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Abstract: In this paper, a model is proposed for the optimal operation of multi-energy microgrids
(MEMGs) in the presence of solar photovoltaics (PV), heterogeneous energy storage (HES) and
integrated demand response (IDR), considering technical and economic ties among the resources.
Uncertainty of solar power as well as the flexibility of electrical, cooling and heat load demand
are taken into account. A p-efficient point method is applied to compute PV power at different
confidence levels based on historical data. This method converts the uncertain PV energy from
stochastic to deterministic to be included in the optimization model. The concept of demand response
is extended and mathematically modeled using a linear function based on the quantized flexibility
interval of multi-energy load demand. As a result, the overall model is formulated as a mixed-integer
linear program, which can be effectively solved by the commercial solvers. The proposed model
is implemented on two typical summer and winter days for various cases. Results of case studies
show the important benefits for maximum PV utilization, energy efficiency and economic system
operation. Moreover, the influence of the different confidence levels of PV power and effectiveness of
IDR in the stochastic circumstances are addressed in the optimization-based operation.

Keywords: multi-energy microgrid; PV; uncertainty; integrated demand response; heterogeneous

1. Introduction

Challenges of the continued growth of energy requirements, as well as energy short-
age and environmental problems and the existing energy production and consumption
patterns, cannot meet the growing needs of metropolitan regions for future development.
Power energy systems need a transformation to overcome the above concerns. The devel-
opment of concepts such as energy internet [1] and integrated energy systems [2] provide
new ideas for energy efficiency and utilizing multiple energy carriers as well as renewable
energy. Multi-energy microgrids (MEMGs), as small-scale integrated energy systems in-
cluding electricity, gas, cooling, heating and other forms of energy for intelligent buildings,
residential communities, industrial parks and other regions, comprise the developing
trends of integrated energy systems [3].

Extensive research works are carried out on the small-scale integrated energy systems,
including modeling, optimizing system structures and operation strategies. For instance,
certain authors proposed a comprehensive model to decide the component capacities in
an integrated energy system for a Swedish building, considering the system planning and
system operation simultaneously [4]. In [5], the multi-carrier energy system, including
hydro–wind–solar–hydrogen–methane–carbon dioxide–thermal energies, are integrated
and modeled in a zero-energy building. The authors of [6] proposed the optimization
configuration of a regional integrated energy system based on typical residential area
modules and typical commercial modules built on actual regional plots. In [7], a double-
layer planning model for an integrated energy system at the community level is proposed
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that considers varying coupling factors to determine the optimal planning and operation
schemes for the system. Another study [8] proposed a capacity planning and optimization
model for an integrated energy system in an industrial park, aiming to minimize the
cost per unit power generation. A multi-criteria decision-making method for a selection
problem involving integrated energy system composition schemes in a practical industrial
park is presented in [9].

With the increasing penetration of variable renewable energies (VRE) in MEMGs,
considering the VRE-associated uncertainties in the system would make the results more
realistic. On the one hand, various methods have been applied to model the uncertainties
and obtain the optimal values in different research works. The stochastic method is one
of the most common methods [10]. Solar and wind are the most widely used VRE in
power energy systems worldwide [11]. In [12–14], a stochastic programming modeling
framework is studied for solving the solar PV and wind power integrated smart energy hub
scheduling problem. A Monte Carlo sampling method is used to generate the solar PV and
wind power scenarios. The scenario reduction method is introduced to reduce the number
of scenarios and simulation burden. The shortcoming of the above method is that it is
computationally expensive, and the probability density functions of uncertain parameters
are necessary. Robust optimization is another common method to handle the uncertain-
ties. For instance, the authors of [15] proposed an interval optimization-based operational
strategy for integrated energy systems to overcome uncertainties associated with VRE and
loads. In [16], the authors proposed an interval-based integrated energy system planning
with wind power integration, and the authors developed a probability-interval method to
describe the uncertain wind power. In [17], a two-stage hybrid stochastic-information gap
decision theory (IGDT) based on the network-constrained unit commitment framework is
proposed for integrated power- and heat-based energy systems. In the framework, the un-
certainties of load demands and wind power generation are studied using the Monte Carlo
simulation method and IGDT, respectively. In [18], the authors proposed an IGDT-based
robust problem model for multi-carrier energy system management; it uses an IGDT model
for handling the uncertainties associated with VRE. Although the interval- and IGDT-based
robust models are useful for uncertainties, optimization results are conservative [10]. A
data-driven p-efficient point method was used to compute renewable generation amounts,
taking into account the renewable uncertainties in the distribution system, and achieved sat-
isfactory results [19]. To properly handle the uncertainties associated with VRE in MEMGs,
the p-efficient point method based on historical VRE data is involved in this paper.

On the other hand, the energy storage systems (ESS) are known as a solution for the
integrated energy systems with high VRE penetration. The authors of [20] described the
role of electrical energy storage in an energy system dominated by distributed generation
as well as possible modes of deployment of energy storage solutions in an industrial
setting. In integrated energy systems, ESS may be used to enhance the potential energy
and cost savings provided by combined heat and power (CHP) generation, if properly
sized and operated [21]. In [22], authors proposed the optimal configuration of ESS in
integrated energy system, taking into account reducing wind curtailment, price arbitrage,
peak demand shaving and coordinated operation with CHP. In [23], the optimal schedule
of battery-integrated energy systems is investigated with consideration of forecast error,
and the optimal battery charging/discharging state is analytically obtained to maintain the
real-time balance between supply and demand and simultaneously improve the system’s
economy. A combination of applications of ESS and thermal energy storage seems more
promising as it offers higher potential to achieve energy efficiency improvement and
cost savings in integrated energy systems. For instance, the electrical–thermal hybrid
energy storage is used for mitigating the problem of intermittency that plagues electrical
and thermal renewable forms of energy in [24]. The use of the energy stored in the
hybrid energy storage to supply part of the energy required by the heating load leads to
a reduction of the amount of power supplied by the mains, thus reducing the microgrid
operating costs. In [25], an optimal configuration method for community-integrated



Appl. Sci. 2021, 11, 1005 3 of 19

energy systems considering electrical and heat storage devices is proposed, which can
meet the load requirements of electricity, cooling and heating in the system and ensure
economic efficiency simultaneously. In [26], the effects of cold storage on the performance
and efficiency of the energy hub operation cost are investigated; it is demonstrated that
the ice storage performance increases the flexibility of the energy hub to apply more
energy resources, which leads to the cost reduction alongside using other programs and
storages. In [27], a risk-averse method for the optimal deployment of heterogeneous energy
storage (HES), consisting of electrical and thermal energy storage, in a residential MEMG
is proposed; results indicate that the deployment of electrical and thermal energy storage
can effectively increase the system equivalent daily profit and make it more immune
to the uncertainties. It is obvious from the specialized literature that integration of the
heterogeneous energy storage with MEMGs has undeniable impacts on enhancement of
the systems’ operation. In this paper, HES consisting of electrical, cooling and heating
energy storage is exploited to provide a potentially cost-effective solution to enhance the
flexibility of the MEMG system.

Demand response (DR) is an important measure to guide the customers to consume
electricity rationally to achieve economic and efficient operation. Traditionally, DR pro-
grams only focused on the electricity pattern of the customers and aimed to shift electrical
loads from peak periods to off-peak periods [28]. In the presence of multiple energy de-
mands, the concept of DR is extended to the multiple energy sector and a new concept
of demand response, known as integrated demand response (IDR), is developed [29,30].
In [31], a framework which enables buildings to carry out heating demand response for
the integrated heating/electricity community energy systems is presented. In [32], a de-
mand response mechanism of electro-thermal IES considering electrical and thermal load is
proposed, and a multi-objective operation optimization model is established based on the
DR mechanism to improve the economic and energy efficiency of IES. In [33], the authors
addressed the concept of a hydrogen-based smart micro-energy hub considering IDR and
a fuel cell-based hydrogen storage system. IDR is introduced to manage consumers’ load
patterns not only by shifting their electrical loads, but also by shifting their heat loads.
In the specialized literature, IDR is a novel and developing concept and yet researchable
subject, although the research on IDR models or strategies is far from being a full inves-
tigation. In addition, the coordinated operation and optimal scheduling of multi-energy
carriers with both the IDR and HES, including electrical, heating and cooling, are not
considered thoroughly.

In reality, the implementation of IDR is inseparable from interaction between the end
users and operator. As described in [34], the energy box in a cloud-based architecture can
be used as one of the possible solutions for the communication and interaction between
the end users and operator in the MEMG system. IDR, on the other hand, is also available
as an energy management technique from the demand-side perspective. The energy flows’
control and optimization are crucial for MEMGs to have a clear picture of the coordination
of supply and demand at the scheduling and operational phases, considering distributed
energy resources (DERs) and IDR. There are already some analytical approaches applicable
to the optimization of power flow control of DERs, such as cost-optimal control and
rule-based control [35]. Recently, model predictive control (MPC)-based applications on
the optimization of power flows in energy systems were proposed in [36] to minimize
electricity cost and to maximize DR services. In the predictive control method, operation of
both demand- and supply-side entities are optimally controlled. MPC-based applications
on energy flow control in MEMG systems considering IDR and HES are interesting open
research topics that need further study but are out of the scope of the present paper.

In view of the aforementioned discussion, this work focuses on the optimal operation
of multi-energy microgrids for buildings in the presence of variable PV; HES consisting
of electrical, heating and cooling energy storage; and IDR. The main contributions of this
paper are as follows:
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1. To properly handle the uncertainty of variable PV generation, the p-efficient point
method is applied to determine the expected PV generation amounts based on his-
torical data at given confidence levels and then incorporate them into the MEMG
optimization problem.

2. A generalized model for IDR is developed, and the role of IDR in accommodating PV
generation within MEMGs is investigated.

3. A mixed-integer linear programming (MILP) model for properly integrating and
coordinating the deployment of IDR, HES and also the energy conversion facilities for
economic system operation is proposed. Coordinated operation of electrical, heating
and cooling energy storage is optimized.

4. The proposed model is implemented on two typical summer and winter days for
various cases to validate its effectiveness and feasibility. According to the obtained
results, the proposed strategy can help the system operator to reduce the total energy
costs by 5.44% on a typical summer day and 3.5% on a typical winter day.

The rest of the paper is organized as follows: The MEMG system description and
required concepts are presented in Section 2. The mathematical formulation of the pro-
posed optimization model is presented in Section 3. In Section 4, various case studies are
considered to evaluate the effectiveness of the proposed method, and results obtained are
discussed. In Section 5, conclusions are drawn along with future work research directions.

2. System Modeling
2.1. System Description

The focus of this work is a multi-energy microgrid for buildings, which is a small-
scale version of an integrated energy system consisting of electricity, natural gas, solar PV
panels, different energy converters and multi-energy storage units to supply many types of
electrical, cooling and heating loads. The structure of the studied MEMG system is shown
in Figure 1.
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Key features of the MEMG system can be summarized as follows:

1. Electricity and natural gas are the two principal energy carriers for the energy in-
puts, which are converted and delivered to end users. Coupling electrical and gas
infrastructures is an efficient approach to the optimal operation of the two different
energy systems.
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2. Solar PV panels are integrated into the MEMG system. Unlike other renewable
resources, solar power can be more easily applied to the demand side in distributed
patterns, e.g., solar PV-integrated buildings [37].

3. The MEMG consists of a combined heat and power (CHP) system, gas boiler (GB),
electrical heat pump (EHP), electric chiller (EC), absorption chiller (AC) and het-
erogeneous energy storage (HES), which are integrated into the MEMG system for
transferring, converting or storing heterogeneous energy to meet the multi-energy
demands and to improve the efficiency.

4. The HES consists of electrical energy storage (ES), a cooling storage (CS) tank and a
heat storage (HS) tank, which are deployed for the purposes of tackling the intermit-
tent outputs from solar power, shaving peak energy demands and achieving higher
energy utilization flexibility.

5. The use of variable solar power and HES adds to the flexibility and complexity of
MEMG operation at the same time.

2.2. Model of Components
2.2.1. CHP

The CHP is fed by natural gas and generates electricity and heat as co-products; it plays
an important role in streamlining the interconnection of electrical and gas infrastructures. It
should be mentioned that the power and heat generated by the CHP units are co-dependent
and cannot be changed separately. The relation between the input and the output of the
CHP unit is described as follows:

PCHP
E (t) = ηCHP

E PGas
CHP(t) (1)

PCHP
H (t) = ηCHP

H PGas
CHP(t) (2)

where PCHP
E (t) and PCHP

H (t) are the amount of electricity and heat outputs of the CHP
unit, respectively, PGas

CHP(t) is the natural gas entering the CHP unit, ηCHP
E and ηCHP

H are the
electrical and heat conversion efficiency, respectively.

2.2.2. GB

The gas boiler is fed by natural gas and generates heat. The heat energy produced by
the boiler unit is calculated as follows:

PGB
H (t) = ηGB

H PGas
GB (t) (3)

where PGB
H (t) is the amount of heat production of the boiler and PGas

GB (t) and ηGB
H are the

natural gas entering the boiler and the conversion coefficient from gas to heat through the
boiler, respectively.

2.2.3. EHP

The electrical heat pump uses electrical energy as the input to provide heating energy
in the heating mode. For the sake of simplicity, it assumes a constant relation between
electricity input and heat output [38]:

PEHP
H (t) = ζEHPPEHP

E (t) (4)

where PEHP
H (t) is the amount of heat produced and PEHP

E (t) and ζEHP are the electricity
consumed by the EHP and the average coefficient of performance, respectively.

2.2.4. EC

The electric chiller consumes electrical energy to produce cooling energy with cooling
coefficient of performance:

PEC
C (t) = ζECPEC

E (t) (5)
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where PEC
C (t) is the amount of cooling produced and PEC

E (t) and ζEC are the electricity
consumed by the EC and the cooling coefficient of performance of the EC, respectively.

2.2.5. AC

The absorption chiller absorbs heat energy and produces cooling energy according to
a coefficient of performance:

PAC
C (t) = ζACPAC

H (t) (6)

where PAC
C (t) is the amount of output cooling energy and PAC

H (t) and ζAC are the heat
energy fed into the AC and the coefficient of performance of the AC, respectively.

2.2.6. HES

• ES
Battery storage, as one of the most widely used electrical energy storage types in

power systems, is deployed in the MEMG system. To consider the battery storage, the
amount of charged/discharged energy is expressed as

EB(t) =(1− κB)EB(t− 1) + (ηB,ch · PB,ch(t)−
PB,dis(t)

ηB,dis
)∆t (7)

where EB is the electrical energy stored in the ES; κB indicates the decay rate of ES, which
is assumed to be a constant; PB,ch and PB,dis respectively represent the charging and dis-
charging power of the ES; and ηB,ch and ηB,dis respectively represent the charging and
discharging efficiency of the ES.

• HS and CS

In the MEMG system, the heat storage tank and cooling storage tank are used to store
heating and cooling energy, respectively. The way the HS and CS tanks work is similar, and
the structure of the HS/CS tank [27] is shown in Figure 2. The HS (or CS) tank absorbs or
releases heat (or cooling) energy by controlling the volume of hot or cold water (VH or VC).
When a heat storage tank supplies heat, the temperature of the supply water (TH) becomes
higher. When a cooling storage tank supplies cooling, the temperature of return water (TC)
becomes higher.
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Figure 2. Structure of the heat storage (HS) or cooling storage (CS) tank, where Su_I and Su_O
represent the inlet and outlet switch for supply water, respectively; Re_I and Re_O represent the inlet
and outlet switch for return water, respectively; VH and VC represent volume of hot and cold water,
respectively; TH and TC represent temperature of supply and return water, respectively.
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The charging and discharging power of HS/CS tank can be formulated as

Pφ,ch(t) =cW · ρW ·VH(t) · (TH − TC). (8)

Pφ,dis(t) =− cW · ρW ·VC(t) · (TC − TH) . (9)

where Pφ,ch and Pφ,dis respectively indicate the charging and discharging power of the
HS/CS tank, the subscript φ represents the energy type—heating or cooling, cW repre-
sents the specific heat capacity of water, ρW represents the density of water, VH and VC
respectively represent the volume of the hot or cold water, and TH and TC represent the
temperature of supply water and return water, respectively.

The heating/cooling storage energy utilization in the charge and discharge modes is
defined in discrete time as follows:

Eφ(t) =(1− κφ)Eφ(t− 1) + ηφ,ch · Pφ,ch(t) · ∆t−
Pφ,dis(t)

ηφ,dis
· ∆t (10)

where Eφ represents the heat or cooling energy stored in the tank; κφ indicates the decay
rate of HS or CS, which is assumed to be a constant; Pφ,ch and Pφ,dis respectively represent
the charging and discharging power of the HS or CS; and ηφ,ch and ηφ,dis respectively
represent the charging and discharging efficiency of the HS or CS.

2.2.7. Solar PV

For installed solar PV panels, power generated by the PV mostly depends on solar
irradiance and ambient temperature. In reality, the forecast values of PV generation witness
fluctuations due to uncertain solar radiation [39], thus accurate information of the PV
generation for a future time is unpredictable. Therefore, the PV generation is stochastic and
is an uncertain quantity. In this paper, the p-efficient point method is applied to determine
the optimal amount of variable PV generation based on historical data at given confidence
levels and then incorporates it into the MEMG optimization problem. A more detailed
explanation of the proposed method is provided in the next section.

2.3. PV Uncertainty Handling

The p-efficient point method is a data-driven mathematical program used to deter-
mine probability efficient points of stochastic variables in a stochastic process, and then
stochastic programming with probabilistic constraints can be converted into deterministic
programming at a certain confidence level [19]. Y denotes a stochastic variable vector, v
and w denote two realizations of Y, the probability distribution function of the stochastic
vector is expressed as FY(v) = Pr{v ≥ Y} and the p-level set of the stochastic vector is
Yp= {v ∈ Rn : FY(v) ≥ p}. According to [40], the p-efficient point is defined as follows.

Theorem 1. For a given p∈(0,1), a point v ∈ Rn is called a p-efficient point of the probability
distribution function FY, if FY(v) ≥ p and there is no w ≤ v, w 6= v such that FY(w) ≥ p.

From the above, FY(w)= Pr{w ≥ Y} ≥ p is equivalent to w ≥ v at a probability level
p when v is the p-efficient point. Thus, a probabilistic chance-constrained Pr{w ≥ Y} ≥ p
can be converted into a deterministic constraint w ≥ v. The solution of the p-efficient point
based on historical data is key for the conversion. Without loss of generality, suppose S is
the finite set of scenarios characterizing the probability distribution of the n-dimensional
stochastic vector Y = (y1, y2, · · · , yn), and let ys = (ys

1, ys
2, · · · , ys

n) be the deterministic
vector representing the realization of the stochastic vector Y under scenario s ∈ S. The prob-
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ability of each scenario s is denoted by vs, where vs = Pr(ys = Y) > 0 and ∑s∈S vs= 1.
According to [40], the p-efficient point is calculated as follows:

min
n

∑
i=1

vi (11)

s.t : ∑
s∈S

vsχs ≥ p (12a)

vi ≥ ys
i χs, i = 1, 2, · · · , n, s ∈ S (12b)

χs ∈ {0, 1}|S| (12c)

v ∈ Rn
+ (12d)

where vi ∈ v represents the components of realization of the stochastic variables based on
historical data samples and χs is a binary variable that is equal to 1 if all constraints vi ≥ ys

i
are met and that takes the value 0 otherwise.

It follows that a p-efficient point is the minimum point of a given confidence level set
Yp= {v ∈ Rn : FY(v) ≥ p}. The p-efficient point solution serves as the expected PV gener-
ation amount that can ensure the efficient consumption of solar PV and simultaneously the
reliability of MEMGs in managing the uncertainty in PV.

2.4. IDR

A generalized IDR model is proposed in this section, considering not only the electrical
load demand response, but also the heating and cooling loads’ demand responses. As
shown schematically in Figure 1, we denote by H the set of energy hubs, and each energy
carrier—i.e., the electricity carrier, heat carrier and cooling carrier, respectively—is attached
to each energy hub }K∈H. Let D denote the set of real energy demands. Demand at each
energy hub }K is aggregated and denoted by PD

K (t)∈D. Let `d
K,t be a proportion of the load

delivered at energy hub }K at the time period t. Then, the flexibility interval of multiple
energy demand is defined around `d

K,t = 1. Suppose [<−K,t,<
+
K,t] is the flexibility interval

of the demand at energy hub }K at the time period t. The flexibility of multiple energy
demands comes from the responsive loads participating in demand response programs
at each energy hub }K. If the demand at energy hub }K in the time interval t is flexible,
0 ≤ <−K,t ≤ 1 and <+

K,t ≥ 1 are used to denote the scaled-down load and the scaled-up load,
respectively. If the demand at energy hub }K is not flexible, then <−K,t = <+

K,t = 1. Therefore,
the model of the proposed IDR can be formulated in a linear form.

PD′
K (t) = (1 + ∆γK,t)PD

K (t) (13a)

∆γK,t = γ+
K,t − γ−K,t (13b)

0 ≤ γ+
K,t ≤ <

+
K,t − 1 (13c)

0 ≤ γ−K,t ≤ 1−<−K,t (13d)

where γ−K,t and γ+
K,t represent the decrease and increase of proportion in the amount of real

energy load delivered to the demand at each energy hub }K, respectively. The subscript
K represents the energy type, which can be electricity, heating or cooling. (1 − <−K,t) and
(<+

K,t − 1) indicate the upper limit proportions of the demand PD
K (t) that can be decreased

or increased, respectively.
This paper solves the optimization problem over a 24-h period on an hourly basis. To

ensure conservation of the demand at each energy hub }K, total decreased load must be
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equal with increased amount over the considered time horizon (i.e., a 24-h period), which
is described as follows:

T

∑
t=1

PD,dec
K,t =

T

∑
t=1

PD,inc
K,t (14)

3. Problem Formulation

In this section, the mathematical framework of the proposed optimization model
for the optimal operation of the MEMG is presented. The optimization model takes the
minimized energy cost as the optimization objective, with solar PV, the terminal energy
demands, the parameters of equipment and energy price as the inputs, and the optimal
scheduling of equipment, optimal charging/discharging of HES, optimal scheduling of
IDR, optimal scheduling electricity and gas energies as well as energy cost as the outputs.
The details of the proposed model are described as follows.

3.1. Objective Function

The main goal of the proposed model is to minimize the costs associated with the
imported energy (i.e., electricity and gas purchasing) and demand side management
through deploying the full potential of the MEMG resources, ensuring the electrical,
cooling and heating demands are satisfied.

The objective function for the MEMG optimization problem is expressed as follows:

min
T
∑

t=1
[λgrid(t) · PGrid(t) + λgas(t) · PGas(t)] +

T
∑

t=1

K
∑ [(σd+

K,t ·
∫ +

K,t +σd−
K,t ·

∫ −
K,t) · P

D
K (t)] (15)

where the first term represents the cost of the power and natural gas purchased from
utility, wherein λgrid(t) and λgas(t) are the electricity price and gas price, respectively. The
second term expresses the cost of IDR; σd−

K,t and σd+
K,t are the cost of downward and upward

regulation of the demand at energy hub }K, respectively.

3.2. Constraints

The objective function is subjected to the following constraints.

(1) The electrical, heating and cooling energy balance are expressed as follows:

PGrid(t)+PPV(t) + PCHP
E (t)+PB,dis(t) =PEC

E (t) + PEHP
E (t) + PB,ch(t) + PD′

E (t) (16)

PCHP
H (t)+PGB

H (t) + PEHP
H (t)+PH,dis(t) =PAC

H (t) + PH,ch(t) + PD′
H (t) (17)

PEC
C (t) + PAC

C (t)+PC,dis(t) =PC,ch(t) + PD′
C (t) (18)

(2) The energy conversion facilities’ power limitations are expressed as follows:

0 ≤ PCHP(t) ≤ PCHP
Max (19)

0 ≤ PGB(t) ≤ PGB
Max (20)

0 ≤ PEHP(t) ≤ PEHP
Max (21)

0 ≤ PEC(t) ≤ PEC
Max (22)

0 ≤ PAC(t) ≤ PAC
Max (23)

0 ≤ PPV(t) ≤ PPV
Max (24)

where PCHP
Max , PGB

Max, PEHP
Max , PEC

Max, PAC
Max and PPV

Max stand for the maximum output power
limits for the CHP, gas boiler, electrical heat pump, electric chiller, absorption chiller and
PV, respectively.

(3) The technical constraints of the HES
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The operational constraints of the battery storage are expressed as

0 ≤ PB,ch(t) ≤ µBPmax
B,ch (25)

0 ≤ PB,dis(t) ≤ (1− µB)Pmax
B,dis (26)

Emin
B ≤ EB(t) ≤ Emax

B (27)

EB(T) =EB(0) (28)

Equations (25) and (26) express the minimum and maximum limits of charging/
discharging power for the ES, wherein µB is a binary charging/discharging state. Equation (27)
expresses the minimum and maximum energy stored in the ES. Equation (28) expresses
that the energy stored in the ES at the end of the considered time horizon must be equal to
the initial one.

The operational constraints of the HS/CS are expressed as

µφPmin
φ,ch ≤ Pφ,ch(t) ≤ µφPmax

φ,ch (29)

(1− µφ)Pmin
φ,dis ≤ Pφ,dis(t) ≤ (1− µφ)Pmax

φ,dis (30)

Emin
φ ≤ Eφ(t) ≤ Emax

φ (31)

Eφ

(
T) =Eφ(0) (32)

Equations (29) and (30) express the minimum and maximum limits of charging/
discharging power for the HS and CS, respectively, wherein µφ is a binary charging/
discharging state. Equation (31) expresses the upper and lower bounds of the stored
heating/cooling energy in the HS/CS. Equation (32) denotes that the energy stored in the
HS/CS at the end of the considered time horizon must be equal to the initial one.

(4) The input natural gas and electricity limitations are described by:

PGas
(

t) =PGas
CHP(t) + PGas

GB (t) (33)

0 ≤ PGas(t) ≤ PGas
Max (34)

0 ≤ PGrid(t) ≤ PGrid
Max (35)

where PGas
CHP and PGas

GB represent the gas consumed by the CHP and GB, respectively.
Equation (34) describes that the scheduled gas cannot exceed the maximum pipeline
capacity. Equation (35) describes that the scheduled electrical power cannot exceed the
maximum capacity of the tie-line between the MEMG and utility grid.

Further, the model of IDR includes Equations (13) and (14).

4. Case Studies

This section presents the validation results of the proposed optimization model,
applied in the MEMG system for a commercial building presented in Figure 1. The
simulation parameters of this test system are listed in Table 1.

The installed solar PV capacity in the MEMG system is 180 kW. Due to the PV power
generation having strong uncertainty, the p-efficient point method is proposed to determine
the available PV generation based on historical data for typical days. Figure 3 shows the
historical data for solar PV generation used for the p-efficient point method. It is noteworthy
that the proposed formulation is implemented on two typical summer and winter days
for various cases to verify the effectiveness of the proposed formulation. Furthermore,
the effect of the different confidence levels of PV generation and effectiveness of IDR in
the stochastic circumstances are addressed on the optimization-based operation. All the
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simulations have been carried out using MATLAB 2017a by calling the CPLEX solver [41]
on a PC with Intel Core i5 CPU and 8 GB RAM.

Table 1. The equipment parameters for the test system.

Parameters Value Parameters Value

ηCHP
E /ηCHP

H 0.35/0.45 PCHP
Max 55 kW

ηGB
H 0.85 PGB

Max 20 kW

ζEHP 2.3 PEHP
Max 35 kW

ζEC 2.9 PEC
Max 60 kW

ζAC 0.8 PAC
Max 20 kW

ηB,ch/ηB,dis 0.9 Pmax
B,ch /Pmax

B,dis 20 kW

Emin
B 10 kWh Emax

B 90 kWh

ηφ,ch/ηφ,dis 0.9 Pmax
φ,ch /Pmax

φ,dis 10 kW

Emin
φ 0 Emax

φ 48 kWh

κB 0.001 κφ 0.001

CHP: combined heat and power; GB: gas boiler; EHP: electrical heat pump; EC: electric chiller; AC: absorption
chiller; ηCHP

E /ηCHP
H : electrical/heat conversion efficiency; ηGB

H : conversion coefficient; ζ: coefficient of perfor-
mance; PMax : maximum power limit; ηch/ηdis: charging/discharging efficiency; B: battery; ϕ: heat storage or
cooling storage tank; Emin/Emax : minimum and maximum energy stored in storage; Pmax

ch /Pmax
dis : maximum

charging/discharging power; κ : decay rate of storage.
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Figure 3. Historical data of solar PV power used for the p-efficient point method: (a) the historical
data for typical summer days; (b) the historical data for typical winter days.

4.1. Optimization Results
4.1.1. Typical Summer Day

The initial daily electrical/cooling/heating load profiles for a typical summer day and
time-of-use (TOU) electricity price are illustrated in Figure 4. PV generation obtained by the
p-efficient point method based on historical data at different confidence levels is illustrated
in Figure 5. In this set of tests, gas price is considered as a fixed price of 2.76¥/m3, PV
generation obtained by the p-efficient point method at confidence level 0.9 is used, and it is
assumed that 10% of the initial electrical/cooling/heat load participates in IDR. This study
solves the optimization problem over a 24-h period on an hourly basis. Time horizon is
separated into three periods: peak periods from 8 to 12 and 17 to 20, off-peak periods from
12 to 17 and 20 to 24, and valley periods from 1 to 7.
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Figure 5. PV generation profiles for a typical summer day obtained by the p-efficient point method
at different confidence levels.

The optimized electrical, cooling and heating load profiles with and without consid-
ering IDR are comparatively studied in Figure 6a. The shift amount of electrical, cooling
and heating loads in the entire scheduling period, i.e., a 24-h period on an hourly basis, is
indicated in Figure 6b.
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Figure 6. Multi-energy load profiles before and after integrated demand response (IDR) implementa-
tion on a typical summer day, respectively: (a) comparison of electrical, cooling and heating load
profiles before and after IDR, respectively; (b) electrical, cooling and heating load shift amount at
different times of the day, where the negative value indicates the amount of energy demand reduction
and the positive value indicates the amount of energy demand increment.
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As observed in Figure 6, after performing the proposed optimization model, the
electrical, cooling and heating load demands of peak periods are reduced and a certain
amount is shifted to the valley period, which adjusts the peak by filling the valley sag.
Meanwhile, a relatively large amount of the load demands of peak periods is shifted to
the period 10–14; this leads to an increase in the load demands so as to consume PV-rich
power, which is significant for PV power accommodation in the summer scenario.

In this set of tests, the cooling is mainly used for the space cooling. The EC equipped
in the system is the main cooling unit to produce cooling energy. Shown in Figure 7 is
the optimized operation state of the energy conversion facilities over a 24-h period on an
hourly basis. Figure 8 illustrates the cooperative operation of the ES, CS and HS.
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Figure 8. Scheduling of the electrical energy storage (ES), CS HS and the state of charge (SOC) of the
ES, CS and HS on a typical summer day.

In valley periods, e.g., 1–7, as the electricity is cheap, more electricity is purchased, the
cooling energy is produced by the EC, and the heat energy is produced by the EH. Excess
capacity is stored in the HES for future usage during peak hours, e.g., periods 17–20, as
indicated in Figure 8. In peak periods, e.g., 17–20, as the electricity has a higher price, less
electricity is purchased and the MEMG switches to consuming gas and producing power
and heat using the CHP. During the period, the AC equipped in the system converts heat
energy to output cooling energy to supply part of the cooling load demand while reducing
the cooling energy produced by the EC to save cost.

Electricity purchased from the main grid, gas purchased from the gas network and PV
power accommodation under the optimization framework with and without considering
IDR are comparatively studied in Figure 9. We can learn from the figure that the amount of
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the purchased electricity increased in the valley periods, e.g., 3–7, and reduced at the peak
periods, e.g., 17–20, because of the presence of IDR and HES. There is a little difference in
the amount of purchased gas because the gas price is considered to be fixed. The optimal
daily cost of the studied system, which includes the electricity purchase cost from the
main grid and gas consumption cost of the CHP and GB is attained as 881.3¥, which was
932.044¥ without considering IDR. This represents a reduction of 5.44% in the energy
purchasing cost.
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It is also observed in Figure 9 that curtailment of PV power occurs during the period
from 10 to 14 before implementing IDR. After implementing IDR, all the available PV
power is utilized to supply the electrical load demand. This is because IDR shifts the
electrical, cooling and heat loads from peak load hours to high PV generation hours, which
effectively improves the ability of the PV power accommodation in the MEMG system.

4.1.2. Typical Winter Day

The initial multi-energy load profiles for a typical winter day are shown by dashed
lines in Figure 10a. In this study, the heat is mainly used for the space heating and it is
assumed that there are no cooling loads in winter. Available PV generation computed by
p-efficient point at a confidence level of 0.85 is plotted by a blue dotted line in Figure 10a.
TOU electricity price curve is consistent with the curve shown in Figure 4. Natural gas
price is a fixed price of 2.76¥/m3.

In Figure 10a, the solid lines represent the optimized electrical, cooling and heating
load profiles, respectively, considering IDR. The shift amount of the electrical and heat
loads in the entire scheduling period is indicated in Figure 10b. It shows that IDR transfers
a certain amount of the electrical and heat loads from the peak periods, i.e., 8–12 and 17–20,
to the valley period, i.e., 1–7, and off-peak periods, i.e., 12–17 and 20–24, to flatten the load
curve, which leads to reduction of cost.

Figure 11 shows a comparison in electricity purchased from the grid, gas purchased
from the gas network and PV power utilization, respectively, under the proposed optimiza-
tion framework with and without considering IDR. It is observed in Figure 11 that there is
little difference in the amount of purchased gas due to a fixed gas price, and the amount
of the purchased electricity in the valley periods is increased and at the peak periods is
reduced to save cost. Electricity and gas resources are interdependent and complement
each other, which enhances the flexibility of the MEMG system. The total cost of the
purchased electricity and gas is attained as 1127¥ with considering IDR, which was 1168¥
without considering IDR. This represents a reduction of 3.5% in the energy purchasing cost.

The optimized operation state of the energy conversion facilities over a 24-h period
on an hourly basis is shown in Figure 12. Scheduling of the ES and HS and their SOC
dynamics are shown in Figure 13. It is observed in Figure 12 that the CHP is committed
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during the entire scheduling period. The reason is that the CHP is the main heating unit
to produce heat energy for supplying a large part of the total heat demand in the winter
scenario. For the rest, the heat energy produced by the EHP and GB and stored heat energy
in the HS are used to satisfy the remaining heat demand of the MEMG system. At the same
time, electrical load demand is supplied by the main grid, electrical power produced by
the CHP, available PV power and charging and discharging power of the ES. We can also
learn from Figures 12 and 13 that during the valley period, i.e., 1–7, as the electricity price
is low, providing a portion of the system heat demand by the EHP is more economical
than by CHP, so that has cut down the heat energy produced by the CHP while increasing
that produced by the EHP. During the peak periods, i.e., 8–12 and 17–20, as the electricity
price is high, the production cost of heat generated from gas is more economical than that
generated from electricity, so that has cut down the heat energy produced by the EHP
while increasing that produced by the CHP. Meanwhile, the ES and HS capture the energy
produced during the valley and off-peak periods, which is used to assist in the energy
supply during the peak periods, e.g., 8–12 and 17–20, to save cost, which can be seen from
Figure 13. All equipment operates in a coordinated manner to realize the energy efficiency
optimization and economic system operation.
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Figure 10. Multi-energy load profiles and IDR implementation on a typical winter day: (a) Compari-
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4.2. Impact of Confidence Level

In this section, the typical summer day case (PV-rich scenario) is taken as an example
to analyze the influence of the confidence levels of PV power and effectiveness of IDR in
the stochastic circumstances on the optimization-based operation.

The minimum configuration of IDR (expressed as a percentage) corresponding to the
complete accommodation of PV at different confidence levels within the MEMG system is
shown in Table 2. As shown in the Table 2, the higher the confidence level, the smaller the
configuration of IDR, and hence there are lesser amounts of load shift and IDR cost. This
is because by increasing the confidence level, available PV power obtained is decreasing
according to the p-efficient point theory, which can be observed from Figure 5. The energy
purchase cost and total cost of the MEMG system under different confidence levels are also
shown in Table 2. With the increase of the confidence level, available PV power as well as
the corresponding IDR configuration are reduced, which leads to the increase of energy
purchase cost and total cost.

Table 2. Impact of confidence level and effectiveness of IDR.

Confidence
Level

IDR
Configuration/%

Amounts of
Load Shift/kWh IDR Cost/¥ Energy Cost/¥ Total Cost/¥

0.95 8.9 82.35 21.86 898.54 920.4
0.90 10 90.76 24.47 881.3 905.8
0.85 10.6 95.47 25.90 865.11 891.01
0.80 13.5 118.06 30.51 838.84 869.34
0.75 15.1 132.64 33.81 817.86 851.67
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The results highlight the effectiveness of IDR in accommodating PV within the MEMG,
as well as the improvement of energy efficiency and economic system operation. The
study can provide a new way of thinking to implement IDR within a MEMG system in
the condition that renewable energy resource penetration is high, which increases the
correlation between renewable generation and electrical, cooling and heating loads.

5. Conclusions and Future Works

This paper proposes a model for the optimal operation of the multi-energy micro-
grid for buildings integrated with PV considering an integrated demand response and
heterogeneous energy storage. In the developed optimization framework, PV power was
considered uncertain and the p-efficient point method based on historical data was applied
to handle the stochastic PV within the MEMG system. Integrated demand response was
presented and formulated as a linear model based on the quantized flexibility interval of
the system load demand. In addition, the effect of HES on the operational problem was
taken into account. The main goal of the proposed model is to minimize the cost associated
with energy consumption and IDR implementation through deploying the full potential of
the cooperation of IDR, energy converters and HES, considering operational constraints.
Extensive case studies are presented to validate the effectiveness of the proposed model
and illustrate the benefits of the cooperation of IDR with respect to PV power accommo-
dation, raising energy efficiency and reducing the energy consumption cost of the system.
According to the obtained results, the proposed operation strategy can help the system
operator to reduce the total energy costs by 5.44% on a typical summer day and 3.5% on
a typical winter day through implementing IDR as well as utilizing energy conversion
facilities and HES systems. It can also be seen that the proposed method is an effective way
towards achieving 100% accommodation of uncertain PV power in MEMGs.

Noting that the proposed optimization model is established based on a steady-state
analysis of the MEMG system, although it is valid and feasible for the daily scheduling and
hourly operation of the MEMG system, the model is too rough to analyze the operation
of MEMGs on a short-term time scale (minutes or tens of minutes), especially the model
considering demand response. It is necessary to investigate the difference of response
characteristics and dynamic change processes of different energies in response to short-term
scheduling requirements at different time scales.

As for future works, there are several directions that can be further extended: (i) multi-
time scale optimization strategy for MEMGs considering the difference of response charac-
teristics and dynamic change processes of heterogeneous energy will be explored; (ii) the
participation degree model for energy consumers to participate in integrated demand
response will be investigated, and in this stage, the impact of electricity and natural
gas prices will be taken into account; and (iii) the detailed models for user-oriented and
comfort-constrained IDR will be developed and incorporated in the optimal operation of
multi-energy microgrids.
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