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Abstract: Design and manufacturing processes are entering into a new era as novel methods and
techniques are constantly introduced. Currently, 3D printing is already established in the production
processes of several industries while more are continuously being added. At the same time, topology
optimization has become part of the design procedure of various industries, such as automotive
and aeronautical. Parametric design has been gaining ground in the architectural design literature
in the past years. Generative design is introduced as the contemporary design process that relies
on the utilization of algorithms for creating several forms that respect structural and architectural
constraints imposed, among others, by the design codes and/or as defined by the designer. In this
study, a novel generative design framework labeled as MLGen is presented. MLGen integrates
machine learning into the generative design practice. MLGen is able to generate multiple optimized
solutions which vary in shape but are equivalent in terms of performance criteria. The output of
the proposed framework is exported in a format that can be handled by 3D printers. The ability
of MLGen to efficiently handle different problems is validated via testing on several benchmark
topology optimization problems frequently employed in the literature.

Keywords: generative design; machine learning; topology optimization; long short-term networks;
ant colony optimization

1. Introduction

Generally speaking, structural optimization can be distinguished into three categories:
topology, shape and sizing optimization [1,2]. Topology optimization refers to a mathemat-
ical procedure that aims to identify the optimal shape, in terms of structural performance,
of a structural system when subjected to specific load and support conditions. This is
achieved by optimizing the topological placement of a specific quantity of material into
the design domain. Apart from structural performance, topology optimization can be
used for optimization with respect to sizing and shape criteria as well. The application of
such approaches helps, among others, to create structural systems that are very close to
their optimal shape, and thus can be considered a supporting procedure in the conceptual
design phase [3,4].

With the term generative design, a design exploration process is defined. The basic
idea of this process is that engineers/designers in general introduce their design goals
and constraints imposed by design codes, etc., into the generative design framework,
along with other parameters, such as performance demands, material properties, etc. The
generative design framework should be able to examine all or most of the possible solutions
of the specific problem, and produce design alternatives of equivalent performance and
criteria values.

During the last decade, research on modern soft computing methods drew significant
attention [5], mainly due to the excessive amount of data generated. This led to the
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development of new methods, able to handle large amounts of data and extremely complex
problem definitions. The scope of this study is to examine and combine modern machine
learning methods with topology optimization procedures aiming to generate multiple
forms in the concept of generative design. Recently, there is growing interest for applying
deep learning techniques in topology optimization, mainly for accelerating its procedure [6].
MLGen, a generative design procedure based on machine learning integrated with topology
optimization, is presented herein. More specifically, MLGen is formulated by combining the
topology optimization solution approach of solid isotropic material with penalization [7–9],
long short-term memory networks [10], image filtering techniques and derivative-free
search algorithms [11].

The layout of this study begins with a short introduction on structural topology
optimization together with some notes on the solid isotropic material with penalization
(SIMP) approach in Section 2, followed by a description of long short-term memory (LSTM)
networks in Section 3. Subsequently, in Section 4 the proposed MLGen (machine learning-
based generative design) framework is described in detail. Section 5 presents the results
of the numerical tests performed in order to assess its efficiency to generate multiple
optimized solutions.

2. Topology Optimization

In this part of the study, a short introduction of structural topology optimization (STO)
is presented: the general mathematical concept used to formulate the STO problem, together
with theory and implementation issues of the solution process. STO is a mathematical
formulation of an optimization problem that aims to optimally distribute material within
a specific design domain, subjected to given series of loading, boundary conditions and
constraints. The goal of STO is to maximize the structural performance of the system. This
is achieved by optimizing the allocation of material within the finite element mesh of the
design domain.

2.1. Problem Formulation

The definition of the structural optimization problem requires introducing: a function
(known as objective function) that refers to the criterion to be optimized, design unknowns
(known as design variables), and state quantities. The criterion F that is to be optimized
represents an objective metric that could either be maximized or minimized. Such an
objective could be the material volume or the stiffness of the structural system. Moreover,
the structural design domain and the state quantities associated to the criterion need to be
defined. The design variable x represents unknown parameters that are required in order
to describe the design of the structure; it could represent, for example, the geometry. The
state quantity y represents the structural response quantities, which may represent strain,
stress or displacement.

min
x∈S

F(x, y(x))

subject to :

state constraints on y(x)

(1)

where the objective function F(x) (e.g., stiffness of the structure, and material volume) is to
be optimized, and S is the design space of the unknowns’ vector x. The state quantities
depend on the design variable y(x). The objective function is subjected to the design
variables and state quantities constraints to lead the optimization process to the desired
solution. A so-called state function g(y) that corresponds to a certain state quantity can
be devised, for example, as a deformation quantity along a certain degree of freedom
(DoF). This state function g(y) can be integrated as a constraint function to the structural
optimization problem, where it is commonly expressed such that g(y) ≤ 0, for example, the
case where g(y) is expressed by the displacement quantities vector g(U(x)) in a discrete
finite element problem. In STO problems, the design variable x represents the presence or
absence of material in a specific part of the design domain. It might involve features such



Appl. Sci. 2021, 11, 12044 3 of 17

as the size and/or the number of holes in the design domain. The general formulation of a
STO problem is summarized below:

min
x∈[0,1]

F(x)

subject to :

K(x) ·U(x) = P

g(x) ≤ 0

(2)

where x refers the vector of unknowns, i.e., the density values of the finite elements, K
denotes the global stiffness matrix of the structural system, vectors P and U contain the
loads and displacements, respectively, and g(x) refers to the vector of constraint functions
(volume fraction, etc.).

2.2. The Solid Isotropic Material with Penalization (SIMP) Approach

In the past, several approaches have been proposed for solving the STO problem.
The main ones are as follows [12]: (i) level-set method, (ii) density method, (iii) phase
field method, (iv) topological derivative method, and (v) evolutionary method. SIMP,
proposed in 90 s [7–9], is the most well-known representative of the density method and is
commonly used for dealing with the STO problem. The structural system’s compliance C
is the most widely adopted performance indicator used in STO problem formulations. If
n finite elements are used to discretize the design domain Ω, the distribution of material
over Ω is denoted by xi that are the density values of each finite element, i ∈ [1, . . . , n] and
xi ∈ (0, 1]. When xi ≈ 0, it denotes no material to the ith finite element, while if xi = 1,
then the ith finite element is fully filled. Thus, Equation (2) becomes as follows:

min
x∈(0,1]

C(x) = U(x)T · P

subject to :

K(x) ·U(x) = P

V(x)
V0

= Vt

(3)

where C(x) denotes the compliance of the structural systems for specific material distribu-
tion x, while V(x), V0 and Vt express the volume corresponding to density vector x, the
initial volume for x = x0 and the targeted volume of the optimized domain, respectively.
According to SIMP, Young’s modulus E is correlated based on a power law expression to
the density value xi of each element of the FE discretization as follows:

Ex(xi) = xp
i × E0 ⇐⇒ Kx(xi) = xp

i × Ki,0 (4)

where the penalization coefficient p is often set to p = 3, while Kx(xi) and Ki,0 denote
the local stiffness matrix of the ith element when its density is equal to xi and its original
stiffness matrix, respectively. In the literature, various search algorithms were combined
with SIMP for solving the problem of Equation (3); the method of moving asymptotes
(MMA) and the optimality criteria (OC) algorithm are the most commonly used ones.

3. Long Short-Term Memory Networks

Long short-term memory (LSTM) networks were created as a variant of recurrent
neural networks (RNNs) with a differentiated architecture. RNNs were firstly introduced
in 1990 [13,14]. They were inspired by typical feedforward networks, but were tweaked
in order to efficiently handle data that were in the form of time steps. In order to achieve
that, RNNs are equipped with recurrent (feedback) connections as well. RNNs are able
to operate not only on single data patterns (such as images), but also on sequences of
data, such as video or speech. Due to this new architecture, RNNs presented the ability
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to efficiently handle time-series problems. A representation of an RNN is depicted in
Figure 1 [15]. These networks were found to be difficult to train, as they were prone to
numerical instability problems such as the exploding and/or vanishing gradient. This led
to the development of the LSTM networks and the so-called bi-directional LSTMs [16] that
are used in this study. LSTMs include an extra memory value that is trained on a specific
number of time steps. This temporary memory acts as a hidden state that is cycled over the
time steps.

Figure 1. Recurrent neural network.

A typical LSTM architecture contains the input layer, a series of hidden layers (ac-
cording to the depth of the network) and finally, the output layer. The size of the input
layer depends on the problem and, specifically, the size of the input vector. The hidden
layers present the special architecture of LSTM networks, the memory cells. These cells are
characterized by three nodes, known as gates. The first gate, named input, is responsible
for introducing a new value to the cell. The second one, called the forget gate, decides
which previous state will be dropped by the network. The last one, known as the output
gate, decides on the cell’s output value. In a time series problem, whenever a new step
is introduced to the network, all gates are fed with the new input along with the output
value of the previous step that was stored in the networks’ memory. Finally, the size of the
output layer also depends on the problem. For example, in a classification problem with
two classes, the size of the output layer would be equal to two [17]. As LSTMs were gaining
more research attention, a new architecture of LSTMs was introduced, named bi-directional
LSTMs. The novelty in this approach was that they include two LSTMs functioning at
the same time but in reverse directions (forward and backward) and are connected by a
merging function. Due to this form, the hidden state repeatedly extracts knowledge from
both past and future information fed to the network [18]. Bi-directional LSTMs are very
efficient when dealing with problems of time series, as they can take advantage of past and
future input values simultaneously.

4. The MLGen Framework Description

This section presents the proposed methodology MLGen, together with its com-
ponents. The goal of MLGen is to support the designing engineer with a tool able to
automatically create a large number of equivalent designs that can act as an inspiration
trigger. The proposed shapes are created via algorithms and it is ensured that all respect the
goals and restrictions set by the user/designer. As a result, the combination of a number of
methods is necessary. The proposed framework incorporates topology optimization but it
is worth pointing out that the goal of MLGen is not to identify the optimal shape but to
be able to discover a large number of differentiated designs that present near-to-optimal
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behavior. The methods used and the workflow of MLGen are presented in the following
sections.

4.1. Framework Architecture

MLGen is a generative design framework that incorporates several methods in order
to deliver automatically generated shapes. The methods used are a topology optimization
algorithm (SIMP), neural networks (LSTM), image filtering, metaheuristics (ACO) and
3D printing support. The first three are used for generating a plethora of shapes, meta-
heuristics are used for visualizing the final result (not as optimizers) and 3D printing is for
experimentally producing the outputs of MLGen. The flowchart of MLGen is presented in
Figure 2.

Figure 2. MLGen flowchart.

The first step of executing MLGen is the initialization step. The user is called to
define the problem by choosing the original mesh dimensions, FE population, loading
and support conditions. Additionally the number m− 1 and the FE population of less
dense domains need to be decided as well. Once this step is completed, SIMP performs
20 iterations on all defined domains. Via this step, density data are exported for all FEs
in the m domains and these data are then transformed according to Equation (7). The
trained LSTM is then used for predicting the outcome of each FE of all domains used in the
application. The output of the LSTM is an estimation of the final density distribution in all
the m domains. Each of the m outputs is then filtered with the use of f number of image
filters, such as Gaussian, edge detection, etc. Following that, each filtered domain is then
extrapolated according to the FE center weight coordinates’ proximity to the FE population
of the desired output. Finally, the extrapolated domains are then passed into SIMP, which
performs a maximum of 20 iterations for fine-tuning of the output. Once this procedure
is finished, a population of m× f shapes is generated. Once all shapes are created and
the designer chooses the one that is most preferable, a metaheuristic algorithm is used
for visualizing the result design. Lastly, an algorithm is used for transforming the SIMP
output into a type of file that can be used as an input for 3D printing. This formulation can
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be applied in 2D and 3D problems as well. As the volume classification is performed per
finite element, it can be performed on both cases. What differentiates in the application in
2D and 3D models is the image filtering process. While for 2D cases, it is only performed
once, in 3D cases it is executed z times, where z is the dimension of the mesh on the 3rd
dimension. The z outputs of the filtering part are then joined to formulate the 3D shapes
that are fine-tuned by SIMP.

4.2. Design and Training of the LSTM Network

In this part of the work, a detailed description of the network architecture, the training
procedure and the database creation is presented. As previously stated, in the literature,
LSTM networks are used successfully in several time-series classification problems. In
this study, the scope for using the LSTM networks is to derive the density class of every
element of the FE discretization. This class is defined according to the final one that the
SIMP approach would have calculated, after multiple iterations, at convergence. It is worth
mentioning that the prediction does not use information regarding the support conditions,
the location of the element in the mesh of the design domain, the loading conditions or the
desired volume fraction. The only information used is the density value of each element in
the first 20 iterations of the SIMP approach in the original problem. This strategy is chosen
in order to assure that the same trained network can offer high quality results without
needing to be retrained regardless of the problem definition.

LSTMs present the ability to handle inputs that, apart from a single value per time-
step, also include additional values (features) per time step. Assuming that SIMP is applied
on a test example with a population of finite elements equal to nx× ny = m finite elements
and a number of k iterations are performed until convergence is achieved, then a matrix D
containing all densities di,j per FE is formulated as follows [19]:

D =


d1,1 d1,2 . . d1,k
d2,1 d2,2 . . d2,k

. . . . .

. . . . .
dm,1 dm,2 . . dm,k

 (5)

It is noted that in the remaining part of this work, the density of an FE is defined as d
rather than x, which is used in Section 2. In an attempt to improve the performance of the
network, a decision is made to increase the features of the input instead of just using the
density of one FE. The additional features that are used as inputs are the density values of
neighboring finite elements of the element to be classified. In detail, apart from the density
of the FE whose final density is to be classified, the densities of extra 24 FEs that are the
closest to it in terms of center weights coordinates are also used as features of the networks’
inputs. For example, in case of an element e(i, j), the density recording input at the tth
iteration is presented in Equation (6).

Dt
i,j =



di−2,j−2
di−2,j−1
.
.
di,j
.
.
di+2,j+1
di+2,j+2


(6)
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The formulation of the database for m finite elements containing their density values
over the optimization process until convergence, where the first t iterations of the SIMP
approach out of the T are needed for convergence, is presented in Equation (7).

D1
1 D2

1 . . . Dt
1 Dt+1

1 . . . DT−1
1 dT

1
D1

2 D2
2 . . . Dt

2 Dt+1
2 . . . DT−1

2 dT
2

...
...

. . .
...

...
. . .

...
...

D1
m−1 D2

m−1 . . . Dt
m−1 D,t+1

m−1 . . . DT−1
m−1 dT

m−1
D1

m D2
m . . . Dt

m Dt+1
m . . . DT−1

m dm,T


m InputVectors Output

(7)

A schematic representation of the features used can also be seen in Figure 3. It is worth
pointing out that in the case of finite elements located close to the boundaries of the design
domain in which there are no neighboring elements in one or more directions, padding of
the necessary rows and/or columns is performed. The volume fractions of the generated
FEs are set equal to the volume of their existing neighboring element.

Figure 3. Creating density input vector.

As previously stated, the LSTM network is used for classifying the time series of the
volume fluctuation of each finite element in the design domain. In order for the LSTM
to be to able to perform this classification, the network has to be trained on a number of
samples of finite elements. The training database is formulated by performing topology
optimization via the SIMP approach on a specific problem with varying the FE mesh
discretization in terms of its denseness. In detail, the test example chosen is the cantilever
beam shown in Figure 4.
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Figure 4. Creating density input vector.

The support condition can be described as fully fixed boundary conditions at the left
part of the design domain along the vertical y axis, covering the height of the domain,
while the loading conditions are a single concentrated load at the bottom right corner of
the domain, facing towards the negative part of the y axis. The desired volume fraction is
set equal to Vt = 40%.

A population of 20 different FE mesh discretizations varying drastically on the num-
ber of the finite elements is chosen equal to [100, 500, 1000, 3000, 6000, 10,000, 20,000,
40,000, 60,000, 100,000] elements, and each mesh is generated with ney/nex = 1/2 and
ney/nex = 1/3 height to length ratios. For each FE mesh discretization, a separate topology
optimization problem is defined. After all problems are optimized by the SIMP approach,
the density time series of all finite elements for all problems are saved and are divided into
classes according to their final density value. The population of finite elements time series
created is equal to 510,000 samples. The separation bounds of the classes are presented in
the following Equation (8).

di,k ∈


[0, 0.1]⇒ di,k = 0
(0.1, 0.9]⇒ di,k = 0.50
(0.9, 1]⇒ di,k = 1

(8)

The populations of the time-series samples in each class are equal to [240,000, 132,000,
138,000], respectively. The database is divided into a training and testing sample with
an analogy of 80–20%. The first 20 steps of SIMP are used as the length of the network
input. The network used in this study is a bi-directional LSTM network. The complete
architecture is defined by five different layers: the input layer, the bi-directional LSTM, a
fully connected layer, a soft-max layer and the output class layer. The network is built in
Matlab and training is implemented both in CPU and GPU environments. In the training
process, 10 epochs are run with 2000 iterations per epoch. The CPU and the GPU that are
used for performing the training part are an Intel i9-9920x and an NVidia Titan RTX; in
both cases, RAM is equal to 64 GB. In the case of CPU usage, the training needs 5500 s to
complete, while in the case of GPU usage, the training time is reduced by a factor of more
than 10, as it only needs 460 s. The accuracy achieved by both training procedures is equal
to 97.3%.

4.2.1. Metaheuristics

In the past, metaheuristic algorithms were used as optimizers in several problems
presented in the literature or in real life. One group of these algorithms are mainly inspired
by nature mimicking procedures, such as ant colony optimization (ACO) [20], particle
swarm optimization (PSO) [21], river formation dynamics (RFD) [22], pity beetle algorithm
(PBA) [23], etc. In this work, the goal of using a metaheuristic algorithm is not to perform
the actual optimization part, as this is handled by the SIMP approach supported by either
OC [24] or MMA [25] algorithms. The goal of the metaheuristic algorithm is to assist in the
visualization of the shape proposed by MLGen. In detail, information of the density of each
finite element in the domain is used by the metaheuristic algorithm for deciding on which
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finite element to go to, moving from the current FE. For example, in the ACO algorithm, a
number of ants are randomly placed inside the search space. On each step of the algorithm,
each ant decides to move from a current node to another one according to the amount of
pheromones on the trail connecting the two nodes. The amount of pheromones on the trail
depends on the distance between the two nodes and the likelihood of this trail to be chosen
by other ants as well [20].

In the MLGen implementation, particles (ants) are not randomly placed inside the
search space (domain). They are placed on FEs that should definitely have the presence of
particles. Such FEs are the ones where the loads and supports are placed. Instead of using
pheromones, the attraction of a node depends on the density it presents according to SIMP
and the likelihood of a connection to be chosen depends on the density value of the end
node, divided by the normalized distance between the start and the end node. As a result,
ACO is transformed into a design visualization method.

4.2.2. 3D Printing of MLGen Output

In order to produce the output of MLGen methodology, connecting the result exported
by MLGen with a 3D printer is needed. For this reason, a bibliographic survey of methods
for translating topology optimization results into files used by 3D printers is performed. The
most common file types proposed are ∗.stl and ∗.obj files. Such methods were introduced
for use with SIMP, BESO and level-set [3,26–28]. In the current work, the algorithm
proposed by Liu [28] for exporting ∗.stl files out of the results of the SIMP approach,
named Top3DSTL, is selected, as it is found to be very efficient, while the methods used
are more similar to the ones implemented in the MLGEn framework. Top3DSTL uses cubic
representation and the export is in binary file format.

5. Numerical Tests

In order to validate the performance of the MLGen framework, five, known from the
literature, benchmark test examples of topology optimization problems are selected. The
selected test examples employ different loading and support conditions, while the volume
fraction is also differentiated in each of them. In all of the test examples, seven models are used
with the number of the FEs being equal to [1000, 5000, 7000, 10,000, 20,000, 25,000, 75,000]
respectively. The iterations of SIMP in the original models are set equal to 20, while
23 different image filters are used. As a result, a population of 161 different shapes are
generated for each test example with the population of the FEs being equal to 75,000. The
final (fine-tuning) iterations of SIMP implemented for every design proposed out of the
previous image filtering step is set equal to 20.

The definitions of dimensions along with the loading and support conditions of
the five selected test examples are presented below. In addition, out of the different
designs obtained 24 variants of the optimized designs are provided for each test exam-
ple. For all five test examples, a sensitivity filter with radius equal to 3 is used for the
SIMP implementation.

5.1. Test Example A

The design domain for the case of test example A can be seen in Figure 5 that is of
rectangular shape with dimensions L× L/2; it is supported by two fixed joints with the
first one located in the bottom left corner on the x axis and the second one also placed
on the bottom edge along the x axis at a distance of 0.6× L from the other support. The
loading condition refers to a load distributed along the top edge of the x axis applied
toward the vertical axis y. For this test example, the desired volume fraction is set equal
to Vt = 40%, while the structured FE discretization ratio is equal to ney/nex = 1/2. Out
of the 161 optimized designs that are generated by means of the MLGen methodology
for this test example, a randomly chosen sample of 24 optimized designs can be seen in
Figure 6. As it can be observed, the MLGen methodology generates multiple different, but
equivalent in terms of performance, optimized designs.
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Figure 5. Definition of test example A.

Figure 6. Results for test example A.

5.2. Test Example B

In test example B—the design domain that can be seen in Figure 7 that is of lamda
shape with dimensions L× L/2—fully fixed boundary conditions at the top left edge along
the x axis are implemented, while a concentrated point load P at the right edge of the
design domain is applied along the vertical y axis, defining the loading conditions. With
respect to the structured FE discretization ratio, ney/nex = 1/2 while the target volume
percentage is set equal to Vt = 35%. A set of 24 randomly chosen images of the optimized
results of this example as produced by MLGen can be seen in Figure 8. Similar to the
previous test example, these are of equivalent value with respect to the design criteria
chosen during the optimization problem formulation.
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Figure 7. Definition of test example B.

Figure 8. Results for test example B.

5.3. Test Example C

In Figure 9, the design domain that is also of rectangular shape with dimensions
L× L/2 and the corresponding loading and support conditions for the third test example C
are presented. In detail, five fixed joints are located at the bottom edge of the design domain
and they are equally distributed along the x axis. A load distributed along the horizontal x
axis at the top edge of the design domain is applied toward the vertical y axis.The target
volume percentage is set equal to Vt = 25%, and the structured FE discretization ratio is
equal to ney/nex = 1/2. The randomly chosen set of 24 optimized solution for this test
example out of the 161 ones generated through the implementation of MLGen methodology
is presented in Figure 10.
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Figure 9. Definition of test example C.

Figure 10. Results for test example C.

5.4. Test Example D

The next example is labeled test example D, and the corresponding design domain
is presented in Figure 11 that is also of rectangular shape with dimensions L× L/2. The
support conditions correspond to two fixed points at the bottom edges located at the two
opposite corners of the design domain, while the loading conditions refer to a concentrated
load at the middle of the bottom edge applied along the vertical y axis. The desired
volume fraction is equal to Vt = 45%, and the structured FE discretization ratio is equal to
ney/nex = 1/2. The corresponding set of randomly chosen optimized shapes by means of
the MLGen methodology is presented in Figure 12.
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Figure 11. Definition of test example D.

Figure 12. Results for test example D.

5.5. Test Example E

The final test example presented in this work can be seen in Figure 13, where the design
domain is also of rectangular shape with dimensions L× L/2. The loading conditions refer
to two concentrated loads at the top and bottom right corners of the left edge of the design
domain facing upwards and downwards, respectively. The support conditions are defined
as fully fixed boundary conditions along the left vertical side of the domain. With respect
to the structured FE discretization ratio, ney/nex = 1/3 while the final volume fraction is
set equal to Vt = 50%. A randomly chosen sample of the optimized results produced by
means of the MLGen methodology is presented in Figure 14.
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Figure 13. Definition of test example E.

Figure 14. Results for test example E.

The parameters of all test examples previously described can be seen in Table 1.

Table 1. Test examples parameters.

Example Load Type Load Num. Support Type Support Num. Volume

A Distributed 1 Fixed joints 2 40%
B Concentrated 1 Fully fixed 1 35%
C Distributed 1 Fixed joints 5 25%
D Concentrated 1 Fixed joints 2 45%
E Concentrated 2 Fully fixed 1 50%

6. Discussion

In this work, the application of MLGen in several topology optimization problems
with varying parameters is presented in order to validate its performance against differently
defined problems in terms of loading and support condition, volume percentage, etc. As
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presented, MLGen is capable of creating a large number of different shapes regardless of
problem parameters. MLGen is successful in generating differentiated shapes, regardless
of the type and population of supports and loads used. It is also able to efficiently handle
problems, even in the case of a very low volume percentage equal to 25% as in test example
C or of a high volume percentage (50%) as presented in test example E. It is also worth
pointing out that the above results are acquired in less than 3 min per generated shape. It
is logical though that the time needed is analogous to the total number of finite elements
in the mesh discretization of the final sample. It must also be noted that no symmetry is
imposed in any of the test examples.

7. Conclusions

MLGen is proposed as a framework for performing automated shape generation under
specific design rules and constraints, acting as a support tool for engineers and designers.
To achieve that, the incorporation of several methods is needed. Topology optimization
supported by its solution approach (SIMP) is used for generating a shape that satisfies
all design goals and constraints set by the designer. Machine learning (LSTM) is used for
accelerating the solution procedure along with imposing a shape differentiation. Image
filtering is used for further increasing the number of shapes generated, while metaheuristics
(ACO) are used for shape visualization. As the LSTM is trained on classifying density
time-series of independent finite elements, the trained network can be applied to any
example, regardless of the type and population of the loading conditions, mesh sizes,
support conditions, SIMP filtering type and value, whether it is a 2D or 3D problem, the
density of the FE mesh discretization, etc. There are several points for future research. The
incorporation of different machine learning techniques could further increase the number
of proposed shapes for each test example. It is also very important to work on reducing the
necessary iterations of the SIMP approach both for the initial ones as well as the fine-tuning
ones, as those iterations represent the biggest work load of the procedure. Additionally,
the incorporation of other topology optimization approaches, such as level-set [29] and
BESO [30], is also worth examining. Finally, a web application where MLGen can be freely
used will be developed by the authors in the future.
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Abbreviations
The following abbreviations are used in this manuscript:

RNN Recurrent Neural Networks
LSTM Long Short-Term Memory
FE Finite Element
SIMP Solid Isotropic Material with Penalization
STO Structural Topology Optimization
TO Topology Optimization
TOP Topology Optimization Problem
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