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Abstract: Computational color constancy (CCC) is a fundamental prerequisite for many computer
vision tasks. The key of CCC is to estimate illuminant color so that the image of a scene under
varying illumination can be normalized to an image under the canonical illumination. As a type of
solution, combination algorithms generally try to reach better illuminant estimation by weighting
other unitary algorithms for a given image. However, due to the diversity of image features, applying
the same weighting combination strategy to different images might result in unsound illuminant
estimation. To address this problem, this study provides an effective option. A two-step strategy is
first employed to cluster the training images, then for each cluster, ANFIS (adaptive neuro-network
fuzzy inference system) models are effectively trained to map image features to illuminant color.
While giving a test image, the fuzzy weights measuring what degrees the image belonging to each
cluster are calculated, thus a reliable illuminant estimation will be obtained by weighting all ANFIS
predictions. The proposed method allows illuminant estimation to be dynamic combinations of
initial illumination estimates from some unitary algorithms, relying on the powerful learning and
reasoning capabilities of ANFIS. Extensive experiments on typical benchmark datasets demonstrate
the effectiveness of the proposed approach. In addition, although there is an initial observation that
some learning-based methods outperform even the most carefully designed and tested combinations
of statistical and fuzzy inference systems, the proposed method is good practice for illuminant
estimation considering fuzzy inference eases to implement in imaging signal processors with if-then
rules and low computation efforts.

Keywords: color constancy; illumination estimation; adaptive neuro-network fuzzy inference system
(ANFIS); clustering; image enhancement

1. Introduction

The human vision system has the instinctive ability to perceive true color even under
some specific imaging conditions and scene illumination. This “color constancy” capability
for computer systems is becoming more and more necessary due to a wide range of
computer vision applications [1,2]. Unfortunately, without specific algorithms, computers
and imaging sensors in modern digital cameras do not innately possess this capability. To
address this issue, a variety of computational color constancy (CCC) algorithms have been
proposed, aiming to endow computers with super power to compensate for the effect of
the illumination on objects’ color perception.

Generally, CCC works with two steps: first obtaining an estimate of illuminant color,
and then correcting color deviations by multiplying the reciprocal of the illuminant color
to the color-biased image [1–3]. The first step, i.e., illuminant estimation, is the key.

To date, there are many approaches proposed by various researchers to solve the
illuminant estimation issue. These methods can be roughly categorized into three groups:
statistics-based, learning-based, and combinational. Statistics-based methods are based on
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some statistical features that are kept consistent in the image captured under canonical light
conditions, e.g., Gray world (GW) [4,5], White patch (WP) [6], Shades of gray (SoG) [7],
Gray edge (GE) [8], etc. Learning-based algorithms have a learning phase and use various
image information, normally low-level image features, to pre-train models to estimate the il-
luminant color, e.g., natural image statistics [9], classification-based algorithm selection [10],
deep learning based methods [11–16], etc. The first two types of algorithms, called unitary
algorithms, use a single strategy, and usually can not balance among implementation
cost, computation efforts, and algorithm complexity. In contrast, the third group, called
combination methods, may use multiple unitary strategies to estimate initial illumination
and then combine the resulting estimates in some way to form a robust estimate [17].

Combination methods try to reach better results by weighting other algorithms or
selecting the best algorithm for a given image [18,19]. In weighting combination related
methods, the weights for the combination of unitary algorithms might be static or dynamic.
Due to the difficulty to finding static parameters to efficiently combine a wide range of
real-world images, dynamic weights are normally introduced to fit the changes in various
image features. Nevertheless, it is also hard to formulate dynamic weighting schemes to
combine unitary algorithms [19,20]. Alternatively, an available option is to first classify a
test image into a certain class using a pre-trained multi-class classifier and then determine
appropriate unitary algorithms to estimate illumination. However, in most attempts, the
image classification accuracy is not satisfactory [19], although many different schemes are
designed [18,21,22].

In this paper, leveraging the powerful computation, learning, and inference abilities
of ANFIS (adaptive neuro-network fuzzy inference system), we propose an ANFIS based
multiple model approach for illuminant estimation. The contributions of this work are
as follows. (1) A two-step clustering strategy is developed to group the training dataset,
the first step based on color distribution features, the second based on initial illumination
estimates from unitary algorithms. This conduction will result in better clustering division
that fits for illuminant estimation modeling. (2) Multiple ANFIS model structures are
effectively used to regress the underlying relationship between initial illuminant estimates
and illuminant color, which can automatically learn model parameters and significantly
improve the estimation performance. (3) With adaptive weight computations, we provide
a general method to weight all predictive outputs from ANFIS models.

The rest of the paper is organized as follows. The related works are discussed in
Section 2. The proposed framework is presented in Section 3, in which feature extraction,
image clustering, ANFIS modeling, and illuminant estimation are exploited in details.
Afterwards, in Section 4 we validate our proposed method with some experimental results
and give some further discussions. Finally, we conclude the work in Section 5.

2. Related Works

In this section, we give a brief introduction to statistics-based and combination meth-
ods, since our proposed method is mainly with respect to both of them.

Statistics based methods. These algorithms directly compute some statistical measures
of the input image to estimate illuminant color without complicated computational effort,
although sometimes the accuracy cannot be assured. Most of these algorithms can be
unified into a GE framework developed by Weijer et al. [23], which includes higher-order
derivatives and the Minkowski family norm given as:

(
∫
∣∣∣∣∂nfσ(x)

∂xn

∣∣∣∣pdx
) 1

p

= ken,p,σ, (1)

Here fσ = f⊗Gσ denotes convolution of the image with a norm value, k is a scaling,
and en,p,σ is the resulting illuminant estimate. The methods defined by different choices
of the parameters n, p and σ are denoted as GEn,p,σ, where the optimal values of these
parameters may vary with different datasets. Some assumptions based algorithms are
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special instantiations of this framework [18,20,23,24], WP and GW also being included:
(1) GW (GE0,1,0); (2) WP (GE0,∞,0); (3) SoG (GE0,6,0); (4) 1-order gray edge (GE1) (GE1,1,6);
(5) 2-order gray edge (GE2) (GE2,1,5); (6) General gray world (GGW) (GE0,13,2).

The other examples of statistics based methods include bright-and-dark color PCA
(PCA-based) and local surface reflection (LSR) methods. The PCA-based method proposed
by Cheng and Brown [25] selects the color points with largest and smallest projections on
the mean chromaticity, and then calculates its first PCA vector as the illuminant estimation.
This method is fairly efficient and easy to compute. Gao et al. [26] found that the ratio
of the global summation of true surface reflectance to the global summation of locally
normalized reflectance estimate in a scene is approximately achromatic for both indoor and
outdoor scenes. Based on this substantial observation, LSR illuminant estimation model is
developed which has only one free parameter and requires no explicit training process.

Combination methods. Let E = {e1, e2, · · · } be the set of the illumination estimates ob-
tained from some statistics or learning based unitary algorithms, then combination methods
are to combine the estimates e1,e2, · · · into a single, final estimate by corresponding weights
w1,w2, · · · . According to whether w1,w2, · · · are constant or not, combination methods
can be divided into two basic groups, i.e., static weight combination and dynamic weight
combination. Static weights commonly are not suitable for the diversity of image character-
istics; the related methods [18,27], like Simple Averaging, Nearest-N%, and Median, etc.,
can not obtain robust illuminant estimation. On the other hand, dynamic weights vary
with image features to guide the selection or combination of unitary estimates [10,11,18].
Various scene characteristics, including low-level properties (e.g., visual properties [10], 3D
geometry [28,29]), mid-level initial illumination estimates [30], high-level semantic content
(e.g., semantic likelihood [31], indoor/outdoor classification [9]), can be used to find the
best combination. Furthermore, the weights might be obtained by different algorithms,
such as machine learning [19,32–34], Fuzzy model [24], multi-objective optimization [20],
graph-based semi-supervised [30], or one without prior training [9,21]. In most combi-
nation methods, weight determination is usually accompanied by image classification
and training regression models for different classes in order to deal with a wide range of
image features [19]. It is a significant obstacle to reach better performances for combination
algorithms.

3. Proposed Method

Given an input image, that is in the linear RGB space of a camera after remov-
ing black level and saturation level, the proposed method is to estimate a 3D vector
as ˆ̀ = [ ˆ̀R, ˆ̀G, ˆ̀B]

T that represents the scene illuminant color for this image. An overview
of the proposed method is illustrated in Figure 1.

As shown in Figure 1, the training phase contains three major steps: feature extraction,
image clustering, and ANFIS modeling. By a two-step clustering strategy, training images
are classified into different clusters according to color distribution features (CDFs) and
initial illumination features (IIFs). Then multiple ANFIS models are effectively trained to
regress the underlying relationship between image features and illuminant. In the testing
phase, CDFs and IIFs will be extracted and the corresponding combination weights will be
calculated dynamically. The final illuminant estimation is obtained by fuzzy weighting all
outputs of ANFIS models.

3.1. Features Extraction
3.1.1. CDF Extraction

Since the color distribution is one of key spatial-domain information which is most
related to illuminant estimation, in this study we extract several types of CDFs from
an image.

Number of colors. The color number in an image can be used to indicate the color
range of the image. We use a number of colors, nc, for the re-quantized image with 6-bits
each channel [20] as the first component in the CDFs of the proposed approach.
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Figure 1. Overview of the training phase and the testing phase for the proposed approach.

Chromaticity features. Let R, G, and B be Red, Green, and Blue measurements of an
image pixel, the chromaticity values, r and g, are calculated as follows:{

r = R/(R + G + B)
g = G/(R + G + B)

(2)

We use four chromaticity features in the prior work [35] as follows.
Average color chromaticity is the chromaticity (ra, ga) of the average RGB value

(Ra, Ga, Ba), where:

Ca =
1
n

n

∑
i=1

Ci, C ∈ {R, G, B}, (3)

n is the pixel number in the image, and Ca is the channel average same with GW algorithm.
Brightest color chromaticity is the chromaticity (rb, gb) of the color (Rb, Gb, Bb) of the

pixel k which has the largest brightness value of (R + G + B), i.e.,:(
Rb, Gb, Bb

)
= (Rk, Gk, Bk), where k = arg max

i
(Ri + Gi + Bi). (4)

This differs from WP algorithm that treats each RGB channels independently.
Dominant chromaticity is the chromaticity (rd, gd) of the average RGB color (Rd, Gd, Bd)

of the pixels belonging to a histogram bin, which has the largest count:

Cd =
1
|Hk| ∑

j∈Hk

Cj, C ∈ {R, G, B}, where k = argmax
i
|Hi|, (5)

where Hm is the set of pixels in the m-th bin of the histogram.
Chromaticity mode in this study refers to the mode of the image color palette in chro-

maticity space. The color palette is generated by taking the average value of each bin in the
RGB histogram that includes more than a predefined threshold of pixels [35]. A threshold
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of 200 pixels per bin is set in this study, which yields a palette of approximately 300 colors
for a typical image. Each color in the palette is projected onto the normalized chromaticity
plane, and an efficient 2D kernel density estimation is performed. The mode (rm, gm) is
assigned to be the chromaticity with the highest density.

Color moments are some measures to characterize color distribution in an image.
If the color in an image follows a certain probability distribution, the moments of that
distribution can then be used as the features to identify that image based on color. Since
color information is mainly distributed in low-order moments, it is sufficient to use three
central moments to express the color distribution of the image, i.e., 1-order moments
(Mean), 2-order moments (Standard deviation), and 3-order moments (Skewness). Let
Ci, C ∈ {R, G, B} represent the color component of the i-th pixel of an image, and n
be the number of pixels in the image, then the three color moments can be defined as
follows respectively:

µC =
1
n

n

∑
i=1

Ci , (6)

σC = (
1
n

n

∑
i=1

(Ci − µC)
2)

1
2 , (7)

sC = (
1
n

n

∑
i=1

(Ci − µC)
3)

1
3 . (8)

Considering the image size, in this paper we evenly divide an image into 3× 3 sub-
blocks, and nine moments will be calculated for each sub-block. Therefore, the image is
characterized by 27 moments for each 3 color channels, i.e., in total 81 moments such as
ϕ1, ϕ2, · · · , ϕ81.

Thus, for an image I in a training dataset, we can obtain all above-mentioned CDFs of
this image and formulate them into a CDF vector as follows:

φ(I) = [λ1nc, λ2ra, λ2ga, λ2rb, λ2gb, λ2rd, λ2gd, λ2rm, λ2gm, λ3 ϕ1, λ3 ϕ2, · · · , λ3 ϕ81], (9)

where λi, i = 1, 2, 3, represents the influence factor for the corresponding CDF component.
Denoting the image number of the training dataset as N, a CDF matrix for the training
dataset is obtained as:

Φ =
[

φT(I1) φT(I2) · · · φT(IN)
]T . (10)

3.1.2. Dimensionality Reduction

In this study, Primary Component Analysis (PCA) algorithm is used for dimensionality
reduction. Applying PCA, the Φ matrix from Equation (10) is decomposed to determine a
set of loading vectors by singular decomposition [36]. Then the observations in Φ can be
projected into the lower dimensional score matrix, T, which is given as

T = Φ P, (11)

where P ∈ <m×q includes the loading vectors corresponding to the first q largest singular values.
Finally, the PCA feature vector for a given image I is computed as follows:

φ̄(I) = (φ(I)− b)P, (12)

where φ̄(I) ∈ <q contains q principal component (PC) coefficients, P = [p1, p2, · · · , pq],
pi ∈ <m, is the PC coefficient matrix computed by the singular value decomposition, and
b ∈ <m is the mean vector of Φ, b = mean(Φ). Here m = 90, and q can be manually set or
automatically chosen by the percent variability of principal components. As a result, the
CDFs of an image I can be represented by a compact vector φ̄(I) that consists of a small
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number of PC coefficients. Therefore, the compact CDF matrix for the training dataset will
be produced as:

Φ̄ =
[

φ̄T(I1) φ̄T(I2) · · · φ̄T(IN)
]T . (13)

3.1.3. IIF Extraction

For any image in the training dataset, the eight conventional unitary algorithms are
applied to get illuminant color vectors ei = [Ri, Gi, Bi]. Here the subscripts i = 1, 2, · · · , 8
represent the unitary algorithms described in Section 2, i.e., GW, WP, SoG, GE1, GE2, GGW,
PCA-based, and LSR, respectively. These methods are based on different principles to
estimate illumination; each method is suitable for some specific image types to achieve
better estimation accuracy, but might not be suitable for other image types. Commonly,
for a given image, different vectors ei have different values, and sometimes the differences
between two of them are significant. Thus we can consider ei as a certain metric under
corresponding hypothesis. For example, e1 = [R1, G1, B1] can be regarded as a metric under
the GW assumption. Consequently, we can construct an integrated IIF vector for an image
I as follows:

θ(I) = [γ(ei, ej)], i = 1, 2, · · · , 8, j = (i + 1), (i + 2), · · · , 8, (14)

where γ(ei, ej) is defined as Euclide distance between ei and ej in 3D color space.
Since we just consider illuminant color, rather than illumination intensity, we

take Equation (2) to compute the chromaticity (ri, gi) for the illuminant color vector
ei, i = 1, 2, · · · , 8. Alternatively, we may construct another type of integrated IIF vec-
tor for an image I as follows:

θ(I) = [r1, g1, r2, g2, r3, g3, r4, g4, r5, g5, r6, g6, r7, g7, r8, g8]. (15)

Denoting the image number in the training dataset as N, an IIF matrix for the training
dataset is obtained as follows:

Θ =
[

θT(I1) θT(I2) · · · θT(IN)
]T . (16)

3.2. Image Clustering

In this stage, a two-step clustering is conducted and all the training images are
effectively classified into a few small clusters. The clustering procedure uses k-means
algorithm, since this algorithm has straightforward implementation and fast convergence.

Clustering based on CDF. In the two-step strategy, the first step is to cluster the train-
ing data into k1 clusters based on CDFs of all training images. Usually, the cluster number
for k-means algorithm should be set in advance, or be searched by a certain optimal method
like PSO (particle swarm optimization). In this study, we empirically chose k1 through
many effective experiments on the training dataset. K-means algorithm is implemented
based on iteration procedure. The starting points are provided by initial estimates of some
centroids which are randomly selected from the dataset. The algorithm alternately iterates
between assigning data points and updating centroids. During the iteration, the data point
is assigned to its nearest centroid based on the squared Euclidean distance.

After the k-means clustering based on CDF, the observations of the data matrix Φ̄
obtained via Equation (13) are partitioned into k1 clusters, and the algorithm finally returns
an N-by-1 vector containing cluster indices of each observation. According to the cluster
indices, each image in the training dataset should fall into k1 subsets as follows:

Si = {Ii,1, Ii,2, · · · , Ii,ni}, i = 1, 2, · · · , k1, (17)

where ni is the number of images in cluster Si, and ∑k1
i=1 ni = N. It should be noted that

the value of ni maybe different for different clusters. Representing the cluster centroid of
Si as ci, i = 1, 2, · · · , k1, the CDF centroid set is obtained as Ccd f = {c1, c2, · · · , ck1}. The
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squared Euclidean distance between the CDF vector φ̄(I) of a given image and a cluster
centroid ci can be calculated, which will be used to measure what degree an image belongs
to cluster Si.

Clustering based on IIF. In the two-step clustering, the second step is to classify each
Si of the training data into some sub-clusters based on IIFs of all training images. For
simplicity, we divide each cluster Si into the same number of sub-clusters, denoted as k2. As
if the clustering is based on CDF, we use the k-means algorithm and still empirically chose
the cluster number k2 through many experiments (The optimal values of k1 and k2 should
be explored by testing experiments that will be discussed in Section 4.4). In each clustering
for Si, the starting points for iteration are randomly selected from the corresponding image
set of Si. However, during the iteration the data point is assigned to its nearest centroid
based on the cosine distance, not based on the squared Euclidean distance like in CDF
based clustering.

For cluster Si, an IIF matrix Θi is obtained as in Equation (16). Applying the k-means
algorithm, the observations of Θi are partitioned into k2 clusters. The algorithm returns a
k2-by-1 vector containing the cluster indices. According to the cluster indices, all images
in cluster Si are split into k2 subsets. This results in that the total cluster number for all
training images equals k1 · k2. Finally, for the entire training dataset, there are k1 · k2 clusters
as follows:

SSij = {Iij,1, Iij,2, · · · , Iij,nij}, i = 1, 2, · · · , k1, j = 1, 2, · · · , k2, (18)

where nij is the number of images in cluster SSij, and ∑k1
i=1 ∑k2

j=1 nij = N. Representing
the cluster centroid of SSij as cij, the IIF centroid set is obtained as
Cii f = {cij, i = 1, 2, · · · , k1, j = 1, 2, · · · , k2}. The cosine distance between the IIF vec-
tor θ(I) of a given image and a cluster centroid cij can be obtained, which can be used to
measure what degree an image belongs to cluster SSij.

3.3. ANFIS Modeling

ANFIS is an integrated neuro-fuzzy modeling technique that embeds a Fuzzy Inference
System (FIS) into the framework of adaptive neural networks (ANN). Based on a set of
input-output pairs and the human reasoning process in the form of if-then rules, ANFIS
has been used to construct many practical models [24,37]. In this study, we apply this
method to combine the unitary algorithms to estimate illuminant color for a given image.

ANFIS structure. In ANFIS, Takagi–Sugeno–Kang (TSK) type of fuzzy logic is com-
monly used due to its computational efficiency, adaptive ability, and suitability for opti-
mization. What’s more, it can produce continuous output surfaces. For a TSK model with
n rules, we have:

Rule i : I f x1 is Li
1, x2 is Li

2, · · · , xn is Li
n, Then fi(X) = mi

0 + ∑n
k=1 mi

k, (19)

where i = 1, 2, · · · , n, Li
j denotes the linguistic labels (fuzzy sets) for j = 1, 2, · · · , n, mi

k
represents the adjustable consequent parameters determined during the training of the
model for k = 1, 2, · · · , n, and fi(X) is the output of the i-th rule. With the form of if-
then rules, ANFIS yet works in a similar way to a feedforward back-propagation type
ANN. Its FIS parameters are encoded and optimized as connection weights in ANNs. The
consequent parameters of defuzzification are identified using least square methods in the
forward pass, and the premise parameters are adjusted using the gradient descent method
in the backward pass. For more details, refer to [36,37].

Training ANFIS models. Since the total number of the clusters is k1 · k2 in this study,
we need to train the corresponding number of ANFIS models to capture the pattern in
every cluster to map IIFs to GTs (illuminant ground truths) respectively. The FIS selected
in this study is of TSK type with the subtractive clustering algorithm. We choose Gaussian
function for the input membership function, and linear function for the output membership
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function. Once we choose the suitable ANFIS settings, ANFIS models can be automatically
trained and model parameters will be obtained for predicting illuminant chromaticity
components r, g, and b.

Table 1 presents the specifications of the ANFIS models developed in this study. After
successful training, the parameters of each ANFIS model will be obtained, including the in-
put membership functions. Figure 2 shows an example for the input Gaussian membership
functions used by the three developed ANFIS networks after the training procedure.

Table 1. Specifications of the ANFIS models developed in this study.

Parameter ANFIS Settings

Initial FIS for training genfis
Number of clusters 4

Output membership function Linear
Number of outputs 1

Initial step size 0.01
Clustering type Subtractive Clustering

Input membership function Gaussian
Number of inputs 8~16

Training maximum epoch number 60

Figure 2. Examples of membership functions used by the ANFIS models developed for (a) estimation of r component,
(b) estimation of g component, and (c) estimation of b component. In these three models, the inputs are chromaticity values
of ri and gi (i = 1, 2, 3, 4) from the unitary algorithms: GW, WP, PCA-based, and LSR, respectively. The curves in cyan,
purple, yellow, and magenta indicate the membership values for the four cluster regions respectively, responding to the
number of clusters to be 4.

During model training, the sampling data fed to ij-th ANFIS model FISij are the pairs
of IIFs and GTs that are obtained from the images included in cluster SSij. In order to
reduce modeling complexity, we train three ANFIS models separately for each cluster, the
first for predicting rgt, the second for predicting ggt, and the third for predicting bgt, where
rgt, ggt, and bgt are the ground truth chromaticity components of the training images. Thus,
for each cluster SSij of the training dataset, we can get a model set which consists of three
ANFIS models as follows:

FISij = {FISr
ij, FISg

ij, FISb
ij}. (20)

3.4. Illuminant Estimation

In this stage, for a given image not included in the training set, its CDFs and IIFs
are extracted and the CDFs’ dimensionality is reduced by PCA algorithm; then using the
parameters obtained in the training phase, some combination weights are calculated; finally,
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the estimated illumination of the input image is obtained by weighting corresponding
ANFIS model outputs.

CDF and IIF extraction. Given an input image Iin, the CDF vector φ(Iin) is extracted
according to Equation (9). Using PC coefficient matrix P and the mean vector b from
the training phase, the compact CDF vector φ̄(Iin) is calculated as in Equation (12). In
the meantime, the eight unitary methods, i.e., GW, WP, SOG, GE1, GE2, GGW, PCA-
based, and LSR, are adopted to estimate illuminant color for the input image Iin. Then all
these estimates are normalized and formulated into an IIF vector, θ(Iin), as described in
Equation (15).

Weight computation. As we employ a two-step clustering strategy to group the
training images, an input image can be classified into a specific cluster accordingly by the
following two steps. First, we determine what degree this input image falls into cluster
Si by calculating the squared Euclidean distance dcd f between φ̄(Iin) and each cluster
centroid ci; then further on, we determine what degree this image falls into cluster SSij by
calculating the cosine distance dii f between θ(Iin) and each cluster centroid cij. Here the
choice for the squared Euclidean distance and the cosine distance is because both similarity
metrics are respectively used in the two-step clustering, as described in Section 3.2.

In this study, we do not absolutely put an input image into a certain cluster, but
determine all possibilities that an image belongs to every cluster. In order to measure what
degree an image belongs to a cluster, we define the possibilities based on the distances dcd f
and dii f .

Denoting dcd f ,i as the squared Euclidean distance from the CDFs of an input image Iin
to the cluster centroid ci, i = 1, 2, · · · , k1, the probability for the input image belonging to
cluster Si will be represented as a radial basis function:

ηi =
e−dcd f ,i

/
2σ2

1

k1
∑

l=1
e−dcd f ,l

/
2σ2

1

, i = 1, 2, · · · , k1, (21)

where σ1 is the radial fall-off factor. Using these probabilities, we construct a CDF weight
vector η as follows:

η = [η1, η2 · · · , ηk1 ], (22)

which will be used to weight different estimates from all ANFIS models of cluster Si.
Similarly, denoting dii f ,ij as the cosine distance from the IIFs of an input image Iin

to cluster centroid cij, i = 1, 2, · · · , k1, j = 1, 2, · · · , k2, the probability for the input im-
age belonging to cluster SSij, under the premise Iin ∈ Si, can be represented as a radial
basis function:

ωij =
e−dii f ,ij

/
2σ2

2

k2
∑

l=1
e−dii f ,il

/
2σ2

2

, i = 1, 2, · · · , k1, j = 1, 2, · · · , k2, (23)

where σ2 is the radial fall-off factor. Using these probabilities from Equation (23), we
construct an IIF weight matrix ω as follows:

ω =
[
ωij
]
, i = 1, 2, · · · , k1, j = 1, 2, · · · , k2, (24)

which will be used to weight different illumination estimates from all ANFIS models of
cluster SSij.

ANFIS prediction. We utilize the ANFIS models trained in Section 3.3 to inference
the illuminant color of an image. For cluster SSij, the corresponding ANFIS model set FISij



Appl. Sci. 2021, 11, 9936 10 of 21

as in (20) is used as an illuminant color predictor. By inputing the given image’s IIF vector,
θ(Iin), the predictor produces the illuminant estimation pij as follows:

pij = FISij(θ(Iin)), (25)

where FISij = {FISr
ij, FISg

ij, FISb
ij} includes three ANFIS models corresponding to the RGB

color components, and pij = {pr
ij, pg

ij, pb
ij} refers to the set of the predictive outputs from

FISr
ij, FISg

ij, and FISb
ij, respectively. Therefore, the final illuminant estimation is obtained

by weighting all ANFIS predictor outputs:

ˆ̀est = ∑k1
i=1 ∑k2

j=1 pijωijηi. (26)

4. Experimental Results and Analysis
4.1. Experimental Set-Up

Dataset. The proposed method needs a large number of training samples that cover a
wide range of color distributions and image illumination features. We use the Gehler-Shi
dataset [38] and the Cube+ dataset [15,39], as the two datasets contain modern images
indicative of real world images and illumination. The number of all original raw-RGB
images is 2275 in total. The training and testing procedure follows the standard 3-fold
cross validation commonly in the literature of illuminant estimation. To this end, the whole
image dataset is randomly split into three sets, and each time two sets are used for training
while the remaining set is used for testing. Parameters used for all experiments are selected
based on the first two sets and then are fixed for the third set.

Implementation details. Our MATLAB implementation, as we show in https://
github.com/yunhuiluo/AnfisIllest (accessed on 22 October 2021) , requires approximately
0.34 s computing the CDFs and IIFs for an image with 2601× 1732 pixels, 48 bits depth, and
PNG format in the training dataset. Once the dimensionality of the CDFs is reduced with
PCA, the illuminant estimation process takes an average of 0.65 s; this process includes
weight computation, ANFIS prediction, and the final blending output. All the reported
runtimes were computed on an Intel Core i5-2450M @ 2.50 GHz computer. Our method
requires 5.6 MB to store the PC coefficient matrix, CDF/IIF clustering centroids, ANFIS
model parameters, and other necessary settings, using single-precision floating-point
representation. For default experiments, unless clearly stated, we choose the cluster
numbers of k1 = 2, k2 = 2, and use the combination of Gehler-Shi and Cube+ as the
training and testing dataset. We set fall-off factors σ1 = σ2 = 0.25 for weight computation.
Due to every time k-means starts to iteration from random initial cluster centroids, the
results for every experiment with the same settings might be slightly different.

4.2. Quantitative Results

We followed the evaluation metrics used in most literature to compare each method’s
performance. The typical objective measures are based on the angular error (AE) [9,18].
AE is the angle in degrees between the illumination’s actual 3D-chromaticity ea and its
estimation ee, which is defined as:

γ(ea, ee) = cos−1(
ea · ee

‖ea‖‖ee‖
)× 180◦

π
. (27)

Since the AE is not normally distributed, the median value is used to evaluate the
statistical performance along with the trimean value: Trimean = (Q1 + 2Q2 + Q3)/4. The
trimean is the weighted average of the first, second, and third quantiles Q1, Q2, and Q3,
respectively.

We empirically compare our proposed method against a large number of existing
statistics based algorithms on the Gehler-Shi and Cube+ datasets. For each dataset, we
give a summary of the performance statistics that are available and always includes the

https://github.com/yunhuiluo/AnfisIllest
https://github.com/yunhuiluo/AnfisIllest
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state-of the-art results known to us. For completeness, we also compare our method with
the latest learning based methods for illuminant estimation. Tables 2 and 3 show the Mean,
Median, Trimean, Best 25%, and Worst 25% of AE values obtained by each method on the
Gehler-Shi dataset and the Cube+ dataset, respectively. The results of the proposed method
in Tables 2 and 3 are from the two separate experiments, where the Gehler-Shi dataset and
the Cube+ dataset were trained and tested separately.

From Table 2, we can see that on the Gehler-Shi dataset our method outperforms the
eight unitary algorithms, with Mean from 3.31 for LSR to 2.96 for ours, and Trimean from
2.87 for LSR to 2.14 for ours. The rate of performance improvement is near 10%. As shown
in Table 2, in all statistics based methods listed, there is only one method, CCATI [40], that
surpasses ours. Also, our method provides better results than using some learning based
methods, comparative with ExemplarCC [41], CNN-based method [42], and Simple feature
regression [35], except for Worst 25% is slightly big. In addition, it can be seen that both
Best 25% and Worst 25% of our method are smaller than those of most statistics based
methods listed. This indicates our method remains a better regression accuracy against the
diversity of image features. Based on ANFIS, the estimation models and fuzzy weights
developed by our method are robust and adaptive for a wide range of image features.

Table 2. Comparative statistical metrics between the proposed method and conventional methods with the Gehler-Shi
dataset (the lower, the better). Most results of previous methods are directly from [11,19,43,44] .

Methods Mean Median Trimean Best 25% Worst 25%

Statistics-based methods
White patch [6] 7.55 5.68 6.35 1.42 16.12
Gray world [4] 6.36 6.28 6.28 2.33 10.58

1st-order gray edge [8] 5.33 4.52 4.73 1.86 10.03
2st-order gray edge [8] 5.13 4.44 4.62 2.11 9.26

Shades of gray [7] 4.93 4.01 4.23 1.14 10.20
General gray world [8] 4.66 3.48 3.81 1.00 10.09

Bright-and-dark color PCA [35] 3.52 2.14 2.47 0.50 8.47
Local surface reflectance [26] 3.31 2.80 2.87 1.14 6.39

Proposed method 2.96 2.00 2.14 0.57 7.12
CCATI [40] 2.34 1.60 1.91 0.49 5.28

Learning-based methods
Edge-based Gamut [45] 6.52 5.04 5.43 1.90 13.58

Bayesian [46] 4.82 3.46 3.88 1.26 10.46
CART-based combination [10] 3.90 2.91 3.21 1.02 8.27

ExemplarCC [41] 2.89 2.27 2.42 0.82 5.97
CNN-based method [42] 2.75 1.99 2.14 0.74 6.05

Simple feature regression [35] 2.42 1.65 1.75 0.38 5.87
DS-Net [47] 2.24 1.46 1.68 0.48 6.08

Squeenze-FC [12] 2.23 1.57 1.72 0.47 5.51
AlexNet-FC [12] 2.12 1.53 1.64 0.48 4.78
Choi et al. [43] 2.09 1.42 1.60 0.35 4.65

From Table 3, we also have similar observations for the Cube+ dataset. All five
statistics of our method are very near the best values from Color Beaver (Gray world) [48].
This further validates the effectiveness of our method, as the Cube+ dataset contains 1707
images, bigger than the Gehler-Shi dataset of 568 images. Thus, on the whole our method
achieves competitive performances for using Gehler-shi and Cube+ datasets. It should
be noticed that our method does not provide the best estimation, but does provide the
performance close to the best. Although the proposed method can be further improved
and more experiments should be conducted on other benchmark datasets, we can obtain
an initial conclusion that some learning-based methods can outperform even the most
carefully designed and tested combinations of statistical and fuzzy inference systems. Even
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so, our method has a significant advantage in the fact that fuzzy models ease of encoding
into imaging signal processors.

Table 3. Comparative statistical metrics between the proposed method and conventional methods with the Cube+ dataset
(the lower, the better). Most results of previous methods are directly from [15].

Methods Mean Median Trimean Best 25% Worst 25%

White patch [6] 9.69 7.48 8.56 1.72 20.49
Gray world [4] 7.71 4.29 4.98 1.01 20.19

Using gray pixels [49] 6.65 3.26 3.95 0.68 18.75
Color Tiger [39] 3.91 2.05 2.53 0.98 10.00

Shades of gray [7] 2.59 1.73 1.93 0.46 6.19
2st-order gray edge [8] 2.50 1.59 1.78 0.48 6.08
1st-order gray edge [8] 2.41 1.52 1.72 0.45 5.89
General gray world [8] 2.38 1.43 1.66 0.35 6.01

Attention CNN [50] 2.05 1.32 1.53 0.42 4.84
Lighting classification deep learning [15] 1.86 1.27 1.39 0.42 4.31

Proposed method 1.69 1.12 1.24 0.31 4.06
Color Beaver (Gray world) [48] 1.49 0.77 0.98 0.21 3.94

We also implemented some cross dataset experiments to investigate the performances
of the proposed method: training with Gehler-Shi and Cube+ datasets combined into one
large set, and (1) testing on the Gehler-Shi dataset, or (2) testing on the Cube+ dataset;
(3) training on the Gehler-Shi dataset, and testing on the Cube+ dataset; (4) training on
the Cube+ dataset, and testing on the Gehler-Shi dataset. For experiment (1), we obtained
better results compared with ours in Table 2; and for experiment (2), similarly better results
compared with ours in Table 3. It is as expected; since the models in both experiments
were trained with more data and then can effectively cover a wider range of features.
But experiment (3) obtained slightly unsatisfied results; in contrast, experiment (4) just
achieved acceptable performances. What makes this significant could be that, compared
with the Gehler-Shi dataset, the Cube+ dataset has more diverse image scenes and more
extensive distribution of illuminations.

4.3. Qualitative Results

We provide some visual results for Gehler-Shi and Cube+ datasets, as shown in
Figures 3–7. For each input image, we show the ground truth, our estimated illuminant
color and resulting white-balanced image, and other estimated illuminant colors and
resulting white-balanced images using the unitary algorithms (GW, GGW, WP, GE1, GE2,
SOG, PCA-based, and LSR). In these figures, the color bars on the right side of images (a)
and (b) show the ground truth illuminant color. The color bar on the right side of images
(c)–(k) shows the illuminant color estimated by the corresponding method, respectively.
All images shown are rendered in sRGB color space.

In each one of Figures 3–7, the AE between the estimated illuminant color and the
ground truth is listed on the top of the resulting white-balanced image labelled from
(c) to (k). It can be seen that for a given input image, the AE using our method has a
value between the maximum and the minimum of all AEs using the unitary algorithms,
and generally near the minimum. For example, in Figure 3, the AE using our method is
0.66, which is below the maxium of 3.46 for GW and near the minimum of 0.16 for GGW.
Perhaps not surprisingly, since the proposed method is just based on a combination of
unitary algorithms through ANFIS techniques, the result of the proposed method might not
always be the best for a specific image. But from the view of entire dataset, the proposed
method can obtain superior performances against other unitary algorithms. Results in
Tables 2 and 3 have already illustrated this observation.
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Figure 3. Example results for indoor scene from the Gehler-Shi dataset: (a) input image; (b) ground truth; (c) ours; (d) GW;
(e) GGW; (f) WP; (g) GE1; (h) GE2; (i) SOG; (j) PCA-based; and (k) LSR, respectively. All images shown are rendered in
sRGB color space.

Figure 4. Example results for natural lighting scene taken from the Gehler-Shi dataset: (a) input image; (b) ground truth;
(c) ours; (d) GW; (e) GGW; (f) WP; (g) GE1; (h) GE2; (i) SOG; (j) PCA-based; and (k) LSR, respectively. All images shown
are rendered in sRGB color space.
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Figure 5. Example results for indoor scene taken from the Cube+ dataset: (a) input image; (b) ground truth; (c) ours; (d) GW;
(e) GGW; (f) WP; (g) GE1; (h) GE2; (i) SOG; (j) PCA-based; and (k) LSR, respectively. All images shown are rendered in
sRGB color space.

Figure 6. Example results for outdoor natural lighting scene taken from the Cube+ dataset: (a) input image; (b) ground
truth; (c) ours; (d) GW; (e) GGW; (f) WP; (g) GE1; (h) GE2; (i) SOG; (j) PCA-based; and (k) LSR, respectively. All images
shown are rendered in sRGB color space.
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Figure 7. Example results for outdoor artificial lighting scene taken from the Cube+ dataset: (a) input image; (b) ground
truth; (c) ours; (d) GW; (e) GGW; (f) WP; (g) GE1; (h) GE2; (i) SOG; (j) PCA-based; and (k) LSR, respectively. All images
shown are rendered in sRGB color space.

4.4. Discussion and Further Analysis

We conduct many experiments to exploit the performance potentials of our proposed
method. Besides cluster numbers, the factors influencing the performance of our proposal
include different combination of unitary algorithms, sparsity of weight matrix obtained, etc.

Different cluster numbers. In this study, we performed two steps of image clustering,
first CDF based, and then IIF based. Using k-means algorithm, the cluster number can be
manually changed in order to obtain better clustering results. The bigger cluster number
might make the trained model overfitting, but the smaller cluster number might make the
trained model inaccurate due to its limited feature coverage. We used different values of k1
and k2 so as to find the appropriate choices for the two-step clustering. Table 4 gives some
statistics for the results using different values of k1 and k2. Through these tests, we found
this two-step strategy is effective to group the training dataset, such that the images in the
same cluster might have similar features that will be conducive to ANFIS modeling.

It should be noted that in Table 4, we limit k1 · k2 into the range of [4, 24], as we find the
settings with the total cluster number falling into this range will result in better estimation
accuracy. We also can see from Table 4 that the two-step strategy with the choices of k1 = 2
and k2 = 2 produces the best estimation accuracy. Comparing the results using different k1
and k2, we find k1 = 2 and k2 = 2 are appropriate selections for our method on Gehler-Shi
and Cube+ datasets. In our testing, we just have a combined dataset including 2275 images.
Without doubt, if we use a larger image dataset, the number of k1k2 should increase for
better modeling performances. To be a good case in point, k-means algorithm in paper [51]
is used to cluster more than 20,000 images, where the cluster number is optimally set to be
about 70.

Different combination of unitary algorithms. By default, the proposed method uses
the combination of eight unitary algorithms (GW, WP, SoG, GE1, GE2, GGW, PCA-based,
and LSR), as we found for any image in our training dataset there are always some of these
algorithms providing better illuminant estimation results. Figure 8a gives the distribution
of the minimum AEs under these unitary algorithms for each image in Gehler-Shi and
Cube+ datasets. It can be seen that for most images, there is a unitary algorithm to estimate
illuminant color with AE being less than 3. This figure shows that if we use an appropriate,
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linear or nonlinear, combination of these unitary algorithms, it is possible to achieve better
accuracy of illumnation estimation.

To further exploit better combination relationships, we design several combinations
of these unitary algorithms to implement the proposed method. Some of them contain
less than eight unitary algorithms. The experimental results are shown in Table 5. The
results indicate that the configuration with the combination of GW, WP, PCA-based, and
LSR results in the best illuminant estimation accuracy. Figure 8b shows the minimum AE
distribution for each method versus minimum AE obtainable with this chosen combination.
It clearly shows the proposed method outperforms most of the eight unitary algorithms. It
should be noted that this optimal combination might be just applicable for our experiments
based on Gehler-Shi and Cube+ datasets. This experiment also indicates that seeking
optimal combination is necessary to improve performances for illuminant estimation.

Table 4. Statistical metrics on Gehler-Shi and Cube+ dataset with different cluster numbers (the
lower, the better).

Cluster Numbers
Mean Median Trimean Best 25% Worst 25%

k1 k2

2 2 1.94 1.29 1.43 0.36 4.63
2 3 2.08 1.36 1.50 0.36 5.07
2 4 2.16 1.35 1.51 0.36 5.40
2 6 2.50 1.43 1.63 0.38 6.51
3 2 2.19 1.31 1.47 0.36 5.60
3 4 2.39 1.48 1.65 0.37 6.05
3 6 2.79 1.60 1.79 0.43 7.30
4 2 2.26 1.34 1.52 0.36 5.78
4 4 2.65 1.50 1.69 0.39 6.99
4 6 3.08 1.69 1.96 0.42 8.16
6 2 2.47 1.41 1.60 0.38 6.41
6 4 3.04 1.70 1.97 0.44 8.01

Figure 8. Boxplot and plot of minimum AEs’ distribution: (a) the distribution of the minimum AE across the 8 methods, and
(b) the minimum AE distribution for each method versus minimum AE obtainable with chosen combination of methods.
The value near the box of each unitary algorithm indicates the number of the corresponding algorithm with minimum AE
across the 8 methods. It can be seen from the left subfigure that for most images there is at least one unitary algorithm to
estimate its illuminant color resulting in AE no more than 3. This right subfigure shows the minimum AEs of the proposed
method with the chosen combination outperforms most of the eight unitary algorithms, where No. of images 1~100 are the
first 100 images in the Gehler-Shi dataset, and No. of images 101~200 the first 100 images in the Cube+ dataset. Due to
limited length, we just show the results for 200 images.
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Table 5. Statistical metrics on Gehler-Shi and Cube+ datasets using different combination of unitary algorithms (the lower,
the better).

Combinations of Unitary Algorithms Mean Median Trimean Best 25% Worst 25%

GW, WP, SoG, GE1, GE2, GGW, PCA-based, LSR 2.20 1.46 1.60 0.40 5.31
GW, WP, SoG, GE1, GE2, GGW, PCA-based 2.32 1.50 1.67 0.45 5.62

GW, WP, SoG, GE1, GE2, GGW, LSR 2.21 1.47 1.62 0.40 5.33
GW, WP, SoG, GE1, GE2, GGW 2.27 1.50 1.68 0.44 5.44

GW, WP, SoG, GE1, PCA-based, LSR 2.07 1.36 1.50 0.39 5.00
GW, WP, SoG, GGW, PCA-based 2.20 1.42 1.58 0.38 5.39

GW, WP, SoG, GGW, LSR 2.12 1.38 1.53 0.39 5.16
GW, WP, SoG, GE1 2.19 1.43 1.60 0.41 5.29

GW, WP, GE2, GGW 2.15 1.46 1.62 0.42 5.12
Ours (GW, WP, PCA-based, LSR) 1.96 1.28 1.42 0.36 4.77

Using sparse weight matrix. In the proposed method, we use CDF weight vector η
and IIF weight matrix ω to measure what degree an image belongs to each cluster. We
can define an integrated weight matrix W = [wij], i = 1, 2, · · · , k1, j = 1, 2, · · · , k2, where
wij = ηi · ωij is the final weight for the ij-th ANFIS predictor. Since commonly there are
many elements in η and ω much less than 1 and very near to zero, i.e., the weights or
possibilities for an image belonging to some clusters are very low, we can set all these
elements’ values to zero and then recalculate the values of other elements. For simplicity,
we set a threshold ε for wij. If wij < ε, set wij = 0. W will become a sparse matrix W̄. To
assure the element summary of each row of W̄ to be 1, recalculate wij ≥ ε, i = 1, 2, · · · , k1,
j = 1, 2, · · · , k2, as below:

w̄ij =
wij

∑ wij∗
, (28)

where ∑ wij∗ represents the summary of all elements greater than ε in the i-th row of W.
We performed some experiments using the sparse weight matrix by setting ε between

[0.01, 0.25]. We find the results change towards slightly improvement along with the
increasing value of ε, and the best performance corresponds to ε = 0.25, as Table 6 shows.
By using the sparse weight matrix, we just need to weight a small number of outputs from
ANFIS models, and the computation effort will reduce much more.

Table 6. Statistical metrics on the Gehler-Shi and Cube+ datasets using sparse weight vector and
matrix (the lower, the better).

Threshold Setting Mean Median Trimean Best 25% Worst 25%

0.01 2.17 1.47 1.65 0.44 5.08
0.05 2.14 1.43 1.61 0.41 5.04
0.1 2.08 1.37 1.56 0.38 4.97

0.15 2.03 1.34 1.51 0.37 4.85
0.2 1.99 1.32 1.48 0.36 4.78

0.25 1.97 1.30 1.46 0.36 4.77

Comparison with one-step clustering. We also conduct experiments to validate the
effectiveness of our proposed two-step clustering strategy against the one-step clustering
method. In so-called one-step clustering, we keep k1 or k2 to be 1, and just change the value
of the other one. Table 7 lists some statistical metrics for the results under different k1 and
k2 values. In this table, Median and Trimean for k1 = 3 and k2 = 1, Best 25% for k1 = 4 and
k2 = 1, and Worst 25% for k1 = 1 and k2 = 2 are all lower than the counterparts for k1 = 2
and k2 = 2. But the case with k1 = 2 and k2 = 2 has the lowest Mean and almost the best
in the rest metrics. Moreover, we find that the values of Worst 25% will fluctuate with as
much as 1.11 degrees for k2 = 1. This implies that the illuminant estimation is not robust
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in this case. Therefore, we can say the proposed method using the two-step clustering
with k1 = 2 and k2 = 2 is better than using the one-step strategy. We suppose that since
CDFs and IIFs can be regarded as the representatives of different image characteristics,
separately applying CDF and IIF to cluster the images, i.e., using two steps, may result in
good performances.

Table 7. Comparative statistical metrics on Gehler-Shi and Cube+ dataset with the one-step clustering
and the proposed method (the lower, the better).

Cluster Numbers
Mean Median Trimean Best 25% Worst 25%

k1 k2

The one-step clustering
1 1 1.98 1.33 1.47 0.43 4.66
1 2 1.95 1.28 1.45 0.42 4.61
1 3 2.00 1.31 1.47 0.41 4.73
1 4 2.10 1.39 1.55 0.40 5.05
1 6 2.23 1.44 1.61 0.41 5.46
2 1 1.96 1.23 1.40 0.35 4.80
3 1 1.97 1.21 1.36 0.34 4.88
4 1 2.01 1.22 1.37 0.33 5.09
6 1 2.23 1.31 1.45 0.36 5.77

The proposed method
2 2 1.94 1.29 1.43 0.36 4.63

5. Conclusions

In this study, we propose an ANFIS based approach to illuminant estimation. It
allows illuminant estimation to be a fuzzy combination of multiple ANFIS predictions, in
which underlying relationship between initial illumination estimates from some unitary
algorithms and realistic illuminant color are accurately captured relying on the powerful
learning and reasoning capability of ANFIS. Extensive experiments on the commonly
used Gehler-Shi and Cube+ datasets demonstrate that our proposed method can obtain
competing performances compared to many state-of-the-art approaches.

Although we found that some learning-based methods might outperform even the
most carefully designed and tested combinations of statistical and fuzzy inference systems,
the proposed method is good practice to apply ANFIS for illuminant estimation considering
fuzzy inference in ANFIS eases to implement in imaging hardware with if-then rules and
low computation efforts. In addition, one of the proposed method’s significant advantages
is its extensibility to improve performances of illuminant estimation. When we have
acquired additional benchmark images with available illumination ground truths, our
provided framework can classify these incoming images and re-train the corresponding
ANFIS models. Furthermore, we can exploit more effective feature clustering strategy, or
seek optimal settings to train ANFIS models, after the training dataset is augmented with
more samples. Our future research will focus on these avenues to further improve the
performance of illuminant estimation.
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Abbreviations

CCC Computational Color Constancy
ANFIS Adaptive Neuro-network Fuzzy Inference System
GW Gray world
WP White patch
SoG Shades of gray
GE Gray edge
GGW General gray world
PCA Primary component analysis
LSR Local surface reflection
CDF Color Distribution Feature
IIF Initial Illumination Feature
FIS Fuzzy Inference System
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