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Abstract: This paper represents how typical advanced engineering design can be structured using
a set of parameters and objective functions corresponding to the nature of the problem. The set of
parameters can be in different types, including integer, real, cyclic, combinatorial, interval, etc. Simi-
larly, the objective function can be presented in various types including integer (discrete), float, and
interval. The simulated annealing with crystallization heuristic can deal with all these combinations
of parameters and objective functions when the crystallization heuristic presents a sensibility for real
parameters. Herein, simulated annealing with the crystallization heuristic is enhanced by combining
Bates and Gaussian distributions and by incorporating feedback strategies to emphasize exploration
or refinement, or a combination of the two. The problems that are studied include solving an electrical
impedance tomography problem with float parameters and a partially evaluated objective function
represented by an interval requiring the solution of 32 sparse linear systems defined by the finite
element method, as well as an airplane design problem with several parameters and constraints used
to reduce the explored domain. The combination of the proposed feedback strategies and simulated
annealing with the crystallization heuristic is compared with existing simulated annealing algorithms
and their benchmark results are shown. The enhanced simulated annealing approach proposed
herein showed better results for the majority of the studied cases.

Keywords: simulated annealing; crystallization heuristic; electrical impedance tomography; airplane
design

1. Introduction

The solution of engineering problems often involves optimization. There are several
well-known optimization methods, mainly based on the cost function gradient property.
These methods require a seed to start the search and perform the search walking in
the direction of the largest gradient [1]. However, in many applications, these methods
cannot be used. The difficulties are that either the gradient property is not available,
the gradient property is noisy, or the cost function is discrete. These methods are called
deterministic methods because, starting from a given seed, the final result is always the
same. The determination of the seed is also an additional task which eventually cannot be
easily determined.

To overcome problems such as the gradient property of the cost function and seed
determination, a large set of metaheuristic methods have been proposed. Usually, meta-
heuristics mimic some emergent behavior from nature. Genetic Algorithms (GA) [2] model
the dominance of stronger creatures over weaker creatures. GA has two conventional
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operators: crossover and mutation. Particle Swarm Optimization (PSO) [3] models the
learning task, where creatures can learn from themselves or from others. Simulated an-
nealing (SA) [4] is a stochastic metaheuristic which models metal annealing. Differential
Evolution [5] tries to improve upon a current solution given a measure of quality. Sev-
eral other metaheuristics have been proposed, each of them having a specific motivation,
usually from nature.

The metaheuristics do not need a seed, and they do not use any gradient property of
cost functions. They are connected with the types of parameters and the cost function. For
example, GA originally manipulated integer or limited precision parameters. Modifications
in the original GA, such as increasing the number of operators, allow its usage even in
combinatorial problems [6]. The PSO was originally proposed to deal with real parameters,
and modifications in the original approach also allow its application to combinatorial
problems [7].

Combinatorial problems are considered the most difficult type of problem—they are
called NP-hard problems. SA was originally proposed to deal with combinatorial problems,
such as traveling salesman and graph partitioning problems. It is the only metaheuristic
that has a proof of convergence to the global optimum [8]. SA is the simplest algorithm
with only two loops. However, it has been difficult to include real parameters in the
SA. This paper explains the motivations towards the enhancement of SA to manipulate
real parameters and the proposed SA with the crystallization heuristic. The crystalliza-
tion heuristic does not interfere with combinatorial or integer parameters. SA with the
crystallization heuristic uses feedback to control the parameter named the crystallization
factor, which represents the parameter sensibility [9]. SA with the crystallization heuristic
was successfully applied to problems with discrete cost functions [10–12]. This research
improves the crystallization heuristic by combining the Bates and Gaussian distributions.
Additionally, feedback strategies are proposed to emphasize the desired behavior through
exploration or refinement. This proposal improves upon the results of the benchmark test
from the literature.

This paper starts by explaining the proposed SA with the crystallization heuristic.
Section 2 also describes several proposals for the use of real parameters with SA and the
motivation to propose SA with the crystallization heuristic. Section 3 presents the results
of solving some benchmark problems with SA with the crystallization heuristic. Section 4
describes an extension of SA with the crystallization heuristic in which the cost function is
partially evaluated. This is called interval SA with the crystallization heuristic. The study
case solves the electrical impedance tomography problem. Section 5 explains that the
crystallization factor is related to the parameter sensibility. This is an important property
which can enhance the SA convergence. The study case solves the airplane design problem,
which is a constrained problem. All study cases are related to design and manufacturing
problems. Finally, Section 6 presents the conclusions.

2. SA with Crystallization Heuristic and Feedback Strategies

SA is a popular nature-based optimization technique, and it shares many features
with other meta-heuristics. Although the final solution is not guaranteed to be optimal,
SA can be applied to a wide range of problems (different types of variables and objective
functions) and is capable of escaping local optima when searching for a solution.

The SA algorithm was inspired by a mathematical simulation of atoms in equilibrium
at a given temperature [13]. The algorithm was subsequently formalized by [14], incorpo-
rating the atom equilibrium configuration simulation by using a multivariate combinatorial
optimizer. In [15], the algorithm was later extended for use with continuous variables.

At its core, SA is an iterative method with the so-called temperature parameter
decreasing during execution and influencing the solution selection process. In a typical
SA application, the solution is modified at each iteration, defining a candidate, and the
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objective function is reevaluated. If the candidate cost is smaller, then the modification is
accepted. If the new cost is larger, then the modification is accepted with the probability

P(∆E) = exp (−∆E/T) (1)

where ∆E is the difference between the current and previous costs, k is the Boltzman
constant, and T is the current temperature.

This procedure allows the search to escape local optima, with the temperature pa-
rameter influencing how likely a worse solution is to be accepted; at higher temperatures,
a worse solution is more likely to be accepted, whereas the inverse is true for lower tem-
peratures. Therefore, the control of the temperature parameter, defined by the cooling
schedule, has a significant impact on the effectiveness of the SA algorithm.

Algorithm 1 shows the pseudo code of a basic implementation of the SA algorithm.
The algorithm consists of two nested loops: the external loop controls the temperature and
the internal loop performs the solution modifications.

Algorithm 1 Basic SA

x ←< random initial solution >
T ←< initial temperature T0 >
while < The global condition is not satisfied> do

while < The local condition is not satisfied> do
x∗ ←< modified solution >
∆E = F(x∗)− F(x)
if ∆E < 0 then

x ← x∗

else if random(0, 1) < exp (−∆E/T) then
x ← x∗

end if
end while
T ← T ∗ α

end while

Parameter α controls the cooling schedule within the external loop. During each
iteration of the inner loop, a new solution x∗ is created by modifying x, the new cost is
evaluated, and the modification is either accepted or rejected. The local condition that
controls the inner loop can be a fixed number of iterations or accepted candidates. On the
other hand, the global stop condition is more application-specific, but usually reflects the
solution convergence.

2.1. How to Modify the Solution with Continuous Variables

An important part of the algorithm is the generation of x∗. Several different strategies
can be used to determine a new candidate during the random search step in the SA
algorithm. The original SA proposed by Kirkpatrick et al. [14] was applied to the traveling
salesman problem, which is a combinatorial problem. In this case, x∗ is just a permutation
of x. They showed that SA clearly has two phases. At higher temperatures, SA explores
the domain, and at lower temperatures, SA refines the solution.

Bohachevsky et al. [16] presented one of the first proposals to approach continuous
problems using SA. They determined the next candidate x∗ by combining a random
‖u‖ = 1 and a fixed step size ∆r, as

x∗ = x + ∆r · u.

When a fixed step size is considered, SA always stays in the same phase of exploration
or refinement. Usually, larger steps are associated with the exploratory phase, and smaller
steps are associated with the refinement phase. Bohachevsky et al. proposed that the
step size ∆r must consider the objective function derivative information. If the objective



Appl. Sci. 2021, 11, 11814 4 of 21

function derivative related to a specific parameter i is large, this specific parameter step
size ∆ri must be small. The same reasoning works in the opposite direction. Besides the
connection with the derivative information, each parameter must have its own specific
step size. The connection with the derivative information proposed by Bohachevsky et al.
is a weak point.

Corana et al. [15] used another important concept: the number of accepted candidates
must be increased, but the number of accepted candidates must not be extremely high.
For higher temperatures, the SA can accept bad candidates with higher probabilities, as can
be seen from (1). If the percentage of accepted candidates is 100%, the search is completely
aleatory. It is necessary to have a balance between accepted and rejected candidates.
Corana et al. proposed that the step size must be defined in such a way that the balance
between accepted and rejected candidates is kept. This proposal was good, as the relation
with the derivative information was removed. Ingber et al. [17] realized that if the step
size is too small, SA cannot escape from some local minimum. Thus, the step size must
be kept large enough, and despite the step size always being the same, each variable has
its probability distribution. Bohachevsky et al. [16] and Corana et al. [15] adopted a fixed
constant probability distribution for each variable. Ingber proposed that the standard
deviation of the probability distribution is related to the objective function derivative.

Martins and Tsuzuk [10,18] understood that the relation between the standard de-
viation and objective function derivative is not good. They proposed a feedback control
method which keeps the number of accepted candidates at a reasonable level. The control
variable is called the crystallization factor, and it represents the standard deviation of the
probability distribution. Figure 1 shows the two phases of SA: exploration and refine-
ment [19]. Associated with the phase, the probability distribution standard deviation is
also represented. The standard deviation must be larger at higher temperatures and will
allow larger jumps at higher temperatures. At lower temperatures, the behavior is exactly
the opposite, where smaller jumps will have a higher probability of happening.

exploration
stage

refinement
stage

low crystalization high crystalization

Te
m

p
e
ra

tu
re

Δrk Δrk

Figure 1. SA has two clear phases in the optimization process: exploration and refinement. The crys-
tallization factors have a connection with the two phases. During the exploration phase, larger jumps
are performed (the parameters have lower crystallization). During the refinement phase, the opti-
mization performs smaller jumps with higher probability (the parameters have higher crystallization).
∆rk is fixed for each variable and represents the distribution width.

Considering a specific k-th variable represented by ek, a vector with all elements
zero and just the k-th element equal to 1 is created. This variable has step size ∆rk and
crystallization factor ck. The next candidate is determined by

x∗ = x +
1
ck

[
ck

∑
i=1

random(−1,+1)

]
· ∆rk · ek. (2)
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The summation of random numbers creates a Bates distribution [20] defined by the
crystallization factor ck. The crystallization factor is controlled by a feedback mechanism
shown in Figure 2. If the candidate is accepted, the crystallization factor ck is reduced and,
consequently, the standard deviation of the probability distribution increases. The opposite
action happens if the candidate is rejected; consequently, the standard deviation of the
probability distribution decreases.

Accepted:
reduce refinement

Rejected:
reduce exploration

Yes No

Generate new solution

Accept solution?

Figure 2. SA provides a feedback to the crystallization factor associated with the modified variable.
If the solution is accepted, the crystallization factor is reduced (positive feedback). If the solution is
rejected, the crystallization factor is increased (negative feedback).

Previous versions of SA with the crystallization heuristic limited the maximum value
cmax of the crystallization factor ck. The summation of numbers between −1 and 1 can
grow to be very large. If a new number between −1 and 1 is added to a large number,
no modification will happen. This happens because of the computer’s internal numerical
representation. The approach of SA with the crystallization heuristic proposed herein has
no upper limit for the crystallization factor.

The numerical issue presented below can be overcome by using a Gaussian distribu-
tion. The Gaussian distribution mean is zero, and its standard deviation is defined by

exp (cmax − ck − 2) (3)

where cmax is the maximum value for the crystallization factor ck to use the Bates distribu-
tion. If ck is larger than cmax, the proposed algorithm uses the Gaussian distribution and
the value of the exponent is negative in (3). The Gaussian distribution has limits between
−∞ and +∞; however, as its standard deviation is very small, it produces small numbers
with high probability.

The crystallization factor controls the standard deviation of the Bates and Gaussian
distributions. The Bates distribution has boundaries, and this is used to ensure that x∗ is
generated under some limits. If ck grows to be larger and numerical issues might occur, x∗

is generated using a Gaussian distribution. Algorithm 2 shows a possible implementation
of SA with the crystallization factor. The negative and positive feedback to control the
crystallization factor are shown. Only one variable is modified at a time [21,22]. By modify-
ing just one variable at a time, the algorithm knows that the selected variable’s associated
crystallization factor ck must be modified.

Usually, the continuous variables have boundaries, and they must be kept inside
a domain [xmin, xmax]. Eventually, the generated candidate goes outside the domain.
The decision of what to do when such a situation happens is crucial. The correct decision is
to perform a totally new x∗ generation, as shown in the Algorithm 2. The incorrect decision
is to attribute the nearest variable boundary value to x∗. If this is done, the boundary will
have a higher probability to be chosen, and the solution distribution will be incorrect.
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Algorithm 2 SA with crystallization heuristic.

x ←< random initial solution >
T ←< initial temperature >
while < The global condition is not satisfied> do

while < The local condition is not satisfied> do
repeat

k←< select parameter to modify >
if ck ≤ cmax then

x∗ ← x + 1
ck

∑ck
1 random(−1,+1) · ∆rk · ek

else
x∗ ← x+ GaussianDist(exp (cmax − ck − 2)) ·∆rk · ek

end if
until x∗ ∈ [xmin, xmax]
∆E = F(x∗)− F(x)
if ∆E < 0 then

x ← x∗

< decrease ck > . Positive Feedback
else

if random(0, 1) < exp (−∆E/T) then
x ← x∗

< decrease ck > . Positive Feedback
else

< increase ck > . Negative Feedback
end if

end if
end while
T ← T ∗ α

end while

2.2. Proposed Feedback Strategies

Algorithm 2 shows two different types of feedback: positive and negative feedback.
As shown in Figure 2, the positive feedback reduces the crystallization factor, and the
standard deviation increases. The negative feedback increases the crystallization factor,
and the standard deviation reduces. Table 1 shows three examples of feedback strategies,
and additional strategies can be proposed. According to our experience, the negative
feedback is always the same: the crystallization factor is incremented by 1.

Strategy I resets the crystallization factor ck to the unit. This strategy must be used
when the objective function requires more exploration. The algorithm can generate a
x∗ using larger jumps with higher probability. For example, the global optimum of an
objective function with several local minima can be found using this strategy. Strategy III
decrements the crystallization factor ck by one unit. This strategy must be used when the
objective function requires more refinement. The algorithm generates smaller jumps when
generating x∗.

Table 1. Positive feedback strategies. Rules to update the crystallization factor ck. The negative feed-
back is the same for all four strategies. FS = feedback strategy. Exp = exploratory. Ref = refinement.

FS
Positive Feedback

Negative Feedback
Exp Phase Ref Phase

I ck ← 1 ck ← 1 ck ← ck + 1
II ck ← ck/2 ck ← ck/2 ck ← ck + 1
III ck ← ck − 1 ck ← ck − 1 ck ← ck + 1
IV ck ← 1 ck ← ck − 3 ck ← ck + 1
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Strategy II stays between strategies I and III. In this strategy, the crystallization factor
is divided by 2. Strategy IV is a hybrid strategy in which the value attributed to the
crystallization factor ck depends on the algorithm phase: the exploratory or refinement
phase. Tavares et al. explained that the objective function standard deviation can determine
the transition temperature when the algorithm goes from the exploratory to refinement
phase [23]. The hybrid strategy performs exploration during the exploratory phase and
performs refinement during the refinement phase. All four proposed strategies are used in
this research. In the benchmark tests, strategies I and IV are used. The EIT application uses
strategy II, and the airplane design application uses strategies I, II, and III.

2.3. Additional Settings

The initial temperature is an important parameter. The determination of the appropri-
ate temperature is not a difficult task. It is recommended to fix a temperature that is high
enough to ensure that SA is in the exploratory phase. If the temperature is high enough,
the percentage of accepted candidates is 100%. Under this condition, SA performs only a
random search and accepts everything. As the temperature decreases and reaches 80% of
accepted candidates, this is the appropriate initial temperature. Alternative approaches for
the determination of the initial temperature exist in the literature [24].

The cooling schedule also is relevant for convergence [25]. Several proposals exist in
the literature; a good review can be found in [23]. The EIT and airplane design applications
use α = 0.98. For the benchmark tests, the adaptive cooling schedule explained in [23]
is used. In this case, α is determined for each temperature and depends on the objective
function’s standard deviation during the specific temperature.

The SA is terminated when the global condition is reached. The global condition
represents the frozen state—it is a temperature where no candidate is accepted. In the EIT
and airplane design applications, a small percentage of accepted solutions are used instead
(such as 1%). In the benchmark tests, the algorithm is terminated when the number of
objective function evaluations is reached.

The second loop is terminated when the thermal equilibrium is reached at a specific
temperature. The thermal equilibrium depends on the number of variables, which is
considered N. For a specific temperature, the thermal equilibrium is reached when the
objective function is evaluated 5N times or the number of accepted candidates reaches 2.5N.
The number of accepted candidates is half the number of evaluated objective functions.
For some applications, it is possible for the number of objective function evaluations to be
greater than 5N.

The value of ∆rk can be easily fixed considering the variable boundaries, and it is
defined by

∆rk =
xk,max − xk,min

4
(4)

where [xk,min, xk,max] are the boundaries for variable k. Finally, cmax is defined as equal
to 20.

3. Benchmark Results

SA with the crystallization heuristic was applied to some benchmark functions. Table 2
shows the function definitions, with n being the number of variables. Table 3 shows all the
function limits and global optima. Each function has a different feature that is evaluated
in this benchmark. The sphere function is the easiest function, with a global optimum
that is well defined. The Rosenbrock function has a great deal of difficulty finding the
global optimum once it is located in a flat-shaped valley. The Rastrigin, Ackley, Griewangk,
and Weierstrass functions have several local minima, in which the capacity of the algorithm
to escape these points is tested. The Zakharov function has a global optimum in place
with a low gradient, making it difficult to determine with algorithms that use the gradient.
Figure 3 shows all the functions plotted in a two-dimensional form; i.e., all functions have
two variables.
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All these functions are minimized with the proposed SA with the crystallization
heuristic using two different positive feedback strategies: I and IV. The positive feedback
strategy I resets the crystallization factor (ck ← 1) every time a candidate is accepted (see
Table 1). The positive feedback strategy IV resets the crystallization during the exploration
phase and decreases the crystallization factor by three in the refinement phase every time
a candidate is accepted. The verification of whether the algorithm is at an exploration or
refinement phase is done by evaluating the standard deviation of the costs.

Each function is tested with three different numbers of variables: 10, 30, and 50. The
maximum number of iterations is 10,000 times the number of variables. Each configuration
is repeated 100 times, and the average and standard deviation of the cost are shown in
Table 4. Strategy I is the positive feedback which resets the crystallization factor, and Strat-
egy IV is the positive feedback strategy with a different strategy for the exploratory and
refinement phase of the algorithm. The results show that the higher the number of vari-
ables, the worse the SA performs for both feedback strategies. Strategy IV performs better
than Strategy I for all functions. This was expected, as every time the crystallization factor
is restarted, it is necessary for several iterations to increase it to the point a new candidate is
accepted. Then, the crystallization factor is kept low, making it difficult to refine to a better
solution. The optimization performed by strategy I can achieve the results of strategy IV;
however, a higher number of iterations will be necessary, making this strategy slower.

The proposed SA approach performed better in the Rastrigin and Weierstrass func-
tions, finding the exact global minimum. The Sphere and Ackley functions had an average
performance, followed by the Griewangk function. The Rosenbrock and Zakharov func-
tions had the worst performance, especially in the tests with 50 variables (the source
code used here to evaluate the proposed method is available at https://github.com/
LabGeocomp/sacryst, 1 November 2021).

Table 2. Definition of the benchmark functions.

Function f (X)

Sphere ∑n
i=1 x2

i
Rosenbrock ∑n−1

i=1

[
100(x2

i − xi+1)
2 + (1− xi)

2]

Rastrigin 10n + ∑n
i=1(x2

i − 10 cos(2πxi))

Griewangk 1 + 1
4000 ∑n

i=1 x2
i −∏n

i=1 cos
(

xi√
i

)

Ackley 20− exp
(

1
n ∑n

i=1 cos(2πxi)
)
+ e− 20 exp

(
−0.2

√
1
n ∑n

i=1 x2
i

)

Weierstrass ∑n
i=1

[
∑20

j=0
[
0.5j cos(2π3j(xi + 0.5))

]]
− n ∑20

j=0
[
0.5j cos(π3j)

]

Zakharov ∑n
i=1 x2

i +
(

∑n
i=1

i
2 xi

)2
+
(

∑n
i=1

i
2 xi

)4

Table 3. Limits and global optima of the benchmark functions.

Function Limit Global Optimum

Sphere [−100, 100]n f (0, · · · , 0) = 0
Rosenbrock [−30, 30]n f (1, · · · , 1) = 0
Rastrigin [−100, 100]n f (0, · · · , 0) = 0
Griewangk [−600, 600]n f (0, · · · , 0) = 0
Ackley [−40, 40]n f (0, · · · , 0) = 0
Weierstrass [−10, 10]n f (0, · · · , 0) = 0
Zakharov [−10, 10]n f (0, · · · , 0) = 0

https://github.com/LabGeocomp/sacryst
https://github.com/LabGeocomp/sacryst
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Table 4. Results of the benchmark function for 100 repetitions. N var is the number of variables, avg is the average of the costs, and std is the standard deviation. Strategy I is the reset
of the crystallization factor, strategy IV is the hybrid decrease, reset of the crystallization in the beginning, and decrease by three unities at the end. According to Ingber, Matlab uses
ASA [17,26]. PAGMO uses the SA approach proposed by Corana et al. [15,27]. The best results are emphasized in bold.

Function N Var
Strategy I Strategy IV ASA-Matlab SA-PAGMO

Avg Std Avg Std Avg Std Avg Std

Sphere 10 1.94 × 10−12 1.27 × 10−12 4.44 × 10−28 1.39 × 10−28 1.62 × 10−01 6.58 × 10−02 8.93 × 10−06 2.47 × 10−06

30 6.23 × 10−12 2.46 × 10−12 2.69 × 10−27 4.35 × 10−28 3.69 × 10+00 5.31 × 10−01 7.06 × 10−05 1.05 × 10−05

50 1.15 × 10−11 3.38 × 10−12 5.20 × 10−27 6.53 × 10−28 9.25 × 10+00 1.22 × 10+00 1.49 × 10−04 1.70 × 10−05

Rosenbrock 10 7.68 × 10−01 7.03 × 10−01 1.61 × 10−04 2.87 × 10−04 1.72 × 10+01 7.61 × 10+01 9.85 × 10−01 1.72 × 10+00

30 3.43 × 10+01 3.32 × 10+01 9.97 × 10+00 2.34 × 10+01 1.63 × 10+01 1.16 × 10+01 5.59 × 10−01 1.32 × 10+00

50 7.26 × 10+01 2.94 × 10+01 3.73 × 10+01 3.30 × 10+01 4.09 × 10+01 2.89 × 10+01 9.50 × 10+00 6.06 × 10+00

Rastrigin 10 1.58 × 10−07 7.24 × 10−08 0.00 × 10+00 0.00 × 10+00 4.39 × 10+01 1.81 × 10+01 1.69 × 10+01 5.62 × 10+00

30 6.21 × 10−07 1.82 × 10−07 0.00 × 10+00 0.00 × 10+00 4.88 × 10+02 1.20 × 10+02 6.13 × 10+01 1.39 × 10+01

50 1.09 × 10−06 2.51 × 10−07 0.00 × 10+00 0.00 × 10+00 1.31 × 10+03 2.24 × 10+02 1.04 × 10+02 1.92 × 10+01

Griewangk 10 7.13 × 10−02 2.29 × 10−02 7.86 × 10−02 3.16 × 10−02 1.26 × 10+00 1.38 × 10−01 2.81 × 10−01 1.28 × 10−01

30 1.44 × 10−02 1.61 × 10−02 1.88 × 10−02 1.76 × 10−02 5.40 × 10+00 7.42 × 10−01 2.60 × 10−02 2.30 × 10−02

50 7.36 × 10−03 8.27 × 10−03 1.11 × 10−02 1.77 × 10−02 1.19 × 10+01 1.35 × 10+00 1.19 × 10−02 1.36 × 10−02

Ackley 10 4.58 × 10−07 1.77 × 10−07 3.55 × 10−15 0.00 × 10+00 1.56 × 10+01 1.41 × 10+00 4.15 × 10−05 6.67 × 10−06

30 8.29 × 10−07 1.89 × 10−07 9.24 × 10−15 3.23 × 10−15 2.03 × 10+01 1.67 × 10−01 2.03 × 10−04 1.93 × 10−05

50 9.81 × 10−07 1.76 × 10−07 1.88 × 10−14 3.41 × 10−15 2.07 × 10+01 9.17 × 10−02 3.92 × 10−04 3.40 × 10−05

Weierstrass 10 4.38 × 10−04 1.17 × 10−04 0.00 × 10+00 0.00 × 10+00 3.96 × 10+00 7.27 × 10−01 1.51 × 10−02 1.49 × 10−01

30 1.43 × 10−03 2.26 × 10−04 0.00 × 10+00 0.00 × 10+00 2.96 × 10+01 1.21 × 10+00 3.03 × 10−02 2.10 × 10−01

50 2.42 × 10−03 2.59 × 10−04 0.00 × 10+00 0.00 × 10+00 5.88 × 10+01 2.73 × 10+00 3.06 × 10−02 2.10 × 10−01

Zakharov 10 4.58 × 10−07 3.64 × 10−07 6.02 × 10−17 2.51 × 10−17 2.51 × 10−01 9.57 × 10−02 1.06 × 10−05 3.43 × 10−06

30 5.20 × 10+00 2.31 × 10+00 6.71 × 10−05 6.94 × 10−05 2.39 × 10+00 5.20 × 10−01 1.24 × 10−04 3.43 × 10−05

50 1.21 × 10+02 2.48 × 10+01 1.59 × 10+00 6.40 × 10−01 4.90 × 10+00 8.76 × 10−01 1.20 × 10+00 1.34 × 10+00
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 3. Plot of the functions with two variables. (a) Sphere, (b) Rosenbrock, (c) Rastrigin,
(d) Griewangk, (e) Ackley, (f) Weierstrass, (g) Zakharov.

Table 4 also shows the results obtained using the Matlab and PAGMO SA algorithms.
Matlab uses a SA approach based on ASA proposed by Ingber [17] and PAGMO (https:
//esa.github.io/pagmo2/docs/cpp/algorithms/simulated_annealing.html, 1 November
2021) uses a SA approach based on Corana et al.’s proposal [15,27]. The termination
condition was a fixed number of objective function evaluations. The SA approach from
PAGMO achieved the three best results: Rosenbrock with 30 and 50 variables, and Zakharov
with 30 and 50 variables. As explained before, ASA uses the gradient information, which
was not useful in this benchmark test.

4. SA with Incomplete Cost Evaluation Applied to EIT

EIT is a noninvasive imaging modality that provides safe medical imaging through
a non-ionizing method. This technique converts its internal electrical conductivity dis-
tribution into a grayscale value, defining an image. Assuming there is no access to the
interior of the body, the conductivity distribution must be inferred from electrical potential
measurements taken on the surface of the body [28].

Several medical applications use EIT, which include the continuous observation of
pulmonary function to assess the effects of therapeutic maneuvers on the regional distribu-
tion of ventilation [29,30], as well as monitoring cardiac activity [31]. Several nonclinical
applications also use EIT, such as crack detection on mechanical components, detection
of minerals in the soil, soil pollution monitoring, the visualization of multiphase flow,
and real-time monitoring of industrial processes [32,33].

https://esa.github.io/pagmo2/docs/cpp/algorithms/simulated_annealing.html
https://esa.github.io/pagmo2/docs/cpp/algorithms/simulated_annealing.html
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The EIT reconstruction problem can be solved by minimizing the difference between
the observed data and a simulated impedance problem. The use of objective function
derivatives is not recommended, as the EIT reconstruction is a nonlinear, nonconvex,
and often ill-posed optimization problem. The objective function requires the solution of
several Finite Element Method (FEM) problems, making it very computationally expensive.
This work proposes a new SA approach in which the objective function is partially evalu-
ated, while ensuring the boundaries of the proposed algorithm [34]. SA with an incomplete
cost evaluation applied to EIT considers that the objective function returns an interval and
a value. The value is an estimate of the precise objective function value and the interval
contains the precise objective function value. It is shown below that the acceptance and
rejection decision is not as simple as shown in Algorithm 2.

4.1. Equipment Configuration

A typical EIT configuration comprises the placement of electrodes along the contour
of the object to be imaged. Then, a current of low amplitude is applied through an electrode
pair, and the resulting electric potentials are measured at all electrodes. This process is
repeated n times, applying the current across n different pairs of electrodes and taking
electrical potential measurements. Figure 4 shows a 16-electrode EIT configuration for
two current patterns: J1 and J13. The ensemble of measured potentials is denoted by
V = {Φ1

m, . . . , Φn
m}, where n is the number of current patterns and m is the number of

electrodes [35].

Version November 16, 2021 submitted to Appl. Sci. 11 of 21

and the interval contains the precise objective function value. It will be shown that the
acceptance and rejection decision is not as simple as shown in Algorithm 2.

4.1. Equipment Configuration

A typical EIT configuration comprises of the placement of electrodes along the
contour of the object to be imaged. Then, a current of low amplitude is applied through
an electrode pair and the resulting electric potentials are measured at all electrodes. This
process is repeated n times, applying the current across n different pairs of electrodes, and
taking electrical potential measurements. Fig. 4 shows a 16-electrode EIT configuration
for two current patterns, J1 and J13. The ensemble of measured potentials is denoted
by V = {Φ1

m, . . . , Φn
m}, where n is the number of current patterns and m the number of

electrodes [35].

Φ1
1

Φ1
2

Φ1
3

Φ1
4Φ1

5
Φ1

6

Φ1
7

Φ1
8

Φ1
9

Φ1
10

Φ1
11 Φ1

12
Φ1

13

Φ1
14

Φ1
15

Φ1
16σ(x, y)

x

y

J1

Φ13
1

Φ13
2

Φ13
3

Φ13
4Φ13

5
Φ13

6

Φ13
7

Φ13
8

Φ13
9

Φ13
10

Φ13
11 Φ13

12
Φ13

13

Φ13
14

Φ13
15

Φ13
16σ(x, y)

x

y

J13

Figure 4. Given a domain with a conductivity distribution σ(x, y), EIT equipment is used to
measure the electrical potential Φi

j on all j ∈ [1, 16] electrodes from the injection of the current
pattern Ji.

4.2. Formulation of the Forward Problem

The EIT forward problem consists of calculating the potential distribution φ within
a domain Ω given a conductivity distribution σ and given an applied current pattern J.
Since the frequencies of the applied current are low, the capacitive and inductive effects
can be ignored and so the 2D EIT problem satisfies the Laplace equation,

∇ · [σ(x, y) · ∇φ(x, y)] = 0, (x, y) ∈ Ω, (5)

where σ and φ are the conductivity and potential distributions, respectively, and Ω is
the domain. The equation is set to zero because there are no current sources inside the
domain [36].

Solving the forward EIT problem consists of solving the Laplace equation in its
weak form for φ, given the conductivity distribution σ and the injected current J. The
FEM is widely used to model forward problems, given its ability to model arbitrary
geometry and boundary conditions [37,38]. In this case, the formulation of the forward
problem of EIT by the FEM reduces the problem to the resolution of a linear system

K ·Φ = J, (6)

where, J is the vector of injected currents, Φ is the vector of potentials and K ∈ Rt×t is
conductance matrix [39].

4.3. The Inverse Problem

Reconstructing the conductivity distribution is an inverse problem. A valid solution
would be a conductivity distribution that produces a given set of electric potential mea-
surements. The EIT reconstruction problem can be solved by minimizing the difference
between a simulated impedance domain and the one implied by the measured electric
potential [40]. This is solved using SA to optimize the simulated impedance domain,
using FEM to evaluate the solution at each iteration of the SA algorithm.

Figure 4. Given a domain with a conductivity distribution σ(x, y), EIT equipment is used to measure
the electrical potential Φi

j on all j ∈ [1, 16] electrodes from the injection of the current pattern Ji.

4.2. Formulation of the Forward Problem

The EIT forward problem consists of calculating the potential distribution φ within
a domain Ω given a conductivity distribution σ and given an applied current pattern J.
Since the frequencies of the applied current are low, the capacitive and inductive effects
can be ignored, and so the 2D EIT problem satisfies the Laplace equation,

∇ · [σ(x, y) · ∇φ(x, y)] = 0, (x, y) ∈ Ω, (5)

where σ and φ are the conductivity and potential distributions, respectively, and Ω is
the domain. The equation is set to zero because there are no current sources inside the
domain [36].

Solving the forward EIT problem consists of solving the Laplace equation in its weak
form for φ, given the conductivity distribution σ and the injected current J. The FEM is
widely used to model forward problems, given its ability to model arbitrary geometry and
boundary conditions [37,38]. In this case, the formulation of the forward problem of EIT by
the FEM reduces the problem to the resolution of a linear system

K ·Φ = J, (6)

where J is the vector of injected currents, Φ is the vector of potentials, and K ∈ Rt×t is the
conductance matrix [39].
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4.3. The Inverse Problem

Reconstructing the conductivity distribution is an inverse problem. A valid solution
would be a conductivity distribution that produces a given set of electric potential mea-
surements. The EIT reconstruction problem can be solved by minimizing the difference
between a simulated impedance domain and the one implied by the measured electric
potential [40]. This is solved using SA to optimize the simulated impedance domain, using
FEM to evaluate the solution at each iteration of the SA algorithm.

This optimization problem is in general strongly ill-conditioned and often noncon-
vex. Gradient-based optimization methods can converge to local minima and require
special regularization terms to converge properly, which lead to the loss of detail in the
reconstructed image.

A maximum a posteriori (MAP) probability estimate for the conductivity distribution
based on Bayes’ rule can be performed using the measurements taken on the surface of
the body, as well as the error estimates at each optimization iteration and some prior
information of the expected conductivity distribution.

A MAP probability estimate of the conductivity distribution is one that maximizes

π(σ|V) ∝ π(σ)
n

∏
i=1

χ(Φi
m −Φi

e) (7)

where π(σ) is a prior distribution for σ and χ(Φi
m −Φi

e) is the probability density function
(PDF) for a random error vector e, χ(e) = χ(Φi

m −Φi
e), and Φi

e is the vector of expected
potentials at the electrodes. The optimization problem

σ̂ = arg min E(σ) (8)

is used to obtain a MAP estimation, where

E(σ) =
n

∑
i=1
‖Φi

m −Φi
e‖2 + R(σ), (9)

and R(σ) ∝ ln(π(σ)) is the regularization term, related to the prior knowledge of σ. Since
the EIT problem is generally ill-posed, reconstruction is often impossible without prior
knowledge [41].

4.4. Partial Evaluation and Interval SA

Evaluating the objective function on (9) typically requires solving a linear system.
Since SA requires a large number of objective function evaluations, the total computational
cost of a full EIT reconstruction by SA can become quite large. Let us suppose that it is
possible to obtain an estimate for the objective functions Ẽ bounded by upper and lower
limits Emax and Emin. Then, it is possible to obtain similar estimates for the variation of the
objective function at the i-th iteration:

∆Ẽi = Ẽi − Ẽi−1

∆Emax
i = Emax

i − Emin
i−1

∆Emin
i = Emin

i − Emax
i−1 .

This corresponds to the classical difference operation in interval arithmetic. Then, by the
definition of the SA algorithm, if in a given iteration ∆Ẽ, ∆Emax, ∆Emin satisfy

exp (−∆Emax/T) ≥
{

1− Perr if ∆Ẽ ≤ 0,
exp (−∆Ẽ/T)− Perr if ∆Ẽ > 0

(10)

exp (−∆Emin/T) ≤ min(1, Perr + exp (−∆Ẽ/T)) (11)
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then an algorithm that uses the approximations Ẽi has a probability of less than Perr of
deviating from an algorithm that uses the exact values Ei.

In [32], this property is used by Martins and Tsuzuki to create stopping criteria for
the underlying linear solvers that evaluate (9) for EIT reconstruction. By limiting the
probability of deviation to less than 5%, EIT images were reconstructed by SA in as few as
20 iterations of a conjugated gradient solver operating on meshes of more than 1000 nodes.

4.5. Results and Discussion

The electrical potential measurements were taken from two different impedance distri-
butions. Figure 5 displays the two distributions, which consisted of placing three phantoms
made of cucumber slices in random positions inside of a saline solution. The reconstructed
images are shown in Figure 6 for the two configurations. The saline water has almost
constant conductivity. The cucumbers are visible according to the established arrangement.
These results have a good contrast, determining the boundaries of the internal elements.
When compared with the results of other approaches, these results show an improvement
in the internal element boundaries determination [30,42].

(a) (b)

Figure 5. Electrical potential measurements were taken for two conductivity distributions. (a) Physi-
cal linear arrangement. (b) Physical triangular arrangement.
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Figure 7 shows the convergence of the SA with crystallization factor for both
arrangements, the two graphs are shown in blue. Averagely, larger values of the cost
function show that the exploration phase is happening at higher temperatures. The
graph shows that the exploration phase is very short for both arrangements. At lower
temperatures, lower values of the cost function in average show that the refinement
phase happens. Martins and Tsuzuki [43] showed that the application of the interval
SA with crystallization factor to EIT created an emergent behavior: external layers
converged first and internal layers converged later. The possibility of convergence layer
by layer was first proposed by Somersalo et al. [44]. However, it showed to be unstable
in the presence of noise. The algorithm proposed by Martins and Tsuzuki [43] is the
first stable implementation with this property [45]. Tavares et al. [46] developed a new
heuristic called outside-in, using this emergent behavior.
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Figure 6. The reconstructed for the two conductivity distributions in (Ω · m)−1. (a) Linear
arrangement reconstructed. (b) Triangular arrangement reconstructed.

In the two graphs in red shown in Fig. 7, it is represented the number of conjugated
gradient iterations averagely per temperature. The mesh used in the reconstruction
has more than 1, 000 nodes. Consequently, the linear system (6) has more than 1, 000
equations and the number of iterations the conjugated gradient must perform is the
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(a) (b)

Figure 6. The reconstructed for the two conductivity distributions in (Ω ·m)−1. (a) Linear arrange-
ment reconstructed. (b) Triangular arrangement reconstructed.

Figure 7 shows the convergence of SA with the crystallization factor for both arrange-
ments; the two graphs are shown in blue. Averagely, larger values of the cost function
show that the exploration phase is happening at higher temperatures. The graph shows
that the exploration phase is very short for both arrangements. At lower temperatures,
lower values of the cost function on average show that the refinement phase happens.
Martins and Tsuzuki [43] showed that the application of interval SA with the crystallization
factor to EIT created an emergent behavior: external layers converged first and internal
layers converged later. The possibility of convergence layer by layer was first proposed
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by Somersalo et al. [44]. However, it was shown to be unstable in the presence of noise.
The algorithm proposed by Martins and Tsuzuki [43] is the first stable implementation
with this property [45]. Tavares et al. [46] developed a new heuristic, called outside-in,
using this emergent behavior.

In the two graphs in red shown in Figure 7, the number of conjugated gradient itera-
tions is represented on average for each temperature. The mesh used in the reconstruction
has more than 1000 nodes. Consequently, the linear system (6) has more than 1000 equa-
tions, and the number of iterations that the conjugated gradient must perform is the same
as the number of equations. Considering Figure 7, the maximum number of conjugated gra-
dient iterations is 35. As the cost function is partially evaluated, the number of conjugated
iterations is kept at a small number.
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Figure 7. The graphs in blue show the cost function average per temperature. It represents the
convergence of the SA. The graphs show a short exploration phase and a longer refinement phase.
The graphs in red show the number of conjugated gradients iterations average per temperature.
(a) Linear arrangement. (b) Triangular arrangement.

Table 5: Results of tests for the two arrangements. The final cost and the total number of
cost function evaluations

Arrangement Cost Total Iteration

Linear arrangement 28.02 1,876,819
Triangular arrangement 19.71 1,930,430

same number as the number of equations. Considering Fig. 7, the maximum number
of conjugated gradient iterations is 35. As the cost function is partially evaluated, the
number of conjugated iterations is kept in a small number.

The number of conjugated gradient iterations at higher temperatures is smaller
when compared to the iterations at lower temperatures. As previously pointed, the cost
function is partially evaluated and, simultaneously, the interval ∆Ei =

[
Emin

i , Emax
i
]

in
which the exact value is contained is also determined. At higher temperatures, the SA is
performing exploration and the determined ∆Ei is larger. Usually, the candidates are
far from the final solution and larger errors are present. At lower temperatures, the
SA is performing refinement and the determined ∆Ei must be small. The number of
conjugated gradient iterations is kept in a reasonable level (smaller than 35 iterations)
because the initial linear system solution for the conjugated gradient current is the final
linear system solution from the previous conjugated gradient evaluation. Considering
that only a small modification happens, remember that only one parameter is modified
at a time as shown in Algorithm 2, the final linear system solution from the previous
conjugated gradient evaluation is a good initial linear system solution for the current
conjugated gradient evaluation. Table 5 shows the final cost and the number of cost
function evaluations for the two experimental arrangements. Occasionally, the linear
arrangement converges first with a smaller number of cost function evaluations. The
SA has aleatory convergence and the final cost and the total number of cost function
evaluations can change. However, the reconstructed image for the two arrangements is
always very similar, showing that the proposed interval SA with partial evaluation of the
cost function is robust. A similar algorithm was also applied to anisotropic domain [34].

5. SA Applied to Aircraft Design

The proposed SA approach can be used to various engineering design problems.
Considering the nature of any engineering design problem, it is important to have a
systematic method in place to control the sequence of design tasks and define the work

Figure 7. The graphs in blue show the cost function average for each temperature. It represents the
convergence of SA. The graphs show a short exploration phase and a longer refinement phase. The
graphs in red show the number of conjugated gradient iterations on average for each temperature.
(a) Linear arrangement. (b) Triangular arrangement.

The number of conjugated gradient iterations at higher temperatures is smaller when
compared to the iterations at lower temperatures. As previously pointed, the cost function
is partially evaluated and, simultaneously, the interval ∆Ei =

[
Emin

i , Emax
i
]

in which
the exact value is contained is also determined. At higher temperatures, SA performs
exploration and the determined ∆Ei is larger. Usually, the candidates are far from the final
solution and larger errors are present. At lower temperatures, SA performs refinement, and
the determined ∆Ei must be small. The number of conjugated gradient iterations is kept at a
reasonable level (smaller than 35 iterations) because the initial linear system solution for the
conjugated gradient current is the final linear system solution from the previous conjugated
gradient evaluation. Considering that only a small modification happens, remember that
only one parameter is modified at a time, as shown in Algorithm 2; the final linear system
solution from the previous conjugated gradient evaluation is a good initial linear system
solution for the current conjugated gradient evaluation. Table 5 shows the final cost and the
number of cost function evaluations for the two experimental arrangements. Occasionally,
the linear arrangement converges first with a smaller number of cost function evaluations.
The SA has aleatory convergence, and the final cost and the total number of cost function
evaluations can change. However, the reconstructed image for the two arrangements is
always very similar, showing that the proposed interval SA with partial evaluation of the
cost function is robust. A similar algorithm was also applied to the anisotropic domain [34].
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Table 5. Results of tests for the two arrangements. The final cost and the total number of cost
function evaluations.

Arrangement Cost Total Iteration

Linear arrangement 28.02 1,876,819
Triangular arrangement 19.71 1,930,430

5. SA Applied to Aircraft Design

The proposed SA approach can be used for various engineering design problems. Con-
sidering the nature of any engineering design problem, it is important to have a systematic
method in place to control the sequence of design tasks and define the work transfer among
various design stages [47]. The work transfer requirement will also be used to define the
objective functions and the corresponding optimization parameters. Examples of these
structured design procedures can be seen in the design of the handling mechanism in a
racing car [48], with the design of curved structures for optimum vibrational properties [49].
Various engineering requirements including the consideration of manufacturing limitations
can be introduced to the problem as optimization constraints [50,51]. The SAE organizes an
annual Aero Design competition in which engineering students are challenged to design
and manufacture a radio-controlled aircraft [52]. The main goal of this competition is to
develop the lightest aircraft that lifts the largest possible load. Designs are required to
follow a set of constraints such as a maximum allowable dimensional sum, specific motor
and manufacturing materials, and runway length.

The score is determined through a list of factors such as reliability (an accepted accu-
racy curve shows the maximum payload given the temperature and pressure statistics),
total load (the sum of the aircraft weight and payload), and structural efficiency (ratio
between payload and self-weight). During the conceptual design phase, participants define
significant characteristics of their design. However, it is very difficult to determine a possi-
ble geometric design in the initial phase due to the large number of possible configurations.
This work uses SA with the crystallization heuristic to search for the aircraft geometry that
would have the highest score. Aircraft geometry is parameterized according to the the
design characteristics and subsequently optimized to carry the largest load while being as
light as possible and following the rules of the competition.

5.1. Aircraft Design Evaluation Process

Applying SA to the optimization of aircraft design requires a method for evaluating
prospective designs that can be applied at each iteration of the algorithm [53]. In this
case, the design must be validated according to the competition rules and a given score.
The competition outlines several constraints for the design, and a violation of any one of
these constraints invalidates it. As such, only designs that meet all the requirements can
be given a score. The constraints are checked in the order outlined in Figure 8 and are
described as follows:

• Dimensional constraint: The sum of the height, width, and length must be below the
upper limit;

• Aerodynamic evaluation: This depends on the wing and tail geometry;
• Stability evaluation: The approximate weight of the aircraft is determined using the

material density and the volume of the stringer;
• Motor placement: The motor must be more than 8 cm from the fuselage;
• Structural evaluation: All mechanical stresses are evaluated.

Once the design is validated, it is given a score based on its maximum load, which is
estimated from the geometry and the runway length as set by the regulations.

The design must also be parameterized for the algorithm to be applicable. The para
metrization scheme consists of 23 parameters (19 continuous variables and 4 discrete
variables). Such parametrization is sufficient to calculate the aerodynamic coefficients in
the aerodynamic evaluation as well as to estimate the score.
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Choose new configuration

Dimensional constraint

Aerodynamic evaluation

Stability verification

Structural verification

Score determination

Failure

Failure

Failure

Failure

Figure 8. Flowchart of constraint verification. Starting from a candidate (the new configuration),
different constraints are verified in sequence. If any constraint is not satisfied, a new candidate
is selected.

5.2. Results and Discussion

SA with crystallization heuristics was used to optimize three aircraft designs with
three different positive feedback strategies: I, II, and III (see Table 1). Strategy I performs
the positive feedback with a small decrement, focusing on refining the solution. However,
if SA stays in a local minima at lower temperature, it will be very difficult to escape from it.
Strategy III focuses on exploring the solution space, allowing an easy escape from local
minima. Strategy II has a balance between refinement and exploration. The crystallization
factor evolution, the acceptance and rejection ratios, as well as the best aircraft for each
feedback strategy are shown with respect to the five parameters.

Through the optimization process, five parameters showed the largest variations: AA
(projected superior area of the wing), DHBA (horizontal distance between leading edges),
CF (fuselage chord), A1 (percentage of wingspan designated to Section 1), and TS1 (taper
ratio of Section 1). Figure 9 shows a representation of an aircraft and these five parameters.
Notice that the yellow region of the wing is defined as Section 1, and the blue region is
defined as Section 2.

Section 2

Section 1

C
F

D
H

B
A

Figure 9. Schematic representation of the airplane. A set of parameters is shown: CF (fuselage
chord), DHBA (horizontal distance between leading edges), and Section 1 (percentage of wingspan
represented as A1, and tapper ration represented as TS1).

Figure 10 shows the crystallization factor evolution for each positive feedback strategy.
Figure 10a shows the expected behavior for the crystallization factors. At higher tempera-
tures, the crystallization factor is small and SA performs exploration. The crystallization
factor grows gradually; at lower temperatures, SA performs refinement. However, each
parameter might have different sensibilities and, consequently, different crystallization
factors. Figure 10b shows the positive feedback strategy II, and the crystallization factors
of parameters TS1 and CF do not increase as much as the other three parameters. When



Appl. Sci. 2021, 11, 11814 17 of 21

compared to strategy I, these two parameters stay in an exploratory phase during the
complete algorithm. Figure 10c shows the positive feedback strategy III and shows a
considerable variation at the end of the refinement phase. Notice the difference between
the crystallization factors: while the positive feedback strategies I and III reached higher
values at the end of convergence (more than 600 in the first method), the positive feedback
strategy II barely reached 150.
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Figure 10. Crystallization factor evolution according the three positive feedback strategies. (a) En-
hancing the refinement. (b) Good balance between refinement and exploration. (c) Enhancing the
exploration.
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Figure 11. Accepted solutions ratio for each parameter is shown for all the three positive feed-
back strategies. (a) The refinement is enhanced. (b) There is a balance between refinement and
exploration. (c) The exploration is enhanced.

ratio decreases with the temperature. The SA reaches the frozen state when no new
candidate is accepted. There is a difference between the positive feedback strategies at
lower temperatures. Fig. 11(a) shows a small variation of the acceptance ratios at lower
temperatures. Fig. 11(b) shows the smallest acceptance ratio among the three positive
feedback strategies. Fig. 11(c) shows a large variation in the acceptance ratios. Each
parameter might have its own appropriate positive feedback strategy.

Figure 12 shows the total number of accepted solutions. As expected, the number of
accepted solutions decreases as the temperature decreases. It is not possible to observe
differences between the positive feedback strategies. Figs. 13 shows the population
dispersion for each positive feedback strategy considering only two intermediary pa-
rameters: 1. dimensional sum, and 2. payload. The dimensional sum is the summation
of the three maximum dimensions in the three axes: x, y and z. The dimensional sum
has an associated design constraint: the “dimensional constraint”. It cannot be larger
than a specific value defined by the competition. By observing the graphs, one might
realize that the larger the dimensional sum, the higher the payload. Fig. 13(a) shows the
largest concentration of solutions at the higher payload. Fig. 13(b) shows an intermediary
exploration. Fig. 13(c) a higher exploration of the full domain. One possible heuristic

Figure 10. Crystallization factor evolution according the three positive feedback strategies. (a) En-
hancing the refinement. (b) Good balance between refinement and exploration. (c) Enhancing
the exploration.

Figure 11 shows the acceptance ratio for each positive feedback strategy—the accep-
tance ratio is the ratio between the number of accepted candidates and the total number of
candidates. If the ratio is equal to 1.0, this means that all candidates were accepted. The
ratio is calculated separately for each parameter. As previously shown, it is necessary to
increase the number of accepted candidates as much as possible. Usually, the acceptance
ratio decreases with the temperature. SA reaches a frozen state when no new candidate is
accepted. There is a difference between the positive feedback strategies at lower tempera-
tures. Figure 11a shows a small variation of the acceptance ratios at lower temperatures.
Figure 11b shows the smallest acceptance ratio among the three positive feedback strategies.
Figure 11c shows a large variation in the acceptance ratios. Each parameter might have its
own appropriate positive feedback strategy.

Figure 12 shows the total number of accepted solutions. As expected, the number of
accepted solutions decreases as the temperature decreases. It is not possible to observe
differences between the positive feedback strategies. Figure 13 shows the population dis-
persion for each positive feedback strategy considering only two intermediary parameters:
(1) dimensional sum and (2) payload. The dimensional sum is the summation of the three
maximum dimensions in the three axes x, y, and z. The dimensional sum has an associated
design constraint: the “dimensional constraint”. It cannot be larger than a specific value
defined by the competition. By observing the graphs, it can be seen that the larger the
dimensional sum, the higher the payload. Figure 13a shows the largest concentration of
solutions at the higher payload. Figure 13b shows an intermediary exploration. Figure 13c
a higher exploration of the full domain. One possible heuristic that can be deduced from
these results is to always keep the maximum dimensional sum.
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Figure 11. Accepted solutions ratio for each parameter is shown for all the three positive feed-
back strategies. (a) The refinement is enhanced. (b) There is a balance between refinement and
exploration. (c) The exploration is enhanced.

ratio decreases with the temperature. The SA reaches the frozen state when no new
candidate is accepted. There is a difference between the positive feedback strategies at
lower temperatures. Fig. 11(a) shows a small variation of the acceptance ratios at lower
temperatures. Fig. 11(b) shows the smallest acceptance ratio among the three positive
feedback strategies. Fig. 11(c) shows a large variation in the acceptance ratios. Each
parameter might have its own appropriate positive feedback strategy.

Figure 12 shows the total number of accepted solutions. As expected, the number of
accepted solutions decreases as the temperature decreases. It is not possible to observe
differences between the positive feedback strategies. Figs. 13 shows the population
dispersion for each positive feedback strategy considering only two intermediary pa-
rameters: 1. dimensional sum, and 2. payload. The dimensional sum is the summation
of the three maximum dimensions in the three axes: x, y and z. The dimensional sum
has an associated design constraint: the “dimensional constraint”. It cannot be larger
than a specific value defined by the competition. By observing the graphs, one might
realize that the larger the dimensional sum, the higher the payload. Fig. 13(a) shows the
largest concentration of solutions at the higher payload. Fig. 13(b) shows an intermediary
exploration. Fig. 13(c) a higher exploration of the full domain. One possible heuristic

Figure 11. The accepted solution ratio for each parameter is shown for all the three positive feedback
strategies. (a) The refinement is enhanced. (b) There is a balance between refinement and exploration.
(c) The exploration is enhanced.
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Figure 13. The influence of some intermediary parameters with the final score: the dimensional
sum, and payload. The score is colored represented.

The x and y dimensions can be freely decided, but the z dimension is determined
based on a new rule. The z dimension must be the maximum dimensional sum reduced
by the x and y dimensions. Using this empirical rule, the optimization will search in a
domain with higher scores and it will be faster (as one constraint is always satisfied by
construction).

Figs. 14 shows the best aircraft for each positive feedback strategy. The aircraft from
positive feedback strategies I and III are similar, while the aircraft from positive feedback
II is different than the others. It must be considered that strategies I and II reached the
highest scores and strategies I and III reached similar designs.

6. Conclusions

This paper discusses the advantages and significance of using SA algorithm with
crystallization heuristic to solve different problems. Crystallization heuristic represents
the sensibility of parameters represented by a real number. The crystallization heuristic
ensures the escape from local minima even at lower temperatures. This is a key factor
in solving highly nonlinear objective functions that can be seen in many engineering
design and manufacturing problems. The proposed SA with crystallization was applied
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Figure 14. Best aircraft design obtained from each positive feedback strategy.

Figure 13. The influence of some intermediary parameters with the final score: the dimensional sum
and payload. The score is represented in colors. (a) Strategy I, (b) Strategy II, (c) Strategy III.

The x and y dimensions can be freely decided, but the z dimension is determined
based on a new rule. The z dimension must be the maximum dimensional sum reduced
by the x and y dimensions. Using this empirical rule, the optimization will search in a
domain with higher scores, and this will be faster (as one constraint is always satisfied
by construction).

Figure 14 shows the best aircraft for each positive feedback strategy. The aircrafts from
positive feedback strategies I and III are similar, while the aircraft from positive feedback II
is different than the others. It can be seen that strategies I and II reached the highest scores
and strategies I and III reached similar designs.
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by the x and y dimensions. Using this empirical rule, the optimization will search in a
domain with higher scores and it will be faster (as one constraint is always satisfied by
construction).

Figs. 14 shows the best aircraft for each positive feedback strategy. The aircraft from
positive feedback strategies I and III are similar, while the aircraft from positive feedback
II is different than the others. It must be considered that strategies I and II reached the
highest scores and strategies I and III reached similar designs.

6. Conclusions

This paper discusses the advantages and significance of using SA algorithm with
crystallization heuristic to solve different problems. Crystallization heuristic represents
the sensibility of parameters represented by a real number. The crystallization heuristic
ensures the escape from local minima even at lower temperatures. This is a key factor
in solving highly nonlinear objective functions that can be seen in many engineering
design and manufacturing problems. The proposed SA with crystallization was applied
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Figure 14. Best aircraft design obtained from each positive feedback strategy.Figure 14. Best aircraft design obtained from each positive feedback strategy. (a) Strategy I, (b) Strat-
egy II, (c) Strategy III.

6. Conclusions

This paper discusses the advantages and significance of using the SA algorithm with
the crystallization heuristic to solve different problems. The crystallization heuristic rep-
resents the sensibility of parameters represented by a real number. The crystallization
heuristic ensures the escape from local minima even at lower temperatures. This is a key
factor for solving highly nonlinear objective functions that can be seen in many engineering
design and manufacturing problems. The proposed SA with crystallization approach
was applied to several benchmark problems from the literature, characterizing its per-
formance. SA has two main phases of exploration and refinement. Different strategies
for implementing the positive feedback are shown, and their connection with the two
SA phases is also displayed. Exploration even at lower temperatures is emphasized as a
strategy. Two engineering designs have been addressed in this paper as case studies that
can be solved properly using the proposed methodology. The first application case study
presented the design of an Electrical Impedance Tomography system. This implemented
the partial evaluation of the cost function, returning an interval in which the precise result
was contained. The interval SA with crystallization heuristic approach converged with a
smaller number of conjugated gradient iterations (only near 3% of the required iterations
were performed). The second case study was part of an aircraft design, which resulted in
an optimization with constraints.
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