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Abstract: Although many families of integration methods have been successfully developed with
desired numerical properties, such as second order accuracy, unconditional stability and numerical
dissipation, they are generally implicit methods. Thus, an iterative procedure is often involved for
each time step in conducting time integration. Many computational efforts will be consumed by
implicit methods when compared to explicit methods. In general, the structure-dependent integration
methods (SDIMs) are very computationally efficient for solving a general structural dynamic problem.
A new family of SDIM is proposed. It exhibits the desired numerical properties of second order
accuracy, unconditional stability, explicit formulation and no overshoot. The numerical properties
are controlled by a single free parameter. The proposed family method generally has no adverse
disadvantage of unusual overshoot in high frequency transient responses that have been found in
the currently available implicit integration methods, such as the WBZ-α method, HHT-α method and
generalized-α method. Although this family method has unconditional stability for the linear elastic
and stiffness softening systems, it becomes conditionally stable for stiffness hardening systems. This
can be controlled by a stability amplification factor and its unconditional stability is successfully
extended to stiffness hardening systems. The computational efficiency of the proposed method
proves that engineers can do the accurate nonlinear analysis very quickly.

Keywords: structure-dependent integration method; unconditional stability; computational effi-
ciency; nonlinear structural dynamics

1. Introduction

A step-by-step integration method is one of the most effective ways to obtain the
responses of the system subject to dynamic loads, such as explosions, blasts and wave
propagations, especially earthquake loads. The integration method has been widely recom-
mended by the modern codes and standards of many countries, such as Europe (Eurocode 8,
2004) [1], the United States (International Building Code 2009) [2] and Canada (National
Building Code of Canada 2010) [3]. Many integration methods have been proposed over
the past 50 years. It generally consists of the equation of motion and two difference equa-
tions for both the velocity and displacement increments [4–12]. The coefficients of the two
difference equations are scalar constants for conventional integration methods whereas, in
the SDIM, that can be functions of the initial structural properties.

The first SDIM was developed in 2002 by Chang [13]. It is non-dissipative and it
can integrate unconditional stability and explicit formulation together. Later, a variety
of SDIMs was further developed with different types of formulations and numerical
properties [14–32]. In general, an adverse high frequency overshoot property has been
found in the Wilson-θ method, by Goudreau and Taylor, and it even possesses numerical
damping [5]. The currently available implicit algorithms, such as the generalized-α method,
HHT-α method and WBZ-α method, have the disadvantage of unusual overshoot behavior
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in high frequency transient responses. These properties preclude them from practical
applications. In a recent study, Chang proposed different families of explicit, dissipative
algorithms, that generally have uncommon high frequency overshoot behavior [22,23].
However, the proposed explicit SDIM does not have an unusual overshoot property in
both high frequency displacement and velocity responses. The viscous dampers, generally
called velocity dependent dampers, have been equipped in many buildings to largely
dissipate seismic energy. A velocity dependent damping is considered in an SDOF system
numerical example. As a result, the proposed family method (CVM) has good agreement
with the average acceleration method (AAM); generally, both methods do not have a
displacement and velocity overshoot.

A novel family of SDIM is proposed in this study. This family of integration method
is one-parameter controlled, has an explicit formulation, and is unconditionally stable for
linear elastic and nonlinear stiffness softening systems. A numerical analysis was carried
out for an SDOF system with bilinear inelastic hysteric behavior, and the results confirm
that CVM can be used to solve a highly nonlinear system [33]. A stability amplification
factor is included in the coefficients of the displacement difference equation. It helps to
improve the stability properties of the proposed method and it has been verified in this
paper [28,29]. The numerical examples are conducted and the results show that a stability
amplification factor extended the unconditional stability range of the proposed method to
the nonlinear stiffness hardening systems. The overshoot property of the proposed family
method for the high frequency responses to non-zero initial conditions is analytically
and numerically verified. A recently developed Chang family method is considered to
compare the overshoot behavior [30]. As a result, there is no unusual overshoot behavior
in the proposed family method for the high frequency responses in both displacement
and velocity. Furthermore, the proposed method has unconditional stability for the linear
elastic, nonlinear stiffness softening and nonlinear stiffness hardening systems. In addition,
this method, which is computationally efficient for solving a new series of mass spring
system, proves that engineers can perform fast computation with maximum accuracy.

2. Chang–Veerarajan Method

In structural dynamic analysis, the equation of motion for the SDOF system based on
the discrete mathematical model, is expressed as

m
..
u + c

.
u + ku = f , (1)

where f = external force and k, c, m = stiffness, viscous damping coefficient and mass,
respectively; and

..
u,

.
u and u = acceleration, velocity and displacement, respectively.

Although many integration methods are used to solve Equation (1), a novel family of SDIM
is presented, since it can have the desired numerical properties. Herein, for brevity and
due to the authors Chang and Veerarajan, this method will be referred to as CVM.

In general, the SDIMs can be derived from an eigen-based theory and, thus, the
detailed derivations will not be elaborated, herein [32]. As a result, the general formulation
of CVM can be written as:

(1 + α)mai+1 − αmai + cvi+1 + kdi+1 = fi+1

di+1 = di − B1Ω2
i di + B2(∆t)vi + B3(∆t)2ai + pi+1,

(∆t)vi+1 = (∆t)vi + γ1(∆t)2ai + γ2(∆t)2ai+1

(2)

where ai, vi and di = acceleration, velocity and the nodal displacement at the end of the
i-th time step, respectively. Many tests have been tried for the coefficients, until they satisfy
the desired numerical properties. Finally, the coefficients are found to be:

B1 = 1
D β3, B2 = 1

D [(1 + α)β1 + (β1γ2 − β3)2ξΩ0],

B3 = 1
D [(1 + α)β2 + αβ3 + (β2γ2 − β3γ1)2ξΩ0], pi+1 = 1

D β3(Fi+1 − Fi)
(3)
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.
Here, ξ is a viscous damping ratio and Ω0 = ω0(∆t); ω0 =

√
k0/m is the natural

frequency of the system, determined from the initial stiffness of k0·pi+1 is the loading
dependent term. In addition

D = (1 + α) + γ22ξΩ0 + β3Ω2
0. (4)

For computational efficacy, it is very important to rewrite ξΩ0 and ξΩ2
0 in terms of

step size and the initial structural properties for an SDIM. Thus, based on the theory of
structural dynamics [34], the relations Ω2

0 = (∆t)2(k0/m) and c0 = 2ξω0m can be
obtained. After substituting these relations into Equations (3) and (4), they become:

B1 = 1
D β3m

B2 = 1
D [(1 + α)β1m + (β1γ2 − β3)(∆t)c0]

B3 = 1
D{[(1 + α)β2 + αβ3]m + (β2γ2 − β3γ1)(∆t)c0}

pi+1 = 1
D β3( fi+1 − fi)

D = (1 + α)m + γ2(∆t)c0 + σβ3(∆t)2k0

(5)

From the formulation of CVM, it is clear that it is a structure-dependent, explicit
method. Notice that the coefficients of B1, B2 and B3 depend only on the initial properties
of the structure and step size. Hence, they will remain invariant and, thus, there is no need
to re-compute these coefficients during an entire step-by-step integration process. This
helps the methods to become computationally efficient.

3. Recursive Matrix Form

Since the numerical properties of CVM can be derived from the characteristic equation
of its amplification matrix, it is needed to rewrite Equation (2) in a recursive matrix form.
Thus, the use of CVM to obtain the free vibration in a system with SDOF can be expressed
in the following:

Xi+1 = Ai+1Xi, (6)

where Xi+1 =
[
di+1 (∆t)vi+1 (∆t)2ai+1

]T
, Xi =

[
di (∆t)vi (∆t)2ai

]T
·Ai+1 is the amplifica-

tion matrix. The explicit expression of the amplification matrix of CVM is found to be:

A =
1
B

 B
(
1− B1Ω2

0
)

B ∗ B2 B ∗ B3

−
(
1− B1Ω2

0
)
γ2Ω2

0 (1 + α)− B2γ2Ω2
0 (1 + α)γ1 + αγ2 − B3γ2Ω2

0

−
(
1− B1Ω2

0
)
Ω2

0 −
(
2ξΩ0 + B2Ω2

0
)

α− γ12ξΩ0 − B3Ω2
0

, (7)

where B is further defined as

B = (1 + α) + γ22ξΩ0. (8)

Thus, the characteristic equation of A can be derived from |A− λI| = 0 and is found
to be:

λ3 − A1λ2 + A2λ− A3 = 0, (9)

where λ is an eigenvalue of an amplification matrix A, and the coefficients are found to be:

A1 = 1
D
[
2 + 3α− (β2 + β1γ2 − β3)Ω2

0 − (γ1 − γ2)2ξΩ0
]

A2 = 1
D
[
1 + 3α− (β2 − β1γ1)Ω2

0 − 2γ1ξΩ0
]
.

A3 = 1
D [α]

(10)
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4. Convergence

An algorithm is considered as convergent if both its consistency and stability characteris-
tics are satisfied [35]. In general, consistency is defined by a qualitative measure, such as the
order of accuracy, which can be directly determined from the local truncation error (LTE).

4.1. Consistency and LTE

An LTE is generally defined as the error committed in each time step, by replacing the
differential equation by the difference equation. The approximating difference equation
for CVM can be derived from Equation (6), after removing the accelerations and velocities,
and is found to be:

di+1 − A1di + A2di−1 − A3di−2 = 0, (11)

Consequently, after replacing Equation (1) by Equation (11), the LTE for CVM is:

E =
1

(∆t)2 [u(t + ∆t)− A1u(t) + A2u(t− ∆t)− A3u(t− 2∆t)], (12)

where u(t) is assumed to be frequently differentiable up to any desired order and, thus,
the terms of u(t + ∆t) = u(ti+1), u(t− ∆t) = u(ti−1) and u(t− 2∆t) = u(ti−2) can be
expanded into finite Taylor series, at t. As a result, after substituting A1, A2 and A3, as
well as u(t + ∆t), u(t− ∆t) and u(t− 2∆t) into Equation (12), the local truncation error for
CVM is found to be:

E = 1
D

[(
γ2 − 1

2 − α
)][

1
2 2ξΩ(∆t)

...
u i + (∆t)

...
u i +

1
2 (∆t)2....

u
]

− 1
D

5
24 2ξΩ0(∆t)

...
u i − 1

2
1
D

(
α + 1

3

)
(∆t)2....

u i + O
[
(∆t)3

]
,

(13)

This equation shows that CVM has the second order accuracy if viscous damping is
adopted, and the order of accuracy becomes one for zero viscous damping. Its consistency
is verified for any values of the viscous damping ratio ξ. CVM maintains second order
accuracy, even for the value of γ2 − α = 1

2 .

4.2. Stability

Based on the Lax equivalence theorem, the parameters α, β1, β2, β3, γ1 and γ2 are
restricted by the stability conditions. Therefore, the limiting cases of Ω0 → 0 and Ω0 → ∞ ,
for the stability conditions, are used to find out the restrictions of these parameters. Hence,
the characteristic equation of CVM, as demonstrated in Equation (9), in correspondence to
the limiting cases of Ω0 → 0 and Ω0 → ∞ , are found to be(

λ− α
1+α

)
(λ− 1)2 = 0 as Ω0 → 0

λ
[
λ2 −

(
2− 1+α

β3

)
λ +

(
1− α

β3

)]
= 0 as Ω0 → ∞,

(14)

and its correspondent roots are:

λ1,2 = 1, λ3 = α
1+α as Ω0 → 0

λ1,2 = 1− 1+α
2β3
±
√(

1+α
2β3

)2
− 1

β3
, λ3 = 0 as Ω0 → ∞.

(15)

In the limit Ω0 → 0 , the spurious root λ3 only depends upon α, and α ≥ 0 is needed
so that λ3 ≤ 1. On the other hand, in the limiting case of Ω0 → ∞, the principal roots are
functions of α and β3, and it seems that the simplest way to determine the relationship
between α and β3 leads to:

β3 =
1
2

[
α +

1
2

]
, (16)
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Therefore, the second line of Equation (15) determines that the two principal roots
are found to be λ1 =

(
α− 1

2

)
\
(

α + 1
2

)
and λ2 = −1, in addition to λ3 = 0. Figure 1

represents the variations of λ1, λ2 and λ3 with α. This figure tells us that CVM is stable
in the limit Ω0 → ∞ , and reveals that the range of 0 ≤ α ≤ 1

2 is of practical interest for a
linear elastic system. There is an excellent idea to simplify the stability conditions in the
limit Ω0 → ∞ by assuming that the roots are in terms of ρ∞ that is actually a special case
of the spectral radius, which is generally defined as ρ = max

(
|λ1|, |λ2|, |λ3|

)
for the

general value of Ω0. Hence, the coefficients are found to be:

α = 1−ρ
2(1+ρ∞)

= − 1
2 + 1

1+ρ , β1 = 1, β2 = 1
2

(
1− 1

1+ρ

)
= 1

2 −
1
2

1+ρ ,

β3 =
1
2

1+ρ , γ1 = 1− 1
1+ρ , γ2 = 1

1+ρ .
(17)
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5. Primary Analysis for the Nonlinear System

Chang found that an SDIM is unconditionally stable for a stiffness softening nonlinear
or linear system, while it can become conditionally stable for a stiffness hardening nonlinear
system. To monitor stiffness change, a parameter instantaneous degree of nonlinearity is
introduced. In fact, it is defined as a ratio of the stiffness at the end of the i-th time step
over the initial stiffness, and it can be expressed as

δi =
ki
k0

, (18)

It is clear that δi = 1 means that the instantaneous stiffness at the end of i-th time step
is equal to the initial stiffness, whereas a case of instantaneous stiffness hardening δi > 1
implies that ki is greater than k0 at the end of i-th time step, and a case of instantaneous
stiffness softening 0 < δi < 1 inferred that the instantaneous stiffness is smaller than the
initial stiffness.
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6. The Stability Amplification Factor

The stability amplification factor, introduced by Chang, is used to enlarge an uncondi-
tional stability interval for an SDIM [28]. In order to verify the unconditional stability range
for CVM, a free parameter σ is added. As a result, after including the stability amplification
factor in Equation (3), the coefficients B1 to B3 and pi+1 become:

B1 = 1
D

β3 , B2 = 1
D
[(1 + α)β1 + (β1γ2 − β3)2ξΩ0],

B3 = 1
D
[(1 + α)β2 + αβ3 + (β2γ2 − β3γ1)2ξΩ0] , pi+1 = 1

D
β3(Fi+1 − Fi).

(19)

in which:
D = (1 + α) + γ22ξΩ0 + σβ3Ω2

0, (20)

In order to verify the stability condition of CVM, with the inclusion of a free parameter
σ the upper stability limit with δi is displayed in Figure 2a,b for the different values of
ρ = 0.5, and ρ = 1.0 for the different values of the viscous damping ratios, 0, 0.1 and 0.2,
respectively. The case of σ = 1 implies that there is no inclusion of a free parameter of
CVM. When σ = 2, CVM is unconditionally stable within the range of 0 < δi < 2 and for
σ = 3, CVM is unconditionally stable within the range of 0 < δi < 3. It can be understood
that the large value of the stability amplification factor enlarges the unconditional stability
range. However, later on in the paper, it will be shown that the larger value of σ will
decrease the accuracy of an integration method [22]. Although the value of δi is not known
before calculation, Chang recommended that δi < 2 [20–23]. In practice, it is rare to
experience that real structure whose instantaneous stiffness is greater than two times of
the initial stiffness, i.e., δi > 2. In fact, the case of σ = 2 is thoroughly investigated in the
following study.
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7. Numerical Properties of CVM

The stability amplification factor σ is used to enlarge the unconditional stability range
of CVM. The application of this parameter is studied further for the other numerical
properties of CVM. The evaluation details are referred to from references and they will not
be elaborated in this paper.

7.1. Spectral Radius

The spectral radius is used to reveal the stability of an integration method. The
variation of the spectral radius with ∆t/T0 is shown in Figure 3, for different δ and σ. In
general, the spectral radius is very close to 1 for the small value of ∆t/T0, while it decreases,
step by step, and finally tends to a certain constant. In Figure 3a, σ = 1 is chosen, which
means that there is no inclusion of a stability amplification factor. It shows that the spectral
radii will become larger than 1 and, finally, approach a certain constant as δ > 1, after a
particular value of ∆t/T0. Figure 3b shows that the spectral radius is always less than or
equal to 1 with the entire value of ∆t/T0 for δ ≤ σ = 2. These results suggest that σ can
extend the unconditional stability range of CVM from δ < 1 to δ < σ.

7.2. Relative Period Error

The relative period error is frequently used as a measure of period distortion for an
integration method. The variation of relative period errors with ∆t/T0 for the different
values of δi and ρ are displayed in Figure 4. It is clear from the figure that the relative period
error increases with the increase in ∆t/T0, as δi and ρ are given. Comparing Figure 4a,b,
the relative period error is slightly higher for the case of σ = 2 than that of case σ = 1.
Even the great value of σ can modify the unconditional stability range and it also results
in notable period distortion; therefore, it is not suitable to select a very large value of σ.
For the practical application, the choice of σ = 2 is good enough for the real structural
system and the period distortion is acceptably small. In addition, Figure 4 implies that, for
the nonlinear system, CVM with 0.5 ≤ ρ ≤ 1 can generally provide an acceptable solution
with comparable accuracy.
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7.3. Overshooting

Goudreau and Taylor found that an integration algorithm has overshooting behavior.
Later, Hilber and Hughes proposed a technique to identify such an overshoot. To determine
the overshoot behavior of an integration algorithm, one can compute the velocity and
discrete displacement in terms of the previous step data. In general, these results can
give a sign of the high-frequency performance of the integration algorithm. A previously
published Chang family method, named as CWBZ1, is considered to compare the overshoot
behavior of CVM [30]. As a result, the results for CVM and CWBZ1 for the limiting case of
are found to be di+1 ≈ −ρdi

vi+1 ≈ 4
(3+ρ)

vi − (1−ρ)
(3+ρ)

vi−1
CVM

 di+1 ≈ −ρdi

vi+1 ≈ − 1
4 (ρ− 1)2Ω0ω0di +

[
1
2 (ρ− 1)2 − 1

]
vi

CWBZ1.

(21)

From this equation, we noted that there is no overshoot behavior for any member of
CVM in displacement and velocity, and CWBZ1 has no overshoot in the displacement for
any value of ρ, while it has a tendency to overshoot the quadratic in Ω0 in the velocity
equation due to the initial displacement term.

In order to verify the analytical prediction of the overshooting behavior of two meth-
ods, the free vibration response of the SDOF system was computed by using an almost
large time step. In fact, it was computed by using CVM and CWBZ1 with ρ = 1 and
ρ = 0.5 with a time step corresponding to ∆t/T0 = 10 for the three initial conditions of
i. d0 = 1 and v0 = 0, ii. d0 = 0 and v0 = 1 and iii. d0 = 1 and v0 = 1. The numerical
findings are displayed in Figures 5–7 for the corresponding initial conditions i., ii. and
iii. At the bottom of the Figures 5b, 6b and 7b, the velocity term in the vertical axis is
normalized by the natural frequency of the system (vi/ω0), in order to have the same unit
as displacement. For comparison, the results obtained from the constant average accelera-
tion method (AAM) are also presented in Figures 5–7. It is shown that CVM exhibits no
overshoot in both displacement and velocity in all three figures for ρ = 1 and ρ = 0.5. In
the curve for CVM ρ = 1 coincides with that of AAM. Similarly, it is displayed on the top
plot of Figures 5–7 that the two curves for CWBZ1 exhibit no overshoot in displacement, as
the curve for CWBZ1 with ρ = 1 coincides with that of AAM. Whereas the bottom part
of Figures 5b, 6b and 7b shows a significant overshoot in velocity for CWBZ1 with both
ρ = 1 and ρ = 0.5, although it is almost annihilated in the first few time steps for ρ = 0.5.
As a result, both analytical and numerical results prove that CVM has no overshoot in
displacement and velocity, whereas CWBZ1 has no overshoot in displacement and it has
a significant overshoot in velocity. As a summary, these numerical results are in good
agreement with the analytical results.
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8. Numerical Example

Since the introduction of the virtual parameter σ into CVM only alters the coefficients
β1, β2, β3 and the loading dependent term, the execution details of CVM for the nu-
merical applications are almost unaffected. In addition, to confirm the numerical properties
of CVM after including σ, the following numerical examples are carried out.

8.1. Forced Vibration Nonlinear SDOF System with Damping

A forced vibration nonlinear damped SDOF system is considered in this example. The
mass and nonlinear stiffness are taken to be m = 5 kg and ki = 104

(
1− 5

√
|ui − ui−1|

)
N/m

for i = 1, 2, . . . , n. Meanwhile, the nonlinear velocity dependent damping is assumed as:

ci = a
∣∣ .
ui −

.
ui−1

∣∣bN − s/m for i = 1, 2, . . . , n. (22)

In general, a > 0 and b > −1 are generally found [36]. In this exploration, a = 10
and b = − 1

2 are taken. The ground acceleration is taken as ag = 10(sin t + sin 2t). In this
numerical experiment, AAM, with the time of 0.005 s, is taken as a reference solution. CVM
(0.005, 0.5) and CVM (0.005, 1) are chosen for the analysis. The displacement responses
are shown in Figure 8. The CVM results match exactly the AAM and it reveals that CVM
can accurately solve nonlinear velocity-dependent problems. Hence, it is proved that
the CVM can be successfully used for the velocity-dependent problem, while AAM is an
implicit method.



Appl. Sci. 2021, 11, 12109 12 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 24 
 

8. Numerical Example 
Since the introduction of the virtual parameter σ into CVM only alters the coeffi-

cients 1 2 3, ,β β β and the loading dependent term, the execution details of CVM for the nu-
merical applications are almost unaffected. In addition, to confirm the numerical proper-
ties of CVM after including σ , the following numerical examples are carried out. 

8.1. Forced Vibration Nonlinear SDOF System with Damping 
A forced vibration nonlinear damped SDOF system is considered in this example. 

The mass and nonlinear stiffness are taken to be 5m kg= and 

( )4
110 1 5 / m−= − −i i ik u u N for  1,  2,  ,  .= …i n Meanwhile, the nonlinear velocity de-

pendent damping is assumed as: 

1 /b
i i ic a u u N s m−= − −   for  1,  2,  ,  .= …i n  (22)

In general, 0>a and 1> −b are generally found [36]. In this exploration, 10=a  and
1
2

= −b are taken. The ground acceleration is taken as ( )10 sin sin 2= +ga t t . In this numer-

ical experiment, AAM, with the time of 0.005 s, is taken as a reference solution. CVM 
(0.005, 0.5) and CVM (0.005, 1) are chosen for the analysis. The displacement responses 
are shown in Figure 8. The CVM results match exactly the AAM and it reveals that CVM 
can accurately solve nonlinear velocity-dependent problems. Hence, it is proved that the 
CVM can be successfully used for the velocity-dependent problem, while AAM is an im-
plicit method. 

 
Figure 8. Displacement response for the nonlinear damped SDOF system. 

8.2. An Elastoplastic Structure 
In this study, a bilinear inelastic hysteretic behavior model of SDOF is considered 

(Figure 9). The lumped mass of m = 4000 kg, the elastic stiffness of 510ek = N/m and the 
hardening stiffness of 410hk = N/m are assumed for the system. The initial natural fre-
quency of the system, based on the initial structural properties, is found to be 

0 5ek m= =ω  rad/sec, while the initial structural period 0T  is 1.25 sec. The yielding 
strength of the elastoplastic model is taken to be 5000T CR R= = N for both the compres-
sion and tension. The undamped system is subjected to an earthquake record of CHY028 
with a peak ground acceleration of 0.5 g. It should be mentioned that CHY028 is a near-
fault ground motion record recorded by the Central Weather Bureau under the Taiwan 
Strong Motion Instrumentation Program, during the main shock of the Chi-Chi earth-
quake (Figure 10). The numerical results are obtained for the different values of p = 0.5 
and 1, and are shown in Figures 11 and 12, respectively. NEM (0.005), AAM (0.02), CVM 
(0.02, 1) and CVM (0.02, 0.5) are used in this problem. The numerical solutions obtained 
from NEM (0.005) are considered as the reference solutions for comparison. In the Figures 

Figure 8. Displacement response for the nonlinear damped SDOF system.

8.2. An Elastoplastic Structure

In this study, a bilinear inelastic hysteretic behavior model of SDOF is considered
(Figure 9). The lumped mass of m = 4000 kg, the elastic stiffness of ke = 105 N/m
and the hardening stiffness of kh = 104 N/m are assumed for the system. The initial
natural frequency of the system, based on the initial structural properties, is found to be
ω0 =

√
ke/m = 5 rad/s, while the initial structural period T0 is 1.25 s. The yielding

strength of the elastoplastic model is taken to be RT = RC = 5000 N for both the
compression and tension. The undamped system is subjected to an earthquake record of
CHY028 with a peak ground acceleration of 0.5 g. It should be mentioned that CHY028
is a near-fault ground motion record recorded by the Central Weather Bureau under the
Taiwan Strong Motion Instrumentation Program, during the main shock of the Chi-Chi
earthquake (Figure 10). The numerical results are obtained for the different values of
p = 0.5 and 1, and are shown in Figures 11 and 12, respectively. NEM (0.005), AAM (0.02),
CVM (0.02, 1) and CVM (0.02, 0.5) are used in this problem. The numerical solutions
obtained from NEM (0.005) are considered as the reference solutions for comparison. In
the Figures 11 and 12, the numerical solutions obtained from AAM (0.02), CVM (0.02, 0.5)
and (0.02, 1) coincide with the reference solutions that are computed by NEM (0.005). As
shown in Figures 11 and 12, the system experiences highly nonlinear hysteretic behavior.
The results of this example thoroughly confirm that CVM can be used to solve a highly
nonlinear system.
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8.3. Free Vibration Responses of an Eight-Storey Building

In this example, an eight-storey shear building is examined to validate the performance
of CVM. The stiffness of each story involves linear and nonlinear parts, which can be written
in the form of:

ki = k0−i

[
1 + q

√
|ui − ui−1|

]
, i = 1 ∼ 8, (23)
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where ki is the instantaneous stiffness for the i-th story. The values of k0−i are shown in
Figure 13. A linear elastic system and a nonlinear system are simulated by specifying
appropriate q values, which are given as below

q = 0 linear elastic system (LS)
q = −0.1 nonlinear softening system (SS).
q = 2 nonlinear hardening system (HS)

(24)
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As a result, the initial natural frequencies and the 1st, 7th and 8th modal shapes of the
building are given in Figure 13. The initial displacement vector in Equation (25), with a
zero initial velocity vector, was considered for the free vibration analysis. The free vibration
responses were obtained from NEM (0.0002) and CVM (0.01) for LS and SS. The step size
of NEM 0.0002 was chosen, based on the conditional stability, and it was very small. At the
same time, the step size of CVM was chosen to be larger than that of NEM (i.e., 50 times).
The bottom-storey responses of LS and SS are plotted and shown in Figure 14a,b for NEM
(0.0002), CVM (0.01, 0.5) and CVM (0.01, 1). From the Figure, we can see that the CVM
results match the reference NEM result. It seems that the time step of 0.01 s is small enough
for the CVM, for the accurate integration of the response. The results of this example
confirm that CVM can be used for both linear elastic as well as the nonlinear stiffness
softening system.

d(0) = (φ1 + φ7 + φ8)/10 =
[

0.062 0.01 0.01 0.01 0.1 0.156 −0.181 0.3
]TCVM (25)
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8.4. Forced Vibration Responses of the Eight-Storey Building

The same eight-storey shear beam building was considered for the analysis. In order
to validate that CVM has no high frequency overshoot in a forced vibration responses, the
concentrated force 1010 sin(At) N was applied on the first floor, and is shown in Figure 15.
We checked the response of the building for various A values, such as 20, 30 and 40. The
NEM (0.0002) is taken as the reference solution; CVM (0.01, 0.5) and CVM (0.01, 1) are
chosen for the analysis. The displacement responses of the different A values for LS and SS
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of the eight-storey shear building are plotted. Figures 16a–c and 17a–c, show the forced
vibration bottom-storey responses of LS and SS, for the corresponding values of A 20, 30
and 40, respectively. In fact, the q values chosen for LS and SS are 0 and −0.1. These shows
clearly system exhibits linear and nonlinear stiffness (softening). For both LS and SS, the
results of CVM (0.01, 0.5) and CVM (0.01, 1) coincides with the reference results of NEM
(0.0002). These results confirm that CVM does not have an overshoot, in high-frequency
steady-state responses. In addition, the results prove that CVM can be used for linear
elastics as well as nonlinear stiffness softening systems, even when the systems experience
sinusoidal forces.
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8.5. Seismic Responses of the Eight-Storey Hardening System

The same 8-DOF system is considered here for the seismic analysis. In order to attain
the stiffness hardening of the system, the q value is chosen 2. This example is very useful
to show the importance of the stability amplification factor, and confirms that the CVM
has unconditional stability for the stiffness hardening system. The system is subjected to
the earthquake record of CHY028, with a peak ground acceleration of 0.5 g. The result of
NEM (0.0002), subjected to CHY028, is considered as a reference solution. CVM (0.05, 1)
is chosen for the seismic analysis. The numerical results of the top storey response are
plotted in Figure 18. In Figure 18a, the calculated CVM (0.01, 1) displacement responses
are displayed. It seems that the results are unstable. This is because HS experiences the
stiffness hardening. So, σ = 1 for CVM (0.01, 1) is conditionally stable for the hardening
system. In Figure 18b, the results are become stable and matches exactly with the NEM
(0.0002), which exhibits the CVM (0.01, 1), with σ = 2 becoming unconditionally stable.
Hence, this stability amplification factor extends the CVM application for the stiffness
hardening system. The results obtained from this example confirm that CVM can also be
used for the nonlinear stiffness hardening system.
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8.6. MDOF Nonlinear Mass Spring System

In this section, a series of a new mass spring system is considered and its details
are shown in Figure 19. The mass of the system is chosen as mi = 10 kg and the
stiffness is ki = 109

(
1− 10

√
|ui − ui−1|

)
N/m Due to the nonlinear term, the stiffness

that will decrease after deformation is assumed. In order to check the computational
efficiency, the DOFs of the system are specified as n = 500, n = 1000, n = 2000 and n = 3000.
The system is excited by the sin load, and the loading details are given in Table 1. The
time integration data and the lowest and highest natural frequencies of the system are
given in Tables 2 and 3, respectively. It is noted that the highest natural frequency is
20,000 rad/s. In this dynamic analysis, the average acceleration method (AAM) with
the time steps of 0.010, 0.015, 0.020 and 0.025 are taken as the reference solution for the
500-DOF, 1000-DOF, 2000-DOF and 3000-DOF, respectively. Each analysis is carried out for
a total number of 100 steps (N = 100). As a result, the two ends and center displacement
responses of the system are shown in Figure 20a–d, corresponding to the 500-DOF, 1000-
DOF, 2000-DOF and 3000-DOF. It seems that the ∆t = 0.050, 0.075, 0.100 and 0.125 s are
the maximum permissible time steps to obtain the reliable solution, corresponding to
the 500-DOF, 1000-DOF, 2000-DOF and 3000-DOF at the two ends and center of the new
spring system.

Table 1. Ground acceleration.

N-DOF Ground Acceleration (m/s2)

500 200 sin(5t)
1000 150 sin(3t)
2000 100 sin(1.5t)
3000 50 sin(t)
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Table 2. Time integration data.

N-DOF ∆t(s) ∆t(s)
Ref.(AAM)

td(s) N

500 0.05 0.010 10 200
1000 0.075 0.015 15 200
2000 0.100 0.020 20 200
3000 0.125 0.025 25 200

Table 3. Initial and highest natural frequencies.

N-DOF ω
(1)
0 (rad/s) ω

(n)
0 (rad/s)

500 62.71 20,000
1000 31.38 20,000
2000 15.70 20,000
3000 10.47 20,000

The consumed CPU time for each nonlinear dynamic analysis is noted and listed, in
Table 4. It is seen that there is a consequential difference between the CPU time taken by
AAM and CVM. This is because of nonlinear iterations are needed in each time step for
AAM. However, CVM can integrate the explicit formulations and unconditional stability
together. In the last column of Table 4, R is given. It shows that R decreases with the
increase of n. It infers that the computational efficiency of the CVM will increase as the
total number of DOF of the system increases.

Table 4. Time integration data.

N-DOF CPU(AAM) CPU(CVM) R= CVM
AAM

500 74.59 1.73 0.023
1000 288.02 6.29 0.022
2000 1262.46 21.99 0.017
3000 3195.88 52.06 0.016
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9. Conclusions

A novel family of SDIM is proposed and, initially, it is noted that the proposed
method has unconditional stability, only for linear or stiffness softening systems. A stability
amplification factor σ is included and the stability properties of CVM are verified. As a
result, the introduced free parameter σ can enlarge the range of unconditional stability
to the nonlinear stiffness hardening system, if it is chosen to be larger than 1. In general
σ = 2, is strongly recommended for the proposed family method. The results of the
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numerical examples also prove the above condition. As a result, the stability amplification
factor helps to improve the stability properties of the CVM.

The analytical and numerical results of the overshoot behavior confirm that the
proposed method has no unusual overshoot behavior for the high frequency responses in
both displacement and velocity to the non-zero initial conditions. The numerical example
also proves that the CVM can be used for velocity dependent problems.

The unconditional stability and explicit formulations simultaneously play a key
role to significantly improve the computationally efficiency of the SDIM. A new spring
mass system is introduced to verify the computational efficiency of CVM. Finally, CVM
has no overshoot in both displacement and velocity. Moreover, it can be applied to
velocity-dependent problems and is computationally efficient where even the number of
degrees of freedom increased for the new spring mass system compared with the available
implicit method.
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