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Abstract: Obesity or excessive body fat causes multiple health problems and diseases. However,
obesity treatment and control need an accurate determination of body fat percentage (BFP). The
existing methods for BFP estimation require several procedures, which reduces their cost-effectivity
and generalization. Therefore, developing cost-effective models for BFP estimation is vital for
obesity treatment. Machine learning models, particularly hybrid models, have a strong ability to
analyze challenging data and perform predictions by combining different characteristics of the
models. This study proposed a hybrid machine learning model based on support vector regression
and emotional artificial neural networks (SVR-EANNs) for accurate recent BFP prediction using a
primary BFP dataset. SVR was applied as a consistent attribute selection model on seven properties
and measurements, using the left-out sensitivity analysis, and the regression ability of the EANN
was considered in the prediction phase. The proposed model was compared to seven benchmark
machine learning models. The obtained results show that the proposed hybrid model (SVR-EANN)
outperformed other machine learning models by achieving superior results in the three considered
evaluation metrics. Furthermore, the proposed model suggested that abdominal circumference is a
significant factor in BFP prediction, while age has a minor effect.

Keywords: support vector regression; emotional artificial neural network; body fat percentage;
hybrid model

1. Introduction

Obesity is a public health problem worldwide [1]. Researchers predict that obesity
causes several major health issues, such as mood disorders, cardiovascular diseases, respi-
ratory ailments, and digestive issues [2]. In the medical, healthcare, and fitness sectors, a
person is determined as obese by calculating the person’s body mass index (BMI), which
considers the person’s body weight divided by body height square [3]. BMI is a beneficial
measurement, particularly for population-based screening. However, subgroups of obese
individuals with normal metabolic health but a higher body mass index or obese individu-
als with poor metabolic health but an average body mass index exist [4]. Therefore, BMI
might not capture people at a higher risk of cardio-metabolic disorders, such as type 2
diabetes and cardiovascular disease.

The lack of effective information from BMI changed researchers’ focus to body fat
percentage (BFP), which measures fat in the body and provides a more accurate assessment.
However, to criticize the amount of obesity and prevent it, it is critical to precisely assess
BFP. Several methods can accomplish the estimation of the BFP. Some approaches, such
as anthropometry models, consider the age, weight, waist circumference, and skinfold
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thickness of a person to make assumptions based on physics laws and mathematical
computations [5]. Other clinical approaches use special instruments to measure body
composition. However, models such as underwater weighing (UWW), dual-energy X-ray
absorptiometry (DEXA), bioelectrical impedance analysis (BIA), computed tomography
(CT), magnetic resonance imaging (MRI), and near-infrared interactome (NIR) are more
accurate and more expensive. Researchers who have studied the BIA instrument relied
heavily on body composition measurement and estimation of BFP throughout the last
few years [6]. However, the above-mentioned methods could produce ineffective esti-
mation either in terms of cost or inaccuracy. Therefore, researchers have begun to use
the capabilities of artificial intelligence (AI) and machine learning (ML) models to solve
a complex non-linear problem as a cost-effective and more accurate alternative for BFP
prediction. This led to the proposal of high-performance prediction models for BFP from
simple anthropometric measurements and basic information such as gender and age using
several machine learning models.

The most commonly and frequently used models for BFP prediction are artificial
neural networks (ANNs) and support vector regression (SVR), which can create non-linear
relations between the limited number of instances [7]. Kupusinac [1] employed an ANN to
predict the BFP, and they considered the age, gender, and BMI of the persons as instances for
the prediction of BFP in their study. In addition, Ferenci [8] explored how relevant features
are in predicting BFP in the presence of 39 anthropometric and laboratory measurements
using ANNs and SVR. It was concluded that waist circumference is the most associated
trait with a successful prediction of BFP. However, the uninterpretable data processing and
output prediction of ANNs prevented the determination of the importance and the impact
of relative input features in BFP prediction, even though considerable prediction results
were achieved.

Furthermore, Chiong et al. [9] presented an improved relative error support vector
machine to predict BFP. Their study considered two datasets: a body fat dataset [10] and 39
anthropometric and laboratory measurements of 852 observations. The proposed model
included a bias error control term, and their feature selection model was based on removing
irrelevant features. Even though the proposed model had high prediction ability for BFP
prediction and considered a large number of features, it still lacked interpretation of the
significant features that affect BFP prediction.

All these studies showed the ability of machine learning models, particularly the
ANN and SVR, to predict BFP using minimized data that do not require the utilization of
some outer information-handling units. However, the variety of machine learning (ML)
models and the proposal of different types of neural networks led to the implementation of
different ensemble or hybrid models in order to increase the prediction ability for BFP.

Generally, hybrid machine learning approaches that utilized forecasting models that
incorporated two modeling algorithms were offered [10]. The initial algorithm of hybrid
models recognizes and determines the variables that play a significant role in explaining
the model’s outcomes but whose number is limited. The following algorithms of the hybrid
model use explanatory variables to create predictions. Therefore, improved prediction
rates are achieved using the abilities of different algorithms.

Shao [11] and Ucar [12] constructed hybrid models based on a multilayer feed-forward
neural network (MLFFNN), SVM, decision tree (DT), and linear regression (LR) to optimize
feature selection models. These studies used a body fat dataset developed by Johnson [10],
including 14 attributes of 252 males. It was concluded that an anthropometric measurement
could effectively be considered for predicting BFP; however, the investigation of gender
effect was ignored because of not including female data.

The employment of feature selection models to criticize significant features is crucial
for the performance enhancement for BFP prediction. Therefore, studies [11,12] proposed
hybrid models for feature selection and multiple ML prediction algorithms with high
prediction rates. However, these models used relatively small datasets with a restricted
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number of male samples, and their proposed models were never tested with relatively
large datasets.

The improvements of the ANN to advance the performance [13] or to consider hu-
man emotions to improve the learning abilities of neural networks were investigated in
different studies [14,15], and recently, emotional artificial neural networks (EANNs) were
proposed [16]. In EANNs, the “emotion” ties to the activity of neurophysiological reaction
in biological terms: humans might be capable of changing their response to situations using
their attitudes and emotions. Thus, an input circle is established by combining the neuronal
and hormonal frameworks. This improves the model’s learning capacity, reduces computa-
tional costs, and provides effective convergence with limited data [16]. The robustness of
the obtained results led the EANN to be implemented in various fields, such as forecasting
the steady cross-sectional math of alluvial channel profiles [17], forecasting suspended silt
loads [18], and the prediction of the strength of concrete under compression [19].

Based on the above-discussed information, ML-based BFP prediction requires hybrid
studies with comprehensive and primary datasets and features besides the performance of
the algorithm. In this study, we proposed a hybrid ML model (SVR-EANN) by combining
support vector regression and emotional artificial neural networks. The model includes
a feature selection procedure using SVR and uses the prediction ability of EANN, which
combines the basic structure of the neural network with various emotional functions,
to achieve high prediction rates and determine the most significant factors that affect
BFP. In addition, a primary dataset, including age, gender, height, weight, abdominal
circumference (abdominal C), waist-to-hip ratio (WHR), which implies the ratio between
waist circumference and hip circumference, BMI, and BFP, was considered. The analysis
and prediction of BFP using a higher amount of data in terms of instances, including both
genders, and minimized number of attributes could provide more accurate prediction
rates and help researchers determine significant factors affecting BFP. In addition, the
investigation and development of new hybrid models to perform feature selection and
prediction have crucial importance in improving prediction ability. Finally, the obtained
results were compared to the eight benchmark ML algorithms, namely, feed-forward neural
network (FFNN), EANN, SVR, DT, random forest (RF), linear regression (LR), gradient-
boosting algorithm (GradBoost), and extreme-gradient-boosting algorithm (XGBoost), and
recent research. Based on the above-mentioned information and obtained results, the
contribution of this study could be listed as:

• Collection of primary data for BFP prediction with a higher number of observations
for anthropometric attributes for both genders.

• Employment of the WHR for the first time in a machine learning prediction model for
BFP.

• Creating a hybrid model for accurate prediction of the BFP.
• Feature selection and the most influential factor determination using SVR and left-out

sensitivity analysis.
• Prediction of BFP using the selected features and EANN.
• Comparison of the results with benchmark machine learning models.

The rest of the paper is organized as follows: Section 2 introduces the dataset, the
machine learning models used in the hybrid model, and the evaluation strategies. Next,
Section 3 explains the proposed hybrid model in detail. Then, Section 4 presents the
experimental results and discussions. Finally, Section 5 concludes the remarks of the study.

2. Materials and Methods
2.1. Datasets

The aim of collecting primary data for this study was to develop a BFP prediction
model capable of predicting BFP with high accuracy rates using the relevant anthropometric
attributes and determine the most significant parameters that affect the prediction model.
The dataset consisted of eight attributes (gender, age, height, weight, abdominal C, WHR
(the ratio of waist circumference/hip circumference), BMI (weight/height2), and BFP).
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The BFP was estimated by a body composition analysis device named BIA ACCUNIQ
BC380 positioned in the Department of Food and Nutrition of Baxshin Hospital, Iraq,
under the supervision of specialized doctors. The abdominal C in this study represented
the waist circumference which is a “constant measure of abdominal obesity” [20]. Data
were collected under the supervision of expert staff, and special procedures were followed
to estimate the metric parameters as well as the body composition of 2000 observations
of 387 males and 1613 females. The ages were between 18 and 29—the parameters were
selected according to the importance of anthropometric models in historical research on
BFP estimation.

The collected data consisted of a single observation for each person and did not contain
time-series data to predict the future BFP by considering the person’s recent anthropometric
and laboratory measurements. Therefore, the study focused on the accurate prediction of
the recent BFP of a person to minimize the time and costs to obtain BFP. The summary of
the descriptive statistics of the data is provided in Table 1.

Table 1. Descriptive statistics of the dataset.

Parameters BMI
(kg/m2)

Abdominal C
(cm)

Weight
(kg) Gender Height

(cm)
WHR
(cm) Age BFP

Mean 26.218 86.6345 67.05 1.81 160.301 0.825 23.05 33.42

Standard
Deviation 10.33 18.031 21.761 0.40 9.4638 0.0554 3.43 11.83

Minimum 12.9 60.7 15.40 1.00 63.00 0.66 18.00 3.00

Maximum 237.3 182.7 183.70 2.00 199.8 2.1 29.00 87.7

Initially, the Pearson correlation matrix was created to show the linear dependencies
between the attributes (variables) and observe the strength of the correlation [21]. It was
observed that BFP had a higher correlation with the BMI followed by the abdominal C
and weight with correlation coefficients of 0.8086, 0.7583, and 0.6277, respectively. Age,
WHR, and height were found to be the variables with the lowest correlation with the BFP.
The correlation matrix between the variables and the graphical representation is shown in
Table 2 and Figure 1.

Table 2. Coefficients of correlation matrix between the variables.

BMI Abdominal C Weight Gender Height WHR Age BFP

BMI 1

abdominal C 0.9531 1

weight 0.9279 0.9589 1

gender 0.0118 −0.155 −0.2183 1

height −0.0036 0.1203 0.3288 −0.6017 1

WHR 0.0047 −0.0698 −0.2683 0.4822 −0.9358 1

age 0.2479 0.2042 0.2216 0.0289 −0.0059 0.0490 1

BFP 0.8086 0.7583 0.6277 0.4411 −0.3979 0.3643 0.2097 1
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2.2. Machine Learning Models

This section presents the details of three models, ANN, EANN, and SVR, considered
as base models for the hybrid model.

2.2.1. Artificial Neural Networks

Artificial neural networks (ANNs) aim to simulate and perform functional features
similar to the biological neural network of the human brain. This provides the capability of
learning relationships from examples, making them ideal for situations where there is no
reliable relationship between input and output data [22]. ANN studies and applications
differ and vary almost in every field of our lives and scientific fields such as economics [23]
and neuroscience [24].

Even though several neural network types exist in the literature, the backpropagation
(BP) neural network is the most widely and commonly considered ANN because of its
efficiency and simplicity. Essentially, ANN consists of an input layer, at least one hidden
layer, and an output layer where the number of neurons (nodes) in the input and output
layer depends on the problem domain [25]. The determination of hidden layer numbers
and the neuron numbers of the corresponding layers is a challenging task, and still, trial
and error is the most effective way to determine the neuron numbers. The neurons are
interconnected through the layers, and the summation function (net function) is used
to obtain the general knowledge for each neuron and input. The activation function,
commonly a sigmoid one, provides the outputs of most informative neurons depending
on the information level, and generally, the gradient-descent algorithm is applied for
error minimization during the convergence. The weights are adjusted accordingly and
propagated back iteratively to achieve minimum error and to provide efficient convergence.

The equation of obtaining the output in ANN was described as shown in Equation
(1) [26]:

ŷi = f j

(
m

∑
h−1

wjh × fh

(
n

∑
i=1

whixi + whb

)
+ wjb

)
(1)

where i represents the input layer, h represents the hidden layer, and j represents the output
layer. Weights and bias are denoted as W and b, respectively. X indicates the input value,
and n and m stand for the number of input and output neurons, respectively.

2.2.2. Emotional Artificial Neural Networks

The emotional system was included in the network structure of emotional artificial
neural networks (EANNs), which is the improved version of ANN to allow neurons to
generate hormones for altering cognitive, physical, and emotional capacities [16,27].

The EANN considers the hormones and hormonal weights to increase the convergence
level of the network. Therefore, neurons’ input and output values are used to adjust three
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hormonal weights (Ha, Hb, and Hc) and the parameters of weight for activation function,
summation function, input value, and bias value (∂, ζ, Φ, and χ). This procedure yields the
reflow of all information through the layers and provides increased ability for the model.
Figure 2 illustrates the general block diagram of EANN and demonstrates how each EANN
neuron transmits information back and forth between the input and output nodes. Both
neural and hormonal weights are considered for each iteration, and the weight adjustment
operation is performed accordingly.
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Figure 2. A node of EANN and emotional unit [16].

After numerous cycles, the model’s coefficients are attuned to patterns in the input
and output and are then adjusted during the training process. Numerical coefficients of
the hormonal factors influence the individual node elements, such as weight, activation,
and summation function. The solid and dotted lines in Figure 3 represent the neural and
hormonal lines. The output of ith neuron of an EANN with three hormonal glands was
described as shown in Equation (2) [16]:

Yi = (γi + ∑
h

σi,hHh)︸ ︷︷ ︸
1

× f [∑
j
((βi + ∑

h
ζi,h Hh)︸ ︷︷ ︸

2

× (θi,j + ∑
h

Φi,j,k Hh)Xi,j)︸ ︷︷ ︸
3

+ (αi + ∑
h

χi,h Hh)]︸ ︷︷ ︸
4

(2)

where i, h, and j represent the neurons of the input, hidden and output layers, f () is the
activation function of the neuron. ∂, ζ, Φ, and χ are the parameters for activation function
weight (Term 1 in Equation (2)), summation function (Term 2 in Equation (2)), input value
(Term 3 in Equation (2)), and bias value (Term 4 in Equation (2)) that control the hormonal
levels, respectively. The neural weights are represented as γ, β, θ, and α.

Then, the hormone value sum is calculated and imposed on the network as described
in Equations (3) and (4), respectively.

Hh = ∑
i

Hi,h(h = a, b, c) (3)

Hi,h = glandityi,h × Yi(4) (4)

In which glandity was described as a calibration factor of providing suitable hormone
levels during the training.

2.2.3. Support Vector Regression

Support vector machines were initially proposed for classification tasks [28] and
implemented successfully in recent studies [29]; however, the model was modified to
accept real-valued data and to be implemented for regression problems. The differentiation



Appl. Sci. 2021, 11, 9797 7 of 16

of support vector regression (SVR) from other machine learning models is the projection
of data into another dimension using different kernels and considering the data points of
projected kernels, not directly the data. This leads to choosing support vectors using data
points for maximum efficiency and minimizes structural risk. The model’s efficacy for both
linear and non-linear problems is obtained by mapping the data and converting non-linear
data to linear separable objects in another hyperplane.

The general structure of the SVR model is shown in Figure 3, and the SVR equation is
provided in Equation (5) [30]:

(x, αi, α∗i ) =
N

∑
i=1

(αi − α∗i )K(x, xi) + b (5)

where x and b represent the input vector and bias term, respectively, and Lagrange multi-
pliers and the kernel function are indicated as αi, α∗i , and K, respectively.
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Considering projected support vectors using the kernel function K(x,xi), which are the
closest data points, results in minimized errors on the regression line. During this error
minimization and function optimization, the Lagrange multipliers are used to find the
local maxima and minima and provide the optimization. In this study, we used radial basis
function (RBF) kernel, which is the most used kernel in the SVR [7,31].

2.3. Data Preparation, Validation, and Performance Evaluation

Since the dataset did not contain missing values, only a data normalization procedure
was applied in the data preparation phase. Even though the normalization of data into a
certain range is not an obligatory process for regression tasks, the normalization of the data
has a significant effect on the performance of neural networks in terms of computational
cost and prediction accuracy [31]. We normalized the data using Min–Max normalization,
for which the formula is provided in Equation (6).

xnorm =
x − xmin

xmax − xmin
(6)

where x, xnorm, xmax, and xmin are the input, normalized, maximum, and minimum observed
values (instances) of the corresponding data attribute, respectively.
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The main purpose of using machine learning models for regression problems is to
achieve reliable results, which are difficult to obtain using traditional methods without
prior knowledge and a deep understanding of the concept. However, due to overfitting
problems in many ML models, the model’s performance at the training stage is not always
coherent with its performance at the test stage, making it impossible to obtain accurate
prediction results for other unseen datasets. This makes it vital to validate the models to
overcome the overfitting issues.

Different types of validation processes exist in the literature (k-fold cross-validation,
holdout validation, leave-one-out validation, etc.), but the k-fold cross-validation was
employed in this study because of its dependable precision estimation with a relatively
small variance. In this way, we partitioned the dataset into k-number of equal subsets and
used each subset for both testing and training. During the training of the models, a single
subset was used for testing while the others were used for training.

Our study considered 4-fold cross-validation, which divided the dataset into 75%–25%
training and testing ratio for each validation.

A robust and consistent evaluation is essential to analyze the obtained results. In
our study, we considered three common evaluation metrics for regression problems—the
coefficient of determination root mean square error (RMSE), (R2), and the relative root
mean square error (rRMSE)—to evaluate the obtained results. RMSE, which only differs
from mean square error (MSE) by taking its square root, considers the summation of the
squared difference between the observed and predicted data points. This leads RMSE
to not consider the direction of the error and to find the general error obtained by the
model. A lower RMSE value represents superior prediction results. The formula of RMSE
is provided in Equation (7).

RMSE =

√
∑n

i=1
(

Nobsi
− Nprei

)2

n
(7)

where n is the number of observations, and Nobsi and Nprei denote the observed and
predicted data for ith data.

R2 score, which is closely related to the MSE, is used to represent the general prediction
ability of the models. It also considers the total sum of squares which is calculated using
the observed data and the mean value of observed data. The highest R2 score (max=1)
shows a better prediction ability of the models. Equation (8) shows the formula of the R2

score.

R 2 = 1 − ∑n
i=1
(

Nobsi
− Nprei

)2

∑n
i=1
(

Nobsi
− Nobs

)2 (8)

where Nobs indicates the mean value of observed data values.
The rRMSE is the percentage variation of RMSE used to show the model’s accuracy in

terms of percentage. In general, the model’s prediction ability is stated as in the highest
level while rRMSE < 10%. The formula of rRMSE is provided in Equation (9).

rRMSE =

√
∑n

i=1

(
Nobsi

−Nprei

)2

n
1
N ∑n

i=1
(

Nobsi

) × 100 (9)

3. Proposed Hybrid Model

Hybrid models integrate the different abilities of various models into a combined
system, and superior results are achieved [32,33]. This study used a new generation
of neural networks, EANN, and SVR to construct a hybrid SVR-EANN model for BFP
prediction. The proposed model was implemented using the special MATLAB 2019a codes.
The initial stage of the proposed system was employing the left-out sensitivity analysis
using the SVR model with the RBF kernel. We tuned the SVR hyper-parameters using grid
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search [34] during the training with 4-fold cross-validation. Grid search trains the models
using all the possible combinations of hyper-parameters and finds the superior values that
produce the highest results. In this study, the final parameters of SVR were set as 5, 0.0313,
and 0.25 for C, γ, and ε, respectively, using the grid search of the hyper-parameters in
4-fold cross-validation.

Machine learning models are capable of learning different numbers of data; however,
effective data selection improves the ability of the models to achieve superior results. One
of the data selection techniques is the left-out approach which is also performed by the
machine learning models and based on artificial intelligence [34,35]. The left-out approach
trains a model with the other variables, while one of the variables is left out in each training
phase. At this point, the left-out input is later re-applied to all inputs. The method allows
researchers to observe which attributes have the most significant influence on the models’
convergence. Therefore, the more efficient the variable, the greater the reduction in model
accuracy. When the significant input is retrieved and then switched for a less critical
variable, the model performance dramatically decreases (here, left-out variable). Figure 4
presents the algorithm for SVR left-out sensitivity analysis in detail.
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After determining the most significant factors affecting BFP using the SVR model, the
EANN model was trained to predict the BFP using the selected variables in the second
stage. The training was employed using the backpropagation algorithm. The structure of
the EANN model was determined after several experiments, and finally, it was considered
with 20 hidden and five hormone neurons. Superior results were obtained using the TanSig
activation function, and the EANN was trained for 50 epochs. Figure 5 presents the general
block diagram of the proposed hybrid model.
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4. Results and Discussions
4.1. Determination of Significant Factors

As mentioned above, SVR-model-based left-out sensitivity analysis was used to
determine the relative importance of the input attributes in the prediction of BFP. However,
machine-learning-based feature selection models such as decision tree and random forest
were implemented in 4-fold cross-validation, and the determined feature importance was
analyzed. These models produced different results in different folds. Even the age factor
was determined by the models as the least significant factor; the WHR was also indicated
as an attribute that has the least significant effect on BFP prediction by these models.
Therefore, due to the inconsistent results of these models, only the SVR experiments are
presented in this paper. The SVR model was trained and tested using all attributes as input
variables to predict the BFP, and the model’s prediction error (RMSE) was calculated for
each training with a left-out approach. The results of the left-out sensitivity analysis are
provided in Table 3.

The RMSE values increased upon the removal of abdominal C, weight, height, WHR,
and BFP, while they decreased when gender and age were removed from the input parame-
ters. The results indicate that all of the parameters have relative importance in determining
the BFP since the RMSE increased when any of the parameters were removed from the
training data. Abdominal C, gender, height, WHR, BMI, weight, and age were determined
as the most significant factors affecting BFP in descending order, respectively.
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Table 3. Coefficients of correlation matrix between the variables.

Removed Parameter RMSE

BMI 0.0564

Abdominal C 0.1509

Weight 0.0341

Gender 0.1223

Height 0.0708

WHR 0.0589

Age 0.0157
Note: RMSE0 = 0.0122 (Normalized)

4.2. Regression Results and Comparisons

The EANN was trained as a predictor in the SVR-EANN hybrid model to achieve su-
perior results for BFP prediction without considering the least significant factor determined
by the SVR model. The age attribute was removed for SVR-EANN during the training,
and the obtained results of the proposed SVR-EANN hybrid model were compared to
the results of other benchmark models: feed-forward NN [36], SVR [29], DT [37], RF [38],
LR [39], XGBoost [40], and GradBoost [41].

The network structure of the FFNN included an input layer, a single hidden layer with
20 neurons, and an output layer with a single neuron. The determination of the hidden
neuron numbers was based on the training of the FFNN using a hidden neuron interval of
5–30 and epochs 10–1000. The highest result was obtained using 20 hidden neurons and 50
epochs with the Adam optimizer.

DT was implemented using mean squared error (MSE) criteria for constructing the
DT for regression studies. GradBoost and RF were trained with 100 and 150 estimators,
respectively. The learning rates of XGBoost and GradBoost were defined as 0.3 and 0.085.
The number of estimators and the learning rates of RF, GradBoost, and XGBoost were
determined after several trial-and-error experiments by validating the results using 4-fold
cross-validation.

The final parameters of SVR were considered the same as the proposed hybrid model,
and C, γ, and ε values were set to 5, 0.0313, and 0.25, respectively. The EANN was
considered with twenty hidden and five hormone neurons and trained 50 epochs after
searching the parameters similar to the FFNN search.

SVR-EANN achieved superior results by obtaining 0.991, 0.0125, and 3.15% R2, RMSE,
and rRMSE results, while the EANN without left-out sensitivity analysis obtained 0.8928,
0.0464, and 13.55% R2, RMSE, and rRMSE results. The difference between the results of
SVR-EANN and EANN shows the importance of data selection and the efficiency of the
SVR-EANN. On the other hand, the FFNN, with its superior architecture and parameters,
obtained lower results since it achieved 0.857, 0.0622, and 19.69% R2, RMSE, and rRMSE
results.

LR obtained the R2, RMSE, and rRMSE results of 0.918, 0.0396, and 11.43%, since
SVR achieved 0.968, 0.024, and 7.69%. The DT (R2 = 0.969, RMSE = 0.0216, rRMSE 6.98%)
and tree-based ensemble models, RF (R2 = 0.974, RMSE = 0.0198, rRMSE 6.32%), XGBoost
(R2 = 0.98, RMSE = 0.0178, rRMSE 5.91%), and GradBoost (R2 = 0.98, RMSE = 0.0182,
rRMSE 5.99%) achieved relatively higher results than other models; however, they could
not out-perform the proposed SVR-EANN model. Table 4 presents all results of the models
in the test stage obtained in this study. Figure 6 shows the regression line of the testing
stage using a scatter plot of the EANN, FFNN, and the proposed SVR-EANN.
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Table 4. BFP prediction results.

Models R2 RMSE RRMSE (%)

FFNN 0.8573 0.0622 19.6919

EANN 0.8928 0.0464 13.5565

SVR-EANN 0.9911 0.0125 3.1513

SVR 0.9682 0.0245 7.6956

DT 0.9699 0.0216 6.9877

RF 0.9747 0.0198 6.3225

XGBOOST 0.9807 0.0178 5.9125

GRADBOOST 0.9802 0.0182 5.9949

LR 0.9185 0.0396 11.4356
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4.3. Discussion

Detailed analysis of models based on machine learning modeling approaches is de-
scribed in the previous section. All machine learning models were capable of predicting
BFP using the considered primary dataset; however, the proposed SVR-EANN outper-
formed other models by achieving superior results for all evaluation metrics used in this
study. In this section, the results of real data analytics are analogized with the literature.

There were several studies in the literature in the context of BFP prediction using
ML algorithms. Apart from basic information and anthropometric measurements such
as gender, age, BMI, height, weight, and waist circumference, single-stage intelligent
predictors such as ANN and/or SVR were used to forecast BFP [1,8,9]. System performance
in these studies varied between 44% and 80.43%. However, these studies included random
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selection of parameters and, nevertheless, could identify the most significant parameters
to reach the best predictor variables. On the other hand, studies with hybrid machine
learning in BFP prediction were proposed. These models contain a feature selection model
that varies between the intelligence-based or statistic-based models to identify the most
explanatory variables for the intelligent forecasting algorithm phase.

A model based on multiple regression (MR) and multivariate adaptive regression
splines (MARSs) was employed in [11] to choose the best variables in the explanatory
phase which resulted in two sets with five and six variables among 13 anthropometric
parameters for the MR and MARSs, respectively. The most relevant variables included age,
height, weight, abdomen 2 circumference (waist circumference), forearm circumference,
waist circumference, thigh circumference, and neck circumference. In contrast, when ANN
and SVR were utilized for BFP prediction, the MR-SVR achieved the best performance with
an RMSE of 4.6427.

Hybrid models proposed by Uçar [12] employed Spearman’s correlation coefficients
and principal component analysis computations for the feature selection phase to obtain
the most predictive feature group from 13 different subgroups of anthropometric mea-
surements. The intelligent hybrid models were constructed from the MLFFNN, DT, and
SVM algorithms. The most significant result was achieved through the hybrid model
DT-SVM with one anthropometric measurement named abdomen 2 circumference (waist
circumference) and an RMSE of 0.482. However, both hybrid studies [11,12] considered the
dataset collected by Johnson [10] from 252 male participants. Therefore, the gender feature
was not discussed. In addition, both studies could not achieve higher results as in this
study in terms of prediction rates, even though the dataset size was considerably small.

According to studies in the literature, certain parameters are effective in the estimation
of BFP. Gender is the most evident factor [42–44]. A common equation for men and women
has been derived in several investigations [8,45].

Gender information is included in the dataset used in this study. In addition to gender,
benchmark studies on ML and BFP prediction with single or hybrid intelligent algorithms
indicated the relative importance of other features such as BMI [1] and waist circumfer-
ence [8,10,11]. However, to the best of our knowledge, this study is the first in clearly
identifying the most significant parameter’s base in the intelligent model for BFP prediction.
Parameters abdominal C (waist circumference) followed by gender were determined as
the first and second most influential variables in the list of optimal parameters that affect
BFP prediction indicated by the SVR sensitivity analysis.

In this study, all machine learning models were capable of predicting BFP using
the considered primary dataset of 2000 people; however, the proposed hybrid model
SVR-EANN with an intelligence-based feature selection algorithm outperformed other
models by achieving superior results for all evaluation metrics used in this research. It
was observed that selected data provide more accurate results than complete data, and it
increased the prediction rates from 2.8% to 16% compared to other models. This showed
that SVR could be used for regression tasks and data selection quite effectively. In addition
to the success of SVR in data selection, it has been observed that the EANN, which is a new
generation artificial neural network, achieves the highest results with appropriate data by
imposing the hormone neurons that improve the learning ability.

The obtained results demonstrate the efficacy of the proposed hybrid SVR-EANN
model for BFP. Furthermore, combining the efficiency of the two models, SVR-EANN
showed that the hybrid models increase the probability of achieving superior results than
conventional and single models. Figure 7 presents the visualization of the obtained R2

scores and rRMSE results to demonstrate the differences between the models effectively.
The highest and lowest indicators in the R2 score and rRMSE results represent the superior
prediction rates, respectively. However, the proposed model was not applied in different
fields and disciplines, which is the study’s limitation.
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5. Conclusions

Body fat percentage is a crucial indicator of human body health and requires a reliable
and cost-effective prediction on a comprehensive dataset to provide experts information to
take precautions, particularly for obesity. Body fat percentage calculation is rough and ex-
pensive, and hence efficient and cost-effective approaches are necessary. A large economic
expansion is possible when the developed ML technologies are virtually applicable.

This paper released a primary dataset for body fat percentage prediction and proposed
a hybrid machine learning model based on support vector regression and emotional neural
networks to predict body fat percentage accurately. The SVR sensitivity analysis was
combined with the prediction ability of emotional artificial neural networks in the hybrid
model. The proposed SVR-EANN model was compared to seven benchmark machine
learning models, and the results show that the SVR-EANN was superior to the others in all
evaluation metrics considered in the study.
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Our study demonstrated the importance of using SVR in feature selection for datasets
with limited properties and measurements for BFP and how the regression ability could be
improved using the EANN in a hybrid model. In addition, the consideration of benchmark
ML models for comparison showed how the regression abilities of the models might differ
from each other for BFP prediction studies and might lead to further ML studies on BFP.

In addition, the proposed hybrid model was used to determine the attributes affecting
body fat percentage prediction. The results show that abdominal C has the most significant
influence on body fat percentage. In contrast, the age attribute has the most negligible
influence and could be ignored during prediction studies.

Our future work will include the prediction of body fat percentage using the proposed
hybrid model within optical data and the investigation of gender effect on BFP. In addition,
further experiments will be performed to analyze the efficiency of the suggested hybrid
model in the prediction of body fat percentage in obese children.
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