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Featured Application: The proposed control strategy can be used to impose the closed-loop
system dynamics behaviour in flexible mechatronic systems in the presence of time delay, such as
robots where delay is introduced by sensors, actuators or communication networks, or systems
with inherent delay such as milling and cutting machines. The use of receptances remarkably
simplifies the controller design.

Abstract: This paper proposes a method for active vibration control to a two-link flexible robot
arm in the presence of time delay, by means of robust pole placement. The issue is of practical and
theoretical interest as time delay in vibration control can cause instability if not properly taken into
account in the controller design. The controller design is performed through the receptance method
to exactly assign a pair of pole and to achieve a given stability margin for ensuring robustness to
uncertainty. The desired stability margin is achieved by solving an optimization problem based on
the Nyquist stability criterion. The method is applied on a laboratory testbed that mimic a typical
flexible robotic system employed for pick-and-place applications. The linearization assumption
about an equilibrium configuration leads to the identification of the local receptances, holding for
infinitesimal displacements about it, and hence applying the proposed control design technique.
Nonlinear terms, due to the finite displacements, uncertainty, disturbances, and the coarse encoder
quantization, are effectively handled by embedding the robustness requirement into the design. The
experimental results, and the consistence with the numerical expectations, demonstrate the method
effectiveness and ease of application.

Keywords: receptance method; pole placement; robust control; active vibration control; flexible
systems; robotic arm; vibration suppression; Nyquist criterion; genetic algorithm

1. Introduction

The presence of time delay in controlled systems degrades the closed-loop perfor-
mance if it is not taken into account in the controller design, and in the worst case, might
lead to instability. For example, time delay is due to the physical and operational charac-
teristics of the system, e.g., due to friction [1,2] or due to nature of some manufacturing
processes as milling [3] or metal cutting [4]. Delays are also caused by the mechatronic
instrumentation employed in experimental real-time systems. In this case, the primary
sources of delays are sensors, actuators, and communication networks [5].

Over the years, the most eminent researchers tackled this problem through several
control solutions, for example, integer and fractional order PID control [6], model predictive
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control [7], Smith predictor [5,8,9], communication disturbance observer [10,11], sliding
mode control [12], and switching control [13].

A technique attracting an ever-growing interest for active vibration control of vi-
brating linear systems with time delay is pole placement, borrowed by the traditional
approaches for systems without time delay [14,15]. The seminal receptance method for
pole placement [16] has been extended in [17] accounting also for time delay. The extension
to partial pole placement requires that a subset of the system poles is assigned while the
remaining unassigned poles are kept unchanged with respect to the open-loop configura-
tion. This problem has been tackled in [18]. The same problem has been solved using the
system matrices instead of the measured receptances in [19] for the single input case and
later extended for multi-input control in [20].

The papers previously quoted require evaluating a posteriori the stability of the closed-
loop system. Recently, a two-stage method that embeds an a priori stability condition has
been developed by Belotti and Richiedei in [21]. It relies on the powerful theory of Linear
Matrix Inequalities (LMI) and ensures the placement of the dominant poles of interest while
imposing stability of the remaining unassigned poles, either those due to the mechanical
resonances and those induced by the time delay. This method uses both the measured
receptances to assign the dominant poles, and the system matrices, that are required by
the LMIs.

Inspired by the controller parametrization proposed in the paper of Belotti and
Richiedei, a method that only exploits the measured receptances has been proposed by
Araujo, Dantas, and Dorea in [22]. The state feedback control gains are computed to
assign the dominant poles and simultaneously impose the closed-loop system stability
and robustness through the generalized Nyquist criterion. Robustness is achieved using
the sensitivity function of the loop gain as an index and the problem is solved through a
genetic algorithm.

In this paper, such a method is experimentally applied to control a flexible robot arm
that mimics a typical system for pick-and-place applications. The arm flexibility is due to
the passive joint torsional spring, that is an approach commonly used to represent flexibility
of robots through a lumped model (see, e.g., the milestone paper in [23]). Time delays in
this kind of system usually arise due to the instrumentation employed for real-time control.
The proposed method is implemented by means of local linearization of the nonlinear
dynamic model of the flexible robot and nonlinearities, as well as other uncertainty sources,
are handled by imposing adequate robustness in the controller design.

2. Definitions

Let us consider a N-DOF (degree of freedom) linear, time-invariant, vibrating system.
Its mass, damping, and stiffness matrices are respectively denoted by M, C, K ∈ RN×N

and its equations of motion are therefore

Mq̈(t) + Cq̇(t) + Kq(t) = Bu(t), (1)

where q is the generalized displacement vector and q̇, q̈ ∈ RN its derivatives with respect
to the time t. B ∈ RN×NB is the force influence matrix and u ∈ R is the independent
external control force.

The rank-one control law for a regulation problem in the case of state feedback control,
and by assuming that delay affects the measurements, is defined as follows:

u(t) = fT ẋ(t− τf ) + gTx(t− τg), (2)

where f, g ∈ RN are the velocity and displacement gain vectors and τf and τg the re-
spective time delays. State references are omitted in Equation (2) since do not affect the
eigenstructure; their inclusion is, however, trivial.
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The closed-loop controlled system in the Laplace domain denoted by s is inferred
from Equation (1), leading to(

s2M + s
(

C− BfTe−sτf
)
+
(

K− BgTe−sτg
))

q(s) = 0, (3)

The left-hand side of Equation (3) is the transcendental characteristic equation of the
closed-loop system, Pc(s), whose i-th solution pi is the i-th closed-loop pole of the system.
If τf = τg = 0 then Pc(s) is a polynomial and therefore the system features 2N eigenpairs
that completely describe the system dynamics. Conversely, as studied in this paper, if the
time delays are not null, the characteristic equation has an infinite number of roots: 2N
roots are the “primary roots”, while an infinite number of “secondary roots” (often denoted
as the “latent roots”) arise [21,24].

3. Method Description
3.1. Placement of the Np Closed-Loop Poles

In this paper, the problem of robust pole placement in delayed systems with single-
input control is tackled: given a set of desired Np < 2N closed-loop poles, the goal is to
compute the control gain vectors f and g such that the poles are assigned at the prescribed
locations and the controlled system satisfy a certain robustness condition. Additionally,
it is assumed that the system matrices M, C and K are not available and therefore the
proposed method should just relies on the measured receptances. Indeed, the knowledge
of the system receptances suffices to describe the system properties without the need of
knowing the system matrices and therefore allows for designing the controller [16,22].

The open-loop receptance matrix of the system is defined as [16]

H(s) =
(

s2M + sC + K
)−1

, (4)

its generic pq-th entry hpq(s) is the transfer function from the force applied to the q-th
coordinate to the displacement of the p-th coordinate.

The closed-loop receptance matrix is simply inferred from Equation (3), leading to

H̃(s) =
(

s2M + s
(

C− BfTe−sτf
)
+
(

K− BgTe−sτg
))−1

. (5)

The application of the Sherman-Morrison formula [25] to Equation (5) yields [17]

H̃(s) = H(s) +
H(s)B

(
ge−sτg + sfe−sτf

)TH(s)

1−
(
ge−sτg + sfe−sτf

)TH(s)B
. (6)

The closed-loop poles are characterized by those complex values of s that set to zero
the denominator of Equation (6):

1−
(
ge−sτg + sfe−sτf

)TH(s)B = 0. (7)

The problem of finding the control gains f and g that assign the desired Np closed-loop
poles p̃1, ..., p̃Np can be written as follows [17,22]:

p̃1r1
Te− p̃1τf r1

Te− p̃1τg

p̃2r2
Te− p̃2τf r2

Te− p̃2τg

...
...

p̃Np rNp
Te− p̃Np τf rNp

Te− p̃Np τg


[

f
g

]
=


1
1
...
1

, (8)
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where ri = H( p̃i)B, with i = 1, ..., Np. The system can be formulated, with a more compact
notation as the usual form of a linear system, Gk = y, with obvious meaning of the
notation from Equation (8).

In the case of the complete assignment of the closed-loop poles, i.e., Np = 2N, if the
matrix on the left-hand side of Equation (8) is invertible, the solution of the linear system
is: k = G−1y. Therefore, the solution to the complete pole placement problem is unique.
Conversely, in the case of partial pole placement Np < 2N desired closed-loop poles are
assigned. In this scenario the linear system in Equation (8) has infinite solutions k.

In particular, if Np < 2N, the solution of Gk = y is

k = k0 + kh, (9)

where k0 is the particular solution of the non-homogeneous equation. While, kh is the
solution of the homogeneous equation Gkh = 0. Finally, the solution of Equation (8) is
more conveniently formulated as follows [21,26,27]:

k = k0 + Vkr, (10)

where V ∈ R2N×(2N−Np) is a matrix whose columns span the null space of G, i.e., V ∈
null(G), while kr ∈ R2N−Np is an arbitrary vector. Any choice of vector kr does not perturb
the assigned Np poles. Therefore, kr can be wisely chosen to accomplish secondary tasks,
such as assigning other poles, stabilizing the systems or obtaining the desired robustness.
In the following section a strategy to compute kr ensuring the desired robustness will
be discussed, by taking advantage of the receptance-based method proposed by Araujo,
Dantas, and Dorea in [22].

3.2. Introduction of the Robustness Condition

Due to the strong influence of time delays, satisfaction of Equations (7) and (8), does
not guarantee that the set of desired closed-loop poles p̃1, ..., p̃Np are “primary roots”.
The search for a solution with stability and performance/robustness certificate must be
carried out with focus on Equation (10). Frequency domain techniques can successfully
deal with rational and transcending transfer functions, including those resulting from
time delay in linear systems [28,29]. In particular, the Nyquist stability criterion [30], a
cornerstone of classical control theory, can be straightforwardly applied to the characteristic
Equation (7), in conjunction with the robustness margins approach [29,31] by taking the
loop-gain transfer function as

L(s) = −
(
ge−sτg + sfe−sτf

)TH(s)B. (11)

A search strategy based on the maximum peak of the sensitivity function (Ms) asso-
ciated with this loop-gain can offer a trade-off between robustness and performance for
the closed-loop controlled system [29]. As the system parameters are usually uncertain,
robustness is a significant issue in the controller design [32]. The peak Ms is related with
a disk with center in the critical abscissa of instability (−1, 0) and radius equal to M−1

s .
This disk establishes an acceptable distance from the Nyquist curve of L(s) from the point
(−1, 0). The Nyquist criterion states that, for an open-loop system with all poles on the
left half-plane, the closed-loop system will be stable if the Nyquist curve of L(s) does not
encircle the point (−1, 0). The larger the disk radius, the more robust the system is with
respect to perturbations on the nominal loop-gain L(s). Then, the design problem can
be formulated as that of computing the feedback gains of the parametrized family, kr in
Equation (7), with a simultaneous guarantee that the Nyquist curve of the loop-gain lies in
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a safe distance of M−1
s to the critical point. This problem can be approached through the

following minimization formulation:

min
kr

min
ωi

( ∣∣∣−(ge−jωiτg + jωife−jωiτf )TH(jωi)B + 1
∣∣∣−M−1

s

)2
(12)

s.t.
[

f
g

]
= k0 + Vkr

Re
{
−(ge−jωiτg + jωife−jωiτf )TH(jωi)B

}
≥ −1 + M−1

s ∀ ωi : Im{L(jωi)} = 0.

The second constraint in Equation (12) assures that every cross point on the real axis
lies on the right of the Ms disk, avoiding then encirclement of the critical point (−1, 0).
Notice that the frequency ωi must belong to a frequency range [ωmin, ωmax], suitable to
a representative Nyquist plot. This range can be, as an instance, the same used in the
experimental identification of the system receptance. Moreover, for underactuated systems,
only the partial information H(jω)B must be known to compute the gains.

3.3. Numerical Implementation Details

The objective function and the stability constraint in Equation (12) are hard to approach
with gradient-based methods. It is well known that genetic algorithm-based search (GA)
can be more accurate to solve optimization problems of moderate complexity, as non-
convex ones [33]. A GA implementation was developed, tailored to find a solution for
Equation (12).

Given the particular solution k0 and the null space basis V, the solution for the
optimization problem in Equation (12) is achieved by following some simple steps. First,
randomly define a set of kr vectors. Then, evaluate each one individual in this set for fitness
and constraints. The procedure is summarized in the flowchart displayed in Figure 1. In
the step devoted to update the population, functions to execute crossover and mutation
can be chosen and adjusted following the theory of Genetic Algorithms [34]. In the step
of individuals combination, first, it is ensured that the best rated individual in the actual
generation is saved for the next one. Furthermore, it is selected some possible solutions
to gives rise to a new population. Those are called parents, and they are chosen in a
draw where the best-rated individuals have a greater chance of being selected. Once the
parents are chosen, the combination is done, and this could be achieved using any kind
of crossover methods available in the GA theory. Finally, a percentage of individuals is
slightly randomly modified in the mutation process. In the test cases of the following
sections, GA was programmed for (i) a maximum number of generations of one-hundred
and (ii) a fitness function tolerance of 10−12.
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Figure 1. The flowchart of the numerical procedure to feedback gains design.

4. Test Case: A Two-Link Flexible Robot Arm
4.1. System Description

The proposed control strategy is applied to the two-link flexible robot arm shown in
Figure 2, already employed in [35] as a benchmark for vibration control.
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Figure 2. The two-link flexible robot arm and its kinematic scheme.

The system has two DOFs, described by the absolute rotations θ1 and θ2. The revolute
joint A is actuated through the torque Tm exerted by a DC motor. The revolute joint B is
passive with a torsional spring ks (made through two linear springs). The flexibility of the
robotic arm is mimicked by the linear torsional spring located at the passive joint, while
the links are rigid. This yields to an underactuated two-link robot arm with N = 2 and
NB = 1. All the relevant system parameters are defined in Table 1.

Table 1. System parameters.

System Parameters Units Values

ks
Nm
rad 0.1772

Jm kgm2 2.70 × 10−5

Jd kgm2 1.08 × 10−5

m1 kg 0.050
m2 kg 0.021
l1 m 0.170
l2 m 0.155
J1 kgm2 4.82 × 10−4

J2 kgm2 1.68 × 10−4

menc kg 0.100
mb kg 0.025
g m

s2 9.81
c11

Nms
rad 1.20 × 10−2

c12
Nms
rad 4.00 × 10−4

c21
Nms
rad 4.00 × 10−4

c22
Nms
rad 3.00 × 10−4

The link rotations are measured through two incremental encoders, with 500 pulses
per revolute. This low resolution perturbs the sensed displacements and the estimated
speeds, that are obtained through numerical derivatives, and therefore attention to the
robustness issue should be paid in the controller design.

The DC motor driving joint A has the moment of inertia Jm, to be summed to the
moment of inertia Jd of the coupling. The length of the first link, connected to joint A, is
l1, its mass m1 and the moment of inertia with respect to point A is J1. The length of the
second link, connected to joint B, is l2, its mass m2 and the moment of inertia with respect
to point B is J2. The mass menc of the second encoder together with the mounting bracket
mass mb should be accounted for as well, i.e., m2,eq = m2 + menc + mb.



Appl. Sci. 2021, 11, 9907 8 of 18

The nonlinear model of the system is obtained through the Lagrangian approach,
leading to the following equation of motion (g is the gravitational acceleration):[

Jm + Jd + J1 + m2,eql2
1

1
2 m2l1l2 cos(θ1 − θ2)

1
2 m2l1l2 cos(θ1 − θ2) J2

][
θ̈1
θ̈2

]
+

[ 1
2 m2l1l2 sin(θ1 − θ2)θ̇

2
2

− 1
2 m2l1l2 sin(θ1 − θ2)θ̇

2
1

]

+

[
c11 c12
c21 c22

][
θ̇1
θ̇2

]
+

[(
1
2 m1 + m2,eq

)
gl1 sin θ1

1
2 m2gl2 sin θ2

]
+

[
ks −ks
−ks ks

][
θ1
θ2

]
=

[
1
0

]
Tm,

(13)

In the presence of small displacements about an equilibrium configuration, the system
in Equation (13) can be locally linearized to apply the theory of linear control. Therefore, lo-
cal receptances can be experimentally identified to apply the theory proposed in this paper.
To show the features of the linearized model, although it is not used by the receptance-based
approach here proposed to controller design, the linearized model around the vertical
equilibrium position, i.e., θ1 = θ2 = 0, is described by the following matrices [35]:

M =

[
Jm + Jd + J1 + m2,eql2

1
1
2 m2l1l2

1
2 m2l1l2 J2

]
, C =

[
c11 c12
c21 c22

]
,

K =

[
ks +

(
1
2 m1 + m2,eq

)
gl1 −ks

−ks ks +
1
2 m2gl2

]
, B =

[
1
0

]
.

(14)

where C is the damping matrix.
The deviations between the nonlinear model and the linearized one, and thus between

the nonlinear model and the local receptances, that arise with finite link rotations about
the equilibrium, should be considered as uncertainty sources that the controller should
get rid through adequate robustness. Other perturbations affect the controller design: the
aforementioned low resolution of the encoders, errors, and uncertainty in the receptance
measurements, non-viscous friction terms, and some unpredictable dynamics that will be
discussed in Section 4.2.1.

In all the tests, both numerical and experimental, it is assumed that τf = 0.04 s and
τg = 0.05 s. These severe values are chosen by means of example to highlight some benefits
of the proposed method. The delays have been introduced in the real-time control scheme,
developed through Real Time Simulink (running with a sample time Ts = 1 ms).

Two different assignment tasks are performed to highlight different features of the
proposed method and then are experimentally applied to provide further evidences.

4.2. Numerical Assessment
4.2.1. Test Case 1: Increasing Damping of the Second Vibrational Mode

The state-feedback controller is designed such that the second pole pair is assigned
to −5.000± 38.177j, i.e., damping is increased to ξ3,4 = 0.130 while the damped natural
frequency is kept unchanged. The maximum peak of the sensitivity function is imposed to
Ms = 1.75 to ensure adequate robustness.

Pole placement is performed by computing the control gains k0 through the re-
ceptance method proposed in Section 3.1, leading to f0 = [−0.1346 − 0.0129]T and
g0 = [0.0060 − 0.0422]T . The closed-loop poles are computed through the collection
of Matlab functions released under the package DDE-Biftool [36] and are shown in
Figure 3. The dominant closed-loop poles are summarized in Table 2, while the latent
roots are omitted for brevity. The desired closed-loop poles are correctly assigned. Con-
versely, the closed-loop system Nyquist curve for the Loop Gain function L(jω) shown in
Figure 4 highlights that k0 does not satisfy the prescribed robustness condition, since the
Nyquist curve belongs to the Ms circle.
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Table 2. Test case 1: open-loop and closed-loop poles.

Open-Loop Poles Desired Poles Poles with k0 Poles with k

−1.197 ± 7.122j - −2.461 ± 36.167j −13.635 ± 11.480j
−1.037 ± 38.177j −5.000 ± 38.177j −5.000 ± 38.177j −5.000 ± 38.177j

Figure 3. Test case 1: closed-loop poles.

Figure 4. Test case 1: Nyquist curve of L(jω).

The prescribed robustness is, in contrast, achieved by the method described in
Section 3.2, that has led to the gain vector k = k0 + Vkr with f = [−0.0388 − 0.0071]T

and g = [0.2311 − 0.3180]T . The resulting closed-loop system features a Nyquist curve
that does not belong to the Ms circle for any complex value, as evidenced by Figure 4, and
the desired poles are correctly assigned.
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Note that neglecting the time delay in the synthesis of the controller, i.e., setting
τf = τg = 0 in Equation (8) and requiring the same two pairs of the primary closed-loop
poles obtained through k, leads to a control gain vector that destabilize the closed-loop
system if these gains are applied to the time delayed system, due to the primary roots
crossing the imaginary axis.

4.2.2. Test Case 2: Improving the Speed of Response

In the second example, the state feedback controller is tuned to modify the poles
associated to the first vibrational mode. It is wanted to simultaneously increase its damping
and its natural frequency, and hence the absolute values of both the real and the imaginary
parts, to speed up the transient response. By means of example, the pair of poles is assigned
to −10± 20j. Robustness is obtained by imposing Ms = 2.

The pole placement task is correctly satisfied through k0, with f0 = [−0.0883 0.0114]T

and g0 = [−0.0011 − 0.0098]T , obtained by solving Equation (8) through the pinv func-
tion. In this case, as corroborated by the closed-loop poles listed in Table 3 and shown in
Figure 5, the closed-loop system is unstable due to the spillover on the second pole pair
that lies in the right-hand half of the complex plane.

Figure 5. Test case 2: closed-loop poles.

Table 3. Test case 2: open-loop and closed-loop poles.

Open-Loop Poles Desired Poles Poles with k0 Poles with k

−1.197 ± 7.122j −10 ± 20j −10 ± 20j −10 ± 20j
−1.037 ± 38.177j - 1.370 ± 45.847j −3.930 ± 40.452j

The method proposed in this paper tackles this problem by leading to k, with f =

[−0.0641 − 0.0049]T and g = [0.0041 − 0.2466]T , that simultaneously satisfies the pole
placement requirement and stabilizes the closed-loop system additionally ensuring the
required robustness. The Nyquist curves of the loop gain L(jω) of the closed-loop systems
with k0 and k are shown in Figure 6 and clearly prove these aspects.
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Figure 6. Test case 2: Nyquist curve of L(jω).

4.3. Experimental Application
4.3.1. Application of the Controller of Test Case 1

The controller proposed in Section 4.2.1 is applied to the experimental two-link flexible
robot arm shown in Figure 2. An impulse-like torque disturbance is applied through the
DC motor, the experimental responses of the open-loop and closed-loop system with k are
shown in Figure 7 through the relative angle of the second link θr

2 = θ2 − θ1.

Figure 7. Test case 1: experimental impulse responses, relative angle of the second-link.

The modal parameters of the open-loop and closed-loop system are identified through
the modal f it function and compared with the expected numerical counterpart in Table 4,
where fn denotes the natural frequency and ξn the related damping ratio. Additionally, the
expected and experimental inertances for the open-loop and closed-loop system are shown
in Figure 8. The fulfillment of the assignment task is evidenced by the agreement between
the numerical data and the experimental measurements.
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Table 4. Test case 1: numerical and experimental modal parameters.

Open-Loop Mode 1 Mode 2

Modal Parameter Numerical Experimental Numerical Experimental

fn[Hz] 1.15 1.29 6.08 6.16
ξn 0.166 0.161 0.027 0.025

Closed-Loop

fn[Hz] 2.84 3.08 6.13 6.14
ξn 0.770 0.749 0.130 0.190

Figure 8. Test case 1: expected and experimental inertances.

The agreement between the numerical expectations and the actual experimental results
corroborates the controller robustness and its effectiveness to handle perturbations. Besides
the linearization and the unavoidable, although small, errors on the measured receptances,
the system is affected by the warp of the wire of encoder B that slightly perturbs the
system mass distribution during the motion and also the equilibrium configuration. This
effect is evident in Figure 9 where a train of pulses with different amplitudes is applied to
obtain different nonlinear effects due to the geometrical non-linearity of the system (see
Equation (13)). The motion of the wire causes slightly different equilibrium configurations
once the response settles. Nonetheless, the controller ensures stable, fast, and repeatable
vibration control, thus proving robustness.

If no adequate robustness in obtained, the nominally stabilizing controller might result
unstable or, at least, remarkably downgrade the actual performances. The robustness of
the controller synthesized through the proposed method, i.e., the one with gains k, is
even more evident if it is compared with the non-robust controller tuned through k0. The
experimental impulsive response of k0 is shown in Figure 10.
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Figure 9. Test case 1: experimental response to a train of impulses.

Figure 10. Test case 1: experimental impulse response with the non-robust controller k0.

The numerical and experimental responses of the open-loop and closed-loop systems
with k and k0 are compared in Figure 11. These provide a satisfying agreement for the
open-loop and closed-loop system with k, while in case of k0 the experimental results do
not match with the expected numerical results. It is evident that improving robustness is
mandatory to enable for practical applications with adequate and reliable performances.

Last, Figure 12 shows the application of the controller to a step-tracking problem, that
represents a typical pick-and-place task [37,38]. A sequence of step references to move
the end-effector to the target value xee = 0.1 m is applied. The state-feedback controller is
supported by a feedforward controller to compensate for gravity and friction and ensure
no (or negligible) steady state error. Such feedforward control, that is the same for both the
open and closed-loop schemes, consists of a square-wave, and does not affect the assigned
closed-loop system eigenstructure. The comparison of the time responses, by denoting Tr
the 10–90% rise time and the 2% settling time is Ts, shows that the controlled system fulfills
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the theoretical expectations. A faster response is exhibited (Tr = 0.186 s and Ts = 0.476 s)
with respect to the open loop system (Tr = 0.125 s and Ts = 1.490 s), with just a negligible
overshoot (4%, compared to the 75% of the open loop system).

Figure 11. Test case 1: comparison of the numerical and experimental open-loop and closed-loop
impulse responses.

Figure 12. Test case 1: experimental pick-and-place application.

4.3.2. Application of the Controller of Test Case 2

The controller designed in Section 4.2.2 is experimentally tested to assess its perfor-
mances and robustness. The response to an impulse-like excitation exert by the DC motor is
tested for the open-loop and the closed-loop systems with k0 and k. Figure 13 confirms that
the controller tuned by solving Equation (8) (i.e., k0) does not ensure asymptotic stability.
Although a divergent behaviour in the case of k0 was expected, θr

2 oscillates between two
bounded values due to the saturation of the exertable actuator torque (0.4Nm). In contrast,
k is stable, as expected, and ensures quick settling of the unwanted vibration. The natural
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frequency and damping of the closed-loop primary poles obtained with k are compared
with the expected numerical results in Table 5, and corroborate the correct fulfillment of
the assignment task.

Figure 13. Test case 2: experimental impulse response.

Table 5. Test case 2: closed-loop numerical and experimental modal parameters.

Mode 1 Mode 2

Modal Parameter Numerical Experimental Numerical Experimental

fn[Hz] 3.55 3.80 6.48 6.47
ξn[−] 0.440 0.375 0.097 0.093

The same controller is applied in the pick-and-place application discussed in Section 4.3.2.
The experimental open-loop and closed-loop responses of the system are shown in Figure 14.
The benefits of speeding up the first mode as done in test-case 2 (see Section 4.2.2) are
evident. The second controller enables to simultaneously reduce the rise time and the
settling time (Tr = 0.094 s and Ts = 0.458 s), with respect to both the open-loop and
closed-loop system when the controller tuned to tackle the second mode is employed (see
Sections 4.2.1 and 4.3.2).

Figure 14. Test case 2: experimental pick-and-place application.
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5. Conclusions

This paper provides the experimental application of the method proposed by Araujo,
Dantas, and Dorea for pole placement in flexible linear systems with time delay. The
method exploits state feedback control to perform the partial pole placement of the desired
system poles. The degrees of freedom in the choice of the control gains assigning such
dominant poles is the leverage to stabilize all the remaining poles, including the infinite
number of secondary roots due to the time delay, and to achieve the desired robustness of
the closed-loop system. Robustness is quantified through the sensitivity function of the loop
gain transfer function. The proposed technique exploits only the measured receptances,
i.e., the system matrices M, C and K are not needed to design the controller.

The effectiveness and usefulness of the proposed method is experimentally assessed
against a challenging nonlinear and uncertain two-link flexible robot arm, whose flexibility
arises due to the passive joint. Two controllers are tuned and experimentally applied to
show different features of the method. The effectiveness of both controllers is evaluated by
applying impulse disturbances as well a square wave reference (i.e., a sequence of steps)
mimicking a pick-and-place robotic application. In both cases, the experimental application
of the controllers provides excellent results and agreement with the expected numerical re-
sults. Besides effectively handling the severe time delays assumed, the imposed robustness
allows the controller to get rid of the unavoidable uncertainties, e.g., due to the warp of the
encoder wire, to the coarse encoder quantization, and to the nonlinear terms neglected in
the controller design.

Due to the effectiveness of the proposed approach together with its simplicity, as
a consequence of the use of the experimental receptances without the need of accurate
system model, it is well suited for more complicated delayed systems such as mechatronic
systems employed for manufacturing processes (see, e.g., in [3]), as well as robotic systems
performing remote-operations [39] or teleoperations [40].
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