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Abstract: The growth of data production in the manufacturing industry causes the monitoring
system to become an essential concept for decision-making and management. The recent powerful
technologies, such as the Internet of Things (IoT), which is sensor-based, can process suitable ways
to monitor the manufacturing process. The proposed system in this research is the integration of
IoT, Machine Learning (ML), and for monitoring the manufacturing system. The environmental
data are collected from IoT sensors, including temperature, humidity, gyroscope, and accelerometer.
The data types generated from sensors are unstructured, massive, and real-time. Various big data
techniques are applied to further process of the data. The hybrid prediction model used in this system
uses the Random Forest classification technique to remove the sensor data outliers and donate fault
detection through the manufacturing system. The proposed system was evaluated for automotive
manufacturing in South Korea. The technique applied in this system is used to secure and improve
the data trust to avoid real data changes with fake data and system transactions. The results section
provides the effectiveness of the proposed system compared to other approaches. Moreover, the
hybrid prediction model provides an acceptable fault prediction than other inputs. The expected
process from the proposed method is to enhance decision-making and reduce the faults through the
manufacturing process.

Keywords: smart manufacturing; automotive industry; Internet of Things; big data; Machine Learn-
ing; Blockchain

1. Introduction

The manufacturing system is one of the important parts of development in the eco-
nomic sector for any country worldwide [1–4]. The growth of technology causes the
manufacturing industry to be competitive and sustainable throughout the industrial sector.
Information and communication technology (ICT) make a huge change in the manufac-
turing system from traditional to advanced operations [5]. The monitoring system is a
known and important part of manufacturing for controlling and managing the process.
Predicting disease [6], production improvement [7], cost reduction [8] and early warning
systems [9,10] are part of monitoring systems. Integration with Internet of Things (IoT)
devices and monitoring systems contains advantages such as preventing design errors [11],
fault diagnosis [12], predicting quality [13], and improving the decision-making [14].
In [15], a survey of smart manufacturing related to industrial technology was presented.
There are a total of 31 research topics covered in this study regarding the significance of
the circular industry. The circular economy model is based on digital innovation, which
offers solutions such as digital platforms, artificial intelligence, and smart devices to op-
timize assets. The circular economy creation can comfort the authorship based on recent
technologies. In [16], the authors presented Industry 4.0 modeling and simulating in the
manufacturing industry. This process gives the answer of material flow optimization and
modeling for the huge manufacturing industry. The analysis techniques and software for
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the simulation create special techniques to specify capacity. In [17], the main focus was to
evaluate and centralize the smart manufacturing heterarchical control. The process shows
the comparison of the heterarchical and centralized environment to control the modern
manufacturing assembly station. Based on the process and analysis, the centralized control
presents better output and more flexible control results. The growth of data generated from
the manufacturing process has been huge, which is typical to big data [18]. The generated
dataset from the sensors related to environmental information need further processing
to be suitable for system decision-making. Machine learning techniques are a type of
advanced technology for data analysis, fault detection [19], predicting system quality [20],
classification [21], etc. Fault prediction in the proposed system is based on the Random
Forest algorithm, which is good at finding the unusual aspects during the process and
similarly avoids efficiency loss. The automotive industry’s quality control ensures the
product is ready to distribute, and customers will get the product without defects. To fulfill
this aspect, some points must be controlled during the manufacturing process: efficiency of
the engine, product features, environment standards, etc. Most of the principles for quality
management are defined based on customer, leadership, relationship management, etc.
There are five main cores in the automotive industry while processing and manufacturing,
e.g., advanced product quality planning, failure mode, effects analysis, system measure-
ment analysis, statistical control process, and production part approval process. This paper
defines an integrated method for analyzing real-time smart manufacturing, with a main
focus on the automotive industry environment. The real-time monitoring in this process is
based on the collected information from environmental sensors and step-by-step analysis
implemented and analyzed based on machine learning analysis techniques. We aimed to
increase the users’ security and contracts, which is the biggest and important section in the
industry business and transactions. Compared with other works, improving security is the
most important part that was not considered much in existing research. Similarly, big data
techniques are applied to generate detailed daily manufacturing information with various
formats and types.

The main contributions of this paper are as follows:

• Usage of a real-time monitoring system based on integrating IoT environmental
sensors, big data, and machine learning, in the automotive industry.

• Securing the collected dataset to avoid fake data changes to real data and record the
transaction information.

• Collecting the environmental dataset from the IoT sensors, e.g., humidity and the tem-
perature in the manufacturing line, and processing the data using big data techniques
to handle a large dataset.

• Using the hybrid prediction model and the Random Forest model for classification to
avoid the outlier dataset.

• Apply fault detection through the manufacturing procedure.
• Using the integration method to improve the performance of smart manufacturing for

better and higher security and standard environment.
• Improving management decision-making.
• Improving classification model performance.
• Identifying the outliers and removing them.
• Making the detection of the abnormal process more accurate through the steps of

manufacturing.
• Real-time data extraction to improve the automotive industry prediction preservation.

The remaining of this paper divided as follows: Section 2 presents the related work
of the current industrial and technology process. Section 3 presents the proposed man-
ufacturing model in the automotive industry system architecture and design. Section 4
presents the system step-by-step implementation process. Section 5 presents the system
performance and results. Section 6 presents the discussion related to the proposed system,
and we conclude this paper in the conclusion section.
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2. Related Work

This section presents a brief review of the smart manufacturing and monitoring system
literature in the automotive industry. This section has four main topics: monitoring systems
based on IoT technology, big data in manufacturing, machine learning in manufacturing,
and Blockchain in manufacturing. The proposed system integrates these methods to
improve the automotive manufacturing industry’s safety, quality, analysis, etc. The real-
time dataset was collected from various sensors mentioned above and analyzed based on
the integrated method techniques.

2.1. Monitoring System Based on IoT Technology

The latest technology in the Internet of Things, machine learning, big data, and sensors
can be employed in monitoring systems, e.g., for prediction, cost reduction, production
improvement, etc., for easier decision-making. There are various researches related to
IoT-based monitoring systems, which contain positive results and feedback. Cheung et al.
presented manufacturing and safety sites based on wireless sensor monitoring [22–27].
The main core is the collection of wireless sensor data that are addressed to a remote server.
If an unusual situation happens, the alarm is triggered, which constitutes the safety and
well management process of the presented research. In [11], low-cost IoT sensors in the
monitoring environment were applied to avoid the design phase errors in the manufac-
turing process. The applied sensors were supposed to collect temperature and humidity
records. The collection of environmental condition reports affects the manufacturing design
phase process. The mentioned recent works mainly focused on the environmental situation
by using IoT sensors, which improves system proficiency. The IoT assumption in the
manufacturing system authorizes digitalized manufacturing from the traditional model
to the modern one. Sensors sensing elements can capture and transfer the data based on
electric signals to various devices. This option is the definitive role for collecting data
from different points [28–30]. The radio frequency identification (RFID) and camera are
important examples for the sensing sensors for the automotive industry [31].

2.2. Big Data in Manufacturing

The amount of generated data from manufacturing systems increases simultaneously
based on the increasing data amount in IoT technology and sensors. This data procedure
system is famous for big data [32–36]. Processing the generated data is one of the difficulties
that need to be addressed. Big data provides multiple applications that can overcome this
difficulty in the manufacturing industry. Zhang et al. presented a structure to minimize
energy consumption in the manufacturing industry [37]. The presented system contains
two main components: data analysis of energy usage and data acquisition for collecting
energy data. Based on the provided information in their research, the final result reduced
three percent of energy consumption and four percent of costs. For quick management of
the manufacturing dataset, some big data technologies have been presented, e.g., Apache
Kafka and NoSQL MongoDB. The first one is a scalable messaging queue system, structur-
ing the real-time requests [38]. Similarly, it is scalable, fault-tolerant, etc. The second was
supposed to save patient data from sensors to monitor diabetes. In [39], big data technology
was proposed for the logistic discovery based on RFID-enabled data production for mining
knowledge. The results were applied to represent the possibility of the developed system
in the gained knowledge of big data. This process can improve the scheduling and logistics
of the production system. In [40], big data techniques were combined with the supply
chain social risk. This system involved big data analysis techniques in the supply chain to
improve the prediction of different social problems and risks.

2.3. Machine Learning in Manufacturing

Recent developments in machine learning (ML) systems show significant potential
for data analysis and similarly provide decision-making management to upgrade systems’
performance. Machine learning techniques operate a definite pattern and implement
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it in different areas. Some of the studies operate ML in the manufacturing system and
present considerable outputs. Kim et al. explained seven machine learning methods to
detect novel data and faulty wafers. The models are processed based on classification and
fault detection. Finally, the results of ML have a great chance to extract the faulty wafers.
The availability of manufacturing resources is based on the combination of numbers and
sequences and the performance of machine reliability. The simulation model [41–45] in
the manufacturing process is used to explain each stochastic variable’s behavior for the
objective of productivity. This model evaluates the manufacturing performance of acute
resources, failure, and repair requests. The simulation model estimates the availability
of the machine, delays of delivery, inventory, etc. The problem of machine learning
techniques in automotive industry manufacturing is the conflict with the outlier dataset
that decreases the classification model’s accuracy. The detection of outliers can define the
pre-processing step to recognize the incoherences of the dataset, which causes a better
classifier to generate better decision making. Previous researches show that removing the
outliers causes better classification accuracy. In [46], the process of eliminating outliers for
better classification was evaluated.

2.4. Blockchain in Manufacturing

The automotive industry is supposed to obtain some advantages based on three main
parameters, i.e., transparency, trust, and traceability. Generally, technology is divided
into two main parts: limited access and free access for users. Jean-Paul et al. [47] noted
that it is similar to a book accessible for the whole world, but it is not possible to make
any changes to it. The evolution of using smart contracts simplifyed supply chain man-
agement [48]. Blockchain in the automotive industry provides transparency and vehicle
shipment optimization based on digital contacts, providing logistic process and price
control information. Using the distributed ledger of causes a high transparency level.
Rahul Guhathakurta et al. [49] presented as an ongoing database that limits the amount of
answers from customers to store a large amount of information. This technique arranges
the business records, authorizing purchases and vehicle traders to go through the vehi-
cle lifecycle. Other advantages of the findings in [50,51] include offering an impressive
solution for exchanging the suppliers, manufacturers, and customers’ interactions. Table
1 shows the automotive industry challenges that contrast with technology. Eleven stake-
holders in the automotive industry are compared based on the difficulties they face in this
environment. Car owners, temporary management companies, car-sharing systems, car
entrepreneurs, car retailers, car manufacturers, insurance companies, and repair shops,
after marketing, public organization, and service provider telecommunication are the
stakeholders in this process.

Table 1. Automotive industry challenges that contrast with technology.

Stakeholders Challenges

Car owners

deficiency of transparency
Cannot predict the car costs
Lack of trust
Less options of insurance
Lack of trust in Internet of Things (IoT)-connected cars
Notifying absence of buying

Temporary management companies

Car history has lack of transparency
The operational cost is high
Car-sharing economy contains high costs
Autonomous vehicles lack trust
Repair jobs lack trust
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Table 1. Cont.

Stakeholders Challenges

Car-sharing

Affordable rides
Better retention of vehicles
Lack of provider platform of mobility
Lack of immediate remittance

Car entrepreneurs

Car leasing is expensive
Partnership fees, car-sharing useage is low
Business setup is difficult
Information sharing is lacking

Car retailer
Ownership records update
Repair record update
Order record update

Car manufacturers

Huge cost of warranty
Enforcement of repair prices
Customer complaints
Car maintenance control
Logistic control
Information sharing
Cyber-attack failure

Insurance

Inflexible prices
Fraud claims
High costs
Inaccurate price policy

Repair shops
Less capacity
Preservation of customers
Lack of brands

After marketing
Stock management is inefficient
Warranty has a lack of transparency
Low margins

Public organizations

Registries updates
Lack of trust
Protection of data
Open source traffic interconnectivity enhancement
Road conditions notification
Accident records trustable data

Service provider telecommunication Stable guarantee
Connectivity trust

3. System Architecture of the Proposed Manufacturing System

The proposed integration method for real-time monitoring in the automotive industry
is to improve the manager access point to an assembly line of manufacturing and provide
a warning scheme for fault detection during the process. Integration of machine learning
and technology clarifies system transactions and data preparation steps in the automotive
industry. In this section, system design, implementation, infusion of integrated approaches,
and fault detection are briefly explained.

3.1. System Design

The presented monitoring system manages the manufacturing process in the automo-
tive industry and similarly warn if there is any issue during the procedure. The proposed
system deploys IoT, predicting a hybrid model in ML, and uses big data analysis. Figure 1
presents the main process applied in the proposed system. There are three main layers
summarized as manufacturing intelligence and analysis, automation control, and auto-
motive extensions. The automotive extension layer mainly consists of the web interface,
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automotive integration layer, and automotive repository. The important part of this layer is
the monitoring system presented to monitor the process performance and warn of problems
during the process. The next step is to simulate this architecture based on three analysis
techniques: impact analysis, statistical analysis, and dynamic analysis. The output of these
steps is directly connected to the production repository. Intelligence analysis contains
the lifecycle of smart manufacturing based on applying machine learning techniques di-
vided into knowledge-based and intelligence analysis. The knowledge-based structure
is the transformation of the traditional automotive industry into a new technique named
a knowledge-based structure. The knowledge-based structure used to restructure and
improve the companies’ organization mainly focuses on learning in system engineering.
The extracted information is connected to the manufacturing production plan and control
system. The main focus of the proposed method is to control the integration broker process,
which contains production plans and connectivity data. The technologies based on the
IEEE 802.11p standard (applying wireless access for the vehicular communication system)
gives chip manufacturers the authorities’ transport for the automotive industry ecosystem.
The primary reason for using this technology is holding and deploying infrastructure
needed for connectivity.

Manufacturing intelligence and analysis

Life cycle of smart 
manufacturing 

Knowledge-based 
structure

Intelligence analysis  

General interface General interface General interface 

Marketplace of 
manufacturing

Portal of user-
centered & role

P
resen

tation

Enterprise system

Production plans

Connectivity 

In
tegration

 
b

ro
k

er

Automation & 
control system

General interface General interface General interface 

Simulation

• Impact analysis
• Statistical analysis
• Dynamic analysis 

Automotive 
repository 

Production 
repository 

Automotive 
integration layer

Web interface

Monitoring

• Dashboard
• Root-cause analyzer
• Troubleshooter

Automotive extensions 

System preparation 

Figure 1. Automotive manufacturing system architecture.

3.2. Evaluating the Essentiality of Blockchain in Automotive Manufacturing

The automotive industry process is based on two main branches. One is transactions,
and the other is business networks. This process generates the service and goods flow.
Similarly, underlying markets also can join as open markets in car sales or as private
markets for supply chain transactions. In any of the mentioned options, assets move on
between various stakeholders in the business network. Assets are divided into two main
parts, namely tangible assents and intangible assets. Moreover, intangible assets are also
divided into financial and intellectual assets. Table 2 shows the use-case information of
Blockchain technology, divided into some features based on their statements and use-
cases in the automotive industry. This process has two main functions: keeping records



Appl. Sci. 2021, 11, 3535 7 of 22

(static consistency, identification, smart contracts) and transactions (dynamic consistency,
payment structure).

Table 2. Blockchain technology main objectives.

Features Statement Use Case

Keeping records
Save and update
by collective assent

Title recording
Identity management

Transactions
Distributed ledger in
entire network

Financial transaction process
Payment conditions
Smart contracts
Record and verify transactions

Static consistency

Storing reference
data based on distributed
data

Ownership proof
Traceability
Patents

Identification
Information identification
based on database distribution

Fraud identification
Record identification

Smart contracts

Trigger self-executing and
automatic actions during the
pre-defined situation.

Paying out the
insurance demand
business of cash
trading

Dynamic consistency Updated transactions based on
distributed database

Supply chain
Fractional investing

Payment structure
Updating the payment and
transactions based on dynamic
distribution

Cross-border
Peer to peer

Various categories
Use-case composed which is not
fitting in any category.

Coin offering
Blockchain as a service

Figure 2 presents the advantages in the automotive industry. There are six categories,
which summarize this process as: access privileges, transactions, data coordination trust,
tracking, identifying, and data transparency. Each of these categories is divided into various
parts. Access privilege contains distributed access control. This is the public database,
which controls the variable sets in the dataset. The data coordination trust includes multiple
participants and a consensus mechanism. In the case of a consensus mechanism, it is a
fault-tolerant process in the system used to reach an agreement among the dataset state’s
distributed network. The participants are the users, manufacturers, and distributors who
need to track product information or add the product’s information. The identifying process
contains the saving digital certificate and anti-thief mechanism. Saving the certificates
means securing and decentralizing the dataset, which shows the possibility of saving digital
certificates and creating further potential values. The identification section gives each user
a unique ID to track and control their process in the system. Identification records the user’s
information and changes that they made based on their access limitation. The transaction
contains the distributed ledger and cryptographic hash. The distributed ledger is defined
as ownership, trust, security, saving transactions, etc., is based on the digital assets and
cryptographic hash and provides the functionality in a single view to users. The transaction
records the payment information with date, time, user ID, etc. The tracking contains the
database access, which can manage the database through the decentralized network.
Finally, data transparency contains encryption and control mechanisms. The main use of
encryption is to secure the database from misusing sensitive information.
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Advantages of Blockchain
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Figure 2. Blockchain technology in manufacturing systems.

3.3. Evaluating the Essentiality of Machine Learning in Automotive Manufacturing

Machine learning is one of the related areas in the automotive industry based on
product innovations, and similarly, it is effective in a business function. Based on the
machine learning techniques, product quality control and data analysis were organized.
In recent technology, the automotive industry required ML techniques to overcome the data
classification and analysis problems. There are various classification models that organize
and manage the dataset for further usage in multiple environments. Figure 3 presents the
machine learning architecture in the proposed system. ML models’ main validation steps
are data cleaning, feature pre-processing, model selection, and parameter optimization.
Data cleaning contains some procedures to prepare the data for further processes, such as
removing duplicates, fixing structural errors, handling missing data, and data validation.
The second step is pre-processing features based on acquiring data, splitting data, feature
scaling, etc. Additionally, model selection, parameter optimization, and validating the
proposed model are performed.

ML algorithms process in automotive industry 

Dataset

Cleaning Dataset
1. remove duplicates
2. fix structural error 
3. handle missing data
4. data validation 

Feature Pre-processing
1. Acquire data
2. split data
3. feature scaling
4. ...

Model Selection  Parameter Optimization 
Model 

Validation 

Figure 3. Machine learning (ML) model validity process in automotive manufacturing.

Figure 4 shows the flow diagram of the proposed integrated system. There are five
layers in this system named the Internet of Things (IoT), big data, Blockchain, cloud
computing, and artificial intelligence (AI). An IoT layer is defined based on collecting data
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based on IoT sensors. The second layer is the big data layer used to structure data and
handling a large amount of data more easily. The third layer is the layer that is the main
core of security in this system. The fourth layer is the cloud computing layer, which saves
the structured data for easier access during the process. Finally, the artificial intelligence
layer is used to predict, classify, and detect faults in the proposed system.
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Figure 4. Flow diagram of the proposed manufacturing system.

4. Implementation

In this section, the data information, IoT sensors’ performance, and the implementa-
tion process are presented in detail.

4.1. Data

The collected dataset in this process is from the IoT-based sensors mentioned above,
including temperature, humidity, gyroscope, and accelerometer. Figure 5 shows data
generating from the sensors in JSON format and being sent to a Kafka server. The data are
delivered to the hybrid prediction model. The results of the data and prediction are saved
into NoSQL MongoDB.
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Figure 5. Generated sensor data from IoT-based sensors.

Figure 6 shows the information of the sensor document, which contains: ID, record
and process time, type of sensor, and the result of the prediction.

Figure 6. Storing sensor data.

4.2. IoT-Based Sensor Performance

The IoT investigation answers the need of various companies for detecting and posi-
tioning the progress of the industry. Sensors, which are based on the IoT, contain devices
and programs, which recover the sensor data and address them into the cloud. This is an
important section to process the IoT sensor data under various conditions. In this system,
the network’s delay is defined based on the average time needed to address the sensor
dataset and capture the objectives. The performance metrics are based on the CPU and
RAM to evaluate the program’s utilization in different scenarios. There are four primary
sensors used in this process, namely temperature, humidity, gyroscope, and accelerometer.
The generated data from the sensors is transferred wirelessly to the cloud, which big data
processes. In total, the experiments used 1GB RAM. Table 3 presents the details of specific
programs and sensors used in this process. The system’s main components are the program-
ming language, sensors type, list of sensors, RAM, and cloud server. The programming
language used in this process is Winpython 3.6.2. The sensors are IoT-based sensors for
real-time monitoring of the environment of automotive industry manufacturing.



Appl. Sci. 2021, 11, 3535 11 of 22

Table 3. System components.

Components Description

Programming language Winpython 3.6.2
Sensor types IoT-based

List of sensors
1. Temperature
2. Humidity
3. Gyroscope
4. Accelerometer

RAM 1 GB
Cloud server Wireless Connection

4.3. Blockchain Implementation Process

The implementation and design are briefly explained in this section. Table 4 shows
the development environment of the implemented technology related to the proposed
system. There are a total of 10 components defined in this system. The IDE is presented
based on composer-playground, memory usage is 32 GB, CPU is Intel (R) Core(TM) i7-8700
@3.20 GHz, the python language version is 3.6.2, and the operating system is Ubuntu
Linux 18.04.1 LTS. Furthermore, the docker environment version is 18.06.1-ce, and the
virtual machine is processed in the docker composer version 1.13.0. The Hyperledger
Fabric framework is from Linux Foundation. The main reason to choose the Hyperledger
Fabric framework in the proposed system is the effectiveness of this system compared with
ethereum and DLTs in the scalability of the network, and it can manage huge transactional
records [52–54].

Table 4. Development environment of the proposed system.

Component Description

IDE (Integrated Development Environment) Composer-playground
Memory 32 GB
CPU Intel (R) Core(TM) i7-8700 @3.20 GHz
Python 3.6.2
Operating system Ubuntu Linux 18.04.1 LTS
Docker engine Version 18.06.1-ce
Docker composer Version 1.13.0
Hyperledger fabric V1.2
CLI (command line interface) tool Composer REST Server
Node V8.11.4

Figure 7 presents the manufacturer records in the composer rest server. The manufac-
turer information can be verified from the manufacturer ID. The client’s request is based on
the “/API/Manufacturer-Manufacturer1” to submit to the Rest server. The information of
the manufacturer is stores in the Hyperledger composer, which is based on the Rest server,
which answers the query request. The JSON format is the view of response requests on
the Rest server of Hyperledger. The request for the URL contains the API address with the
running port information.
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Figure 7. Composer rest server environment for fetching the manufacturer records.

5. Results and Discussions

In this section, the detailed information related to the results of the proposed integrated
system is evaluated.

5.1. IoT-Based Real-Time Monitoring

Data visualization development aims to monitor real-time sensor data records. Based
on this process, the manager can easily monitor the assembly line and capture the faults
(abnormal incidents) during the processing. The system’s real-time monitoring contains
three main cores: IoT-based sensors, big data, and a hybrid prediction model. Figure 8
presents the web-based real-time monitoring. In the proposed system, four main sensors,
i.e., gyroscope, temperature, accelerometer, and humidity, are used in a real-time environ-
ment. The IoT-based devices (sensor devices) collect information per second. The hybrid
prediction model applied in this system is used to predict the real-time system fault records.
The presented system was implemented and examined with one of South Korea’s auto-
motive manufacturers. The period was from the first of February 2020 to November 2020.
The sensors, which were positioned in the industrial assembly line, transmitted data based
on seconds. Within the testing time, 20 million records were accumulated.
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Figure 8. Real-time monitoring of the proposed system.

Figure 9 shows the network delay, and Figures 10 and 11 show the memory and
CPU utilization of the program. Four periods are considered to evaluate in this process.
The program reading and sending steps are considered at five, 10, 30, and 60 s. Based on
the presented results, the reading time had less effect on CPU and RAM usage. As shown
in Figure 9, by increasing the sensor data, the network delay also increased. Sending
1000 IoT-based pieces of sensor data at the same time took almost fifty seconds. The user
program’s computational cost in CPU was less than 3%, and for RAM, it was almost 18 MB
for all periods.
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Figure 9. IoT-based sensors network delay.
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5.2. Big-Data Processing Performance

Analyzing system performance based on big data is one of the important tasks in
this process. The performance metrics of this procedure are divided into system latency,
throughput, and concurrency. System latency is the time needed to handle, process,
and save the dataset into the database. The throughput is based on the amount of sensor
data every second; finally, the concurrency shows the number of clients who can simul-
taneously access the system. The experiments are managed based on the various server
numbers and their response time, which accumulate for analysis. Figures 12–15 shows a
comparison of system latency and throughput. In this process, a single client used various
sensor data sent to the cloud services simultaneously. Figure 12 presents the increasing
sensor dataset in the cloud server and, similarly, increasing the response time. Response
times changes are also based on the number of clients. The proposed system requires
a longer response time because of the large number of clients. To decrease the system’s
response time, the scalability advantages help by adding several servers and comparing
them with one server, as mentioned in Figure 13. Figures 14 and 15 present the system
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throughput based on various clients, and similarly, to reach a better performance a number
of servers are effective.
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Figure 12. Performance evaluation of latency with various numbers of clients.
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Figure 13. Performance evaluation of latency with various numbers of servers.
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5.3. Blockchain Transaction Process

The transaction management breaks into orders and peers, and the network reaches
higher concurrency. Each transaction extracts from the peers in the world state. Based on
the success or failure, the peers’ certificates are signed. The re-execution of am order is not
allowed and cannot maintain the ledger. Figure 16 illustrates the transaction process’s total
architecture for all components inside the network. Issuing the transaction proposal is au-
thorized based on the user manager’s decision. The transaction starts when the client sends
the request to the node, which takes part in the network. The encoder node’s responsibility
is to evaluate the transaction proposal and validate the result and respond to the ledger’s
transaction block. Figure 17 shows the transaction list in the environment. There are four
main records, including date, time, type of entry, and participants. The date and time
section shows the exact date and time at which the transaction happened in the system.
The entry type shows the type of entry related to adding a participant, approval, adding an
asset, or other options. The participant section shows the details of the participant, and the
view record section shows the contents related to the transaction process. The details of
each transaction are presented in Figure 18 with the unique ID for each event. All certified
users in the presented network can start a new transaction based on the set rules. If the
transaction is successful, the participant responds from the system based on the user ID.

Client User Manager Node (M1) Consensus 
Manager

Node MP

State

Response Certificate 

Submit Request of proposal 

Assigned Response 

Broadcast Assigned Response 

Notification of Client 

Transaction Block to Verify the Signature 

Signature Verification 
Read set

Signature Verification
Transaction Block

Read set

Write Block

Figure 16. Transaction flow of the automotive manufacturing in the platform.
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Figure 17. List of transactions.

Figure 18. Transaction history records.

5.4. Fault Detection Based on Hybrid Prediction

A hybrid prediction model in the proposed system was applied to extract the normal
and abnormal functionality during the procedure. As shown in Figure 19, this procedure
detects the mentioned functionality in the manufacturing system. The outlier detection
in the hybrid prediction model is used to remove the sensor data outliers and classify
them based on Random Forest. This procedure’s final step is the performance evaluation
comparing the hybrid prediction model results with other classification models. The per-
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formance evaluation is based on the different ML prediction models. The dataset contains
400 classified instances that are normal or abnormal throughout the manufacturing process.
The data are divided into eight features: temperature, humidity, accelerometer 1, accelerom-
eter 2, accelerometer 3, gyroscope 1, gyroscope 2, and gyroscope 3. The applied machine
learning technique is expected to produce a robust model classifier from the provided
data. After the generating monitoring system, the results show the prediction results of the
sensor dataset.

Hybrid Prediction Process

Sensor 
Dataset

Pre-processing Detecting Outliers 

Evaluation 
Classification based 
on Random Forest 

Figure 19. Hybrid prediction model based on Random Forest classification for fault detection.

After collecting the relevant dataset, the pre-processing step removes unsuitable,
conflicting, and missing values from the data records. Table 5 shows the dataset’s detailed
information. There are four main sensors used in this procedure: temperature, humidity,
accelerometer, and gyroscope. Moreover, the information gain (IG) technique analyzes the
considerable features during the process [55]. Table 6 shows the dataset attributes and IG
scores. Based on the provided results, the manufacturing system’s temperature has the
highest factor affecting abnormal functions.

Table 5. Dataset information.

Features Introduction

Temperature (Celsius) Provided environmental temperature
Humidity (Relative humidity) Provided environmental humidity
Accelerometer 1 First value of the accelerometer
Accelerometer 2 Second value of the accelerometer
Accelerometer 3 Third value of the accelerometer
Gyroscope 1 First value of the gyroscope
Gyroscope 2 Second value of the gyroscope
Gyroscope 3 Third value of the gyroscope

Table 6. Considered features based on information gain score.

Features Information gain score

Temperature (celsius) 1.0615
Humidity (relative humidity) 0.9829
Accelerometer 1 0.5774
Accelerometer 2 0.98
Accelerometer 3 0.5988
Gyroscope 1 0.7435
Gyroscope 2 0.9359
Gyroscope 3 0.9582

The comparison of the different classification models is shown in Table 7. The models
are defined as: multiple linear regression, Random Forest, k-nearest neighbor, decision
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tree, and extra tree. Based on the results, the combination of the hybrid method and the
Random Forest had the best performance in the proposed system with an accuracy of 0.956
and an RMSE (Root Mean Square Error) of 0.105. This procedure showed the RMSE score
for each model. The highest error rate was for the linear regression model, which had the
lowest accuracy score in this system.

Table 7. Comparison of performance of various classification models for fault detection

Model Score RMSE

Multiple linear regression 0.766 0.313
Random Forest 0.894 0.204
KNN (K-Nearest Neighbors) 0.885 0.213
Decision tree 0.8925 0.207
Extra tree 0.8928 0.206
Hybrid prediction + Random Forest 0.956 0.105

The performance metrics of the presented models were evaluated based on Equa-
tions (1)–(3). In this process, based on the confusion matrix, there are four possible outputs:
true positive (True+) and true negative (True−), which are are the right classified points,
and false positive (False+) and false negative (False−), which are the wrong classified points.

Precision = (True+)/((True+) + (False+)) (1)

Recall = (True+)/((True+) + (False−)) (2)

Score = ((True+) + (True−))/((True+)(True−)(False+)(False−)) (3)

5.5. Smart Manufacturing Challenges

The automotive industry is one of the largest and most important areas in terms of
business and vehicle production. There are some challenges that manufacturers are facing
while producing new products. Here we mention seven recent and important challenges
in the automotive industry: regulations, vehicle fuel changing possibility, vehicle brands’
constancy, the technology of power train, automotive industry supply chain, reconnecting
with buyers, and global stabilization. The fuel for the usage of automobiles is a challenge
for cases such as the climate and plant lives. In other cases, the power train defines the
automotive business’s future and similarly changes customer preferences. The supply
chain needs to be updated based on recent development and changes. In the current
manufacturing industry, the supply chain’s delay means that the production line may shut
down for a while, and similarly, this causes a high cost for overall operations.

6. Conclusions and Future Directions

This research focused on a real-time monitoring system based on the integration of
IoT sensors, big data, and a hybrid prediction model. This system anticipates improving
the monitoring system in the manufacturing environment, extracts faults during the pro-
cedure, and similarly prevents issues in the assembly line. The integration of big data
and IoT sensors into this system presented a large amount of real-time sensor datasets.
Based on this technique, handling the datasets and extracting the proper information is
examined. The applied big data technique is NoSQL MongoDB. The results section shows
the effectiveness of this system, which is scalable and more reasonable than traditional
methods. Moreover, the system performance was analyzed based on the network’s delay,
CPU, and RAM. The results showed quite acceptable solutions and were successful in
the data collection and transmitting process within a short time and with low cost. Smart
manufacturing’s fault detection issue is also a severe problem for identifying normal and
abnormal functions. The presented hybrid prediction model contains Random Forest
classification, which is used to predict the input data issues. Compared with other machine
learning approaches, Random Forest has higher accuracy and fits the proposed system.
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The output of this procedure is expected to improve the manufacturing industry’s decision-
making and ignore unexpected faults. Blockchain technology applied in this system covers
the security of the collected dataset and similarly prevents providing fake data, improves
data transmission and costs and improves system safety. In future research, we will try to
improve the supply chain procedure and try other related IoT sensors to improve the fault
detection results. Blockchain presents an opportunity in the automotive manufacturing
industry to improve the competition in the industrial world. Blockchain improves the
various types of business models with lower transaction fees and reduces information
transfer between various users. Reducing fraud and systemic risks are other advantages of
using this system. The use of machine learning techniques in the industrial environment
provides the advantage of better data acquisition and improves system accuracy. The clas-
sification and detection algorithms retain the accuracy of various models without reducing
the advantages and accuracy; similarly, handling a large amount of sensor data is much
easier and accurate with machine learning techniques.
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