This effect is mainly related to the correspondence between
the functional task (i.e., motor grasping task) and expected elicited brain areas. In addition,
these limited differences are mainly related to amplitude variations, which are not the
principal purpose of the CW-fNIRS. Conversely, addressed features such as the temporal
course, SNR, and statistical significance are seemingly not affected. Nevertheless, we
suggest adopting preprocessing algorithms for MA reduction that present a channel-wise
approach, such as SC-MARA, HybridMARA, TDDR, and Wavelet methods. Indeed, MC
variants exert a more invasive interpolation over MA tracts, which may eliminate useful
signals if occurring at high rates throughout the whole recording.

SC-MARA and HybridMARA methods provide a higher SNR of block-averaged
responses compared to TDDR and Wavelet over cerebral areas where we expect to have a
significant activation. However, the TDDR and Wavelet methods have the advantage of
requiring fewer input parameters and no adoption of user-defined thresholds compared
with the SC-MARA and HybridMARA methods, hence promoting reproducibility of results.
Therefore, when adopting SC-MARA and HybridMARA methods, which have comparable
metrics to TDDR and Wavelet, researchers must clearly state their experimental set-up
and adopted parameters [29]. The central issue concerning the adoption of different
processing algorithms, especially for MAs, arises when inferring cortical activation over
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supplementary areas, here represented by non-motor areas. Indeed, while for HYA we
could expect a correspondence between the task proposed and the activated areas, when
pathological conditions occur, such a coherence is not assured and even not predictable.

Another fascinating insight that emerged from our results is related to the ipsilateral
hemodynamic response observed during the hand grasping. In ipsilateral motor areas,
HbR remained stable at its baseline level, whereas the HbO2 level decreased (Figure 8). This
phenomenon has already been observed in fMRI as Negative BOLD Responses (NBRs), but
it is still debated and not fully understood, making such a mechanism not always directly
interpretable. Recent studies have shown that multimodal integration could provide a
complete perspective on this phenomenon [60]. Optical techniques could lead to a more
comprehensive understanding of NBRs, even if such an approach is still limited in its
methodological application [61].

This study presents some limitations that could be addressed with future method-
ological assessments. Namely, a further refined methodological approach will necessarily
require the assessment of these algorithms through simulation of HRF superimposed on
resting-state data [34]. A statistical comparison of activation maps concerning regression
with short-separation channels will also give additional insights into the actual imbalance
between proposed algorithms.

5. Conclusions

In conclusion, current fNIRS research is still far from an objective standardization
of pre-processing and analysis pipelines [12,61] due to the heterogeneity of employed
commercial and custom instrumentation. However, we demonstrated that by adopting
a channel-wise approach in signal processing it is possible to obtain specific information
regarding the impact of each algorithm on the estimation of functional activation, either at
the statistical level or mean response level.
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Appendix A

Appendix A.1. Single-Channel MARA with Spline Correction (SC-MARA-Spline)

SC-MARA (Movement Artifact Reduction Algorithm) with spline correction is the
original algorithm version that performs MA reduction by separating identification and
correction phases [21]. MA detection is based on the computation of the moving standard
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deviation of ∆OD(t, λ) signals according to an odd sliding window of w = 2k + 1 samples
large enough to contain MA features:

mSTD(t) =
1

2k + 1

√√√√ k

∑
j=−k

∆OD(t + j, λ)− 1
2k + 1

(
k

∑
j=−k

∆OD(t + j, λ)

)2

(A1)

In the present work, we set the moving sliding window to five samples, which almost
correspond to epochs of three seconds according to our experimental set-up (details are
presented in Section 2.8).

Since MAs are mainly associated with higher signal variations compared to typical
hemodynamic oscillations, the resulting mSTD(t) signal allows us to detect epochs of
the signals affected by MAs. Hence, MA windows are defined by setting a user-defined
threshold over the resulting mSTD(t) signal. Namely, in this work we set a threshold
of 5, which indicates that a portion of the signal is labelled by MA if exceeding 5·mSTD(t)
within the considered window length of three seconds. Additionally, other methods can be
implemented to automatically define a threshold. Among them we cite the Triangle method
for unimodal histograms [62]. In brief, the choice of the threshold is given by computing
the maximum distance of the perpendicular segment to the line connecting the first and
last bin of mSTD(t) histogram. Thus, MA are identified over time periods where mSTD(t)
is above the computed threshold.

Finally, the MA-labelled windows are corrected by subtracting the anomalous baseline
fitted via spline interpolation. The spline parameter p plays the major role: p = 1 would
spline through all samples thus cancelling all dynamics since corresponding to the natural
cubic spline interpolant; p = 0 would implement a linear detrend since implementing
least-square straight-line fitting. We followed the recommendation in the original work
setting p = 0.99, which identifies the trend to be subtracted, even in the presence of high
discontinuities, leaving the informative dynamics around it.

Appendix A.2. Multi-Channel MARA with Spline Correction (MC-MARA-Spline)

The MC-MARA-Spline variant we experimented was identical in terms of correction
step to SC-MARA-Spline in the starting SC detection of MAs. However, the identification
step of MA windows was firstly applied as SC-MARA-Spline and next extended to all
channels according to OR logical operator (i.e., if an MA window is detected over a single
channel, it is extended to all epochs across other channels). Therefore, the major difference
with its analogous SC-variant is that many channels apparently within the normal range
underwent correction due to the detection of a MA in at least another channel. Both the MC-
and SC-MARA-Spline algorithms were implemented through hmrMotionArtifactByChannel
and a revised version of hmrMotionCorrectSpline functions of Homer2 developer’s version.

Appendix A.3. Single-Channel MARA with Targeted PCA Correction (SC-MARA-tPCA)

We also experimented with the combination of the SC-MARA detection by employ-
ing the targeted PCA (tPCA) method proposed by Yücel et al. [23] at the correction step.
This method is based on the hypothesis that MAs globally represent the most prominent
variation of measured optical signals. Hence, larger components obtained by PCA decom-
position performed over the identified MA windows are cancelled out. Namely, larger
principal components explain the higher percentage in the variance of the data. Therefore,
they are sorted in decreasing order and the signal not associated with them is back-projected
as motion-corrected signal. Such time targeting intends to overcome the limitations of
the overall PCA, which hardly captures the non-stationary features of MAs. The critical
parameter in the correction step is the power reduction imposed by the cancellation of the
largest tPCA components. In line with the original work, we set this method to remove up
to 97% of the variance in the data.
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Appendix A.4. Multi-Channel MARA with Targeted PCA Correction (MC-MARA-tPCA)

The respective MC-MARA-tPCA variant of the previous algorithms implements the
same SC-MARA detection criterion but extends MA labelling to all channels according to
OR logical operator. Accordingly, labelled MA tracts (now common to all channels) undergo
tPCA correction. Interestingly, this approach can be said MC both in MA labelling and in the
correction step. At first sight, this might be sensible. However, if the labelled tracts tend to
the whole recording duration, time targeting would be lost, thus reverting to the limitations
of the overall PCA. Both the MC- and SC-MARA-tPCA algorithms were implemented
through hmrMotionArtifactByChannel and a revised version of hmrMotionCorrectPCA_Ch
functions of Homer2 developer’s version.

Appendix A.5. Hybrid MARA with Spline Correction and Savitzky-Golay Filtering
(HybridMARA-Spline SG)

This algorithm implements the strategy proposed by Jahani et al. [22], which integrates
the previous MARA identification based on mSTD(t) to detect baseline shifts and spike ar-
tifacts. These two instances are then separately detected and corrected, hence the “Hybrid”
name given to the approach. In brief, MA identification is provided by applying both the
MARA method (as detailed in Appendix ??), since it is more suited for baseline shifts iden-
tification, and an additional convolution between the lowpass-filtered optical signal and a
Sobel derivative kernel (coefficients [−1 0 1]), which is conversely more prone to deal with
spike artifacts. A threshold over the resulting signals is computed according to the union
of interquartile statistics, detecting outliers if falling outside [Q1− 1.5·IQR; Q3 + 1.5·IQR],
where Q1 and Q3 are the respective first and third quartile. Hence, baseline shifts are
identified by computing the maximum amplitude variation in the motion-free part of the
signal according to a sliding window of 0.5 s (i.e., amplitude variations higher than half
of heartbeat oscillations) and corrected through spline interpolation if SNR > 3. Finally,
the resulting signals, remaining spike artifacts, and motion-free part of the signals with
SNR < 3 are smoothed out by Savitzky–Golay (SG) filtering, which is a digital polynomial
filter that substitutes a sample by the trend fitting the adjacent ones. This work employs
a 3rd-order SG filter according to window lengths of 3 s, following MARA approaches
and being shorter that HRF dynamics. This HybridMARA-tPCASG approach was imple-
mented through a revised version of the hmrMotionCorrectSplineSG function of Homer2
developer’s version.

Appendix A.6. Hybrid MARA with Targeted PCA and Savitzky-Golay Filtering
(HybridMARA-tPCA SG)

In line with the approaches proposed in the work of Jahani et al. [22] and MARA
approaches, we also tested tPCA correction. This method implements the same iden-
tification and SG smoothing strategy as described in Appendix A.5. Conversely, the
correction of baseline shifts by spline interpolation is indeed substituted by the tPCA
method. In general, performing baseline shift correction with tPCA reduces the possibility
of removing physiological oscillations over motion-contaminated portions of the signal.
Additional motivations regarding the motivation for tPCA correction are referenced in
Appendix A.3. This HybridMARA-tPCASG approach was implemented through a revised
version of hmrMotionCorrectPCASG function of Homer2 developer’s version.

Appendix A.7. Temporal Derivative Distribution Repair (TDDR)

This strategy has been recently proposed by Fishburn et al. [24] to iteratively ad-
dress both MA trends and spikes under the assumption that the derivative signal can
be approximated through a Gaussian distribution whose outliers are MA fluctuations.
Indeed, the signal derivative is computed as the unsmoothed increment between adjacent
samples y′(t) = ∆OD(t)− ∆OD(t− 1), and outliers are attenuated or cancelled by the iter-
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ative estimation of instantaneous weights w(t), which follow Tukey’s bi-weight function
w(t) =

(
1− d2(t)

)2

w(t) =

{ (
1− d(t)2

)2
, |d(t)| < 1

0, otherwise
(A2)

The instrumental variable d(t) rescales the absolute deviations from the weighted
mean µ to include the 95% of values in the |d(t)| < 1 range, under the hypothesis of
Gaussian distribution

d(t) =
|y′(t)− µ|

σ·1.4685
(A3)

µ =
∑T

i=1 w(ti)y′(ti)

∑T
i=1 w(ti)

(A4)

Importantly, the instrumental variable is based on the standard deviation of residuals σ,
which overlooks the outliers to be next cancelled via a classical conversion from the median
of absolute values. The actual correction takes place only after iteration convergence by
robust weighting to centered derivative y′(t) = w(t)[y′(t)− µ]. Finally, the corrected

derivative signal is integrated back x′(t) =
t

∑
1

y′(t) and centered with respect to the mean

of the uncorrected signal. We employed the methods provided in the NIRS Brain AnalyzIR
Toolbox [34].

Appendix A.8. Wavelet-Based Detection and Correction (Wavelet)

Molavi and Dumont [25] proposed their wavelet bases strategy mainly addressing
spiking MA removal. Nonetheless, the large range of wavelet scales considered can also
address baseline shifts and drifts. The algorithm starts with a discrete wavelet transform
(DWT) and employs Daubechies 2 (db2) wavelet at four different levels. The distribution
of wavelet coefficients within each scale is considered approximately Gaussian, with zero
mean and standard deviation robustly evaluated from the median of absolute values.
Hence, the cutoff, which is suggested to be set outside the 90% range, is not influenced by
the outliers to be cancelled, which permits a degree of cleaning proportional to the artifact
rate. To avoid effects due to the shift sensitivity of the DWT, cleaning is performed on all
possible circular shifts, whose results are next realigned and averaged. In this work, outlier
identification was based on the wavelet coefficients exceeding 1.5 times the interquartile
range according to the hmrMotionCorrectWavelet function of Homer2 developer’s version.
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