
applied
sciences

Article

FPGA Implementation of IEC-61131-3-Based Hardware Aided
Counters for PLC

Miroslaw Chmiel 1 , Robert Czerwinski 1,* and Andrzej Malcher 2

����������
�������

Citation: Chmiel, M.; Czerwinski, R.;

Malcher, A. FPGA Implementation of

IEC-61131-3-Based Hardware Aided

Counters for PLC. Appl. Sci. 2021, 11,

10183. https://doi.org/10.3390/

app112110183

Academic Editor: Paris Kitsos

Received: 22 September 2021

Accepted: 26 October 2021

Published: 30 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Digital Systems, Silesian University of Technology, Adademicka Str. 16,
44-100 Gliwice, Poland; mchmiel@polsl.pl

2 Department of Electronics, Electrical Engineering and Microelectronics, Silesian University of Technology,
Adademicka Str. 16, 44-100 Gliwice, Poland; amalcher@polsl.pl

* Correspondence: rczerwinski@polsl.pl; Tel.: +48-32-237-1720

Abstract: The article discusses counters defined in the IEC 61131-3 standard. The possible implemen-
tations of standard counters function blocks in FPGAs are presented. First, counters are implemented
as classical hardware-based modules. Second, counters are designed as the FPGA built-in memory
blocks with a single common executing unit. These solutions are compared to each other and com-
pared with counters realized in commercially available PLCs like Siemens SIMATIC S7 controllers.
The structure of integrated hardware–software CPU with counters is presented. The paper presents
how the designer can take advantage of the specific features of the FPGA devices to optimize both
the utilization of resources and speed of realization of the particular blocks. Experimental results
prove the high efficiency of the proposed solutions.

Keywords: programmable logic controllers (PLC); counters; IEC 61131-3; field programmable gate
arrays (FPGA); function blocks; central processing units (CPU)

1. Introduction

IEC 61131 is the international standard for programmable logic controllers (PLCs).
The third part of this standard is focused on the basic software architecture with program-
ming languages [1]. Basically, it defines textual and graphical languages with necessary
elements like data types, variables, program organization units (including functions and
function blocks) and others. Among the programming languages, the Instruction List (IL)
language occupies a special position. It is an assembler-like language and all other program
representations—graphical and textual—can be converted into IL. The CPU should be
optimized for efficient realization of the IL code as the low-level representation of the
control algorithm. Unfortunately, it must be emphasized that the standard is not precise
and requires many comments as well as improvements [2–4]. However, provisions of the
standard are implemented in industrial PLCs and in experimental or academic structures.
Great opportunities in this area offer field programmable gate arrays (FPGAs). FPGAs are
integrated circuits configured by the customer. The main structure contains programmable
logic and programmable connections, so it enables us to implement designed functions
in a flexible way. The logic structure enables us to implement real concurrency that is the
main advantage over microprocessors. Moreover, the microprocessors can be implemented
in FPGAs as hard or soft cores, so the system-on-a-chip could be built.

Designing a dedicated microprocessor takes quite a bit of effort. It is much simpler to
design a PLC using a standard microprocessor or microcontroller. Often, the problem is the
operations execution time. The ways to minimize the execution time of operations have
been used in CPUs built using standard microcontrollers [5]. A useful tool in using stan-
dard programming languages for PLCs is a program translator to ANSI C language. Such
a translator was proposed in the paper [6]. In addition, this translator takes into account
industry safety standards. In fact, the resources of a standard microprocessor/microcon-

Appl. Sci. 2021, 11, 10183. https://doi.org/10.3390/app112110183 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9281-739X
https://orcid.org/0000-0002-1550-5488
https://orcid.org/0000-0002-0522-6565
https://doi.org/10.3390/app112110183
https://doi.org/10.3390/app112110183
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app112110183
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app112110183?type=check_update&version=2

Appl. Sci. 2021, 11, 10183 2 of 23

troller are not aligned with the standard—the instruction list of a standard microprocessor
is severely mismatched with what the standard defines. By developing a specialized
microprocessor compliant with IEC 61131-3, these drawbacks can be eliminated [7–11].

The use of FPGAs provides completely different possibilities. The control program can
be directly implemented in logic, which is presented, among others, in the works [12–15].
In this case, the program is converted into a hardware description language, and then
this description is synthesized. However, this is a completely new approach and is still
developed. However, the advantage of the FPGA that is concurrency is exploited.

The concurrency can be also exploited in order to design hardware accelerated mod-
ules of the PLC, like function blocks. According to the IEC-61131-3 standard, a function
block (FB) is an organizational unit of software that, upon execution, can provide one or
more values at its output, as opposed to a function that has only one output. FBs may
be used many times, but for each call there must be created an appropriate unique data
structure that stores information about the state of the called FB. Such a structure is called
an instance. The standard FBs are:

• bistable elements,
• edge detection elements,
• counters,
• timers.

This paper concerns the counter implementation. The standard defines three types
of counters:

• CTU—the counter that counts up pulses supplied to the count up (CU) input. The
counter has the reset input (R) that enables clearing of the counter content to zero as
well as the register that stores preset value (PV). If the current content of the counter
equals to the preset value, the binary output (QU) is active,

• CTD—similar to CTU, but the counter counts down pulses supplied to the count
down (CD) input,

• CTUD—the counter that is able to count in two directions and has functionalities as
well as inputs and outputs of both types of counters: CTU and CTD.

In modern PLC applications, the availability of a large number of fast counters is
increasingly required. Examples of applications include counting the number of manufac-
tured or packaged small components (e.g., electronics) or products of the pharmaceutical
industry. Reducing the execution time of a single counter operation entails reducing the
entire program cycle and therefore increasing the performance of the PLC. This is especially
important in the era of Industry 4.0, where the smart technology integration requires sig-
nificantly increased system performance. The main contribution of the paper is to propose
the structure of the counter function block for PLC. The fast counters may be implemented
in FPGA logic devices as separate modules or can be integrated with CPU in a form of
integrated hardware-software PLC.

2. Theoretical Background
2.1. The Counter

Figure 1 shows the appearance of the counter in graphical form. The interface of such
FB is defined by:

• CTUD (C_NO)—counter number or instance name,
• CU—the Count Up input; sensitive to rising edge,
• CD—the Count Down input; sensitive to rising edge,
• R—the input of resetting the counter value,
• LD—the input of presetting the counter value,
• PV—value for initializing the counter and evaluation the QU value,
• Q (QU; QD)—status of the counter,
• CV—count value.

Appl. Sci. 2021, 11, 10183 3 of 23

CTUD

CU (BOOL)

CD (BOOL)

R (BOOL)

LD (BOOL)

PV (INT)

QU (BOOL)

QD (BOOL)

CV (INT)

Figure 1. The symbol of CTUD counter.

To show relations between inputs and outputs (also priorities), the specification of
the CTUD function module with INT format number in the ST language described in
standard [1] is shown in Listing 1.

Listing 1. The specification of the CTUD counter in ST language [1].

Implementation of a counter needs mapping of a suitable data structure in the con-
troller memory to enable storage of the current content of the counter as well as the status
of the PV input and the status of QU and QD outputs. However, QU and QD can be
calculated during their reading. In such a case, the data structure may not contain them.
Two more memory cells may be necessary as well to store previous statuses of the CU and
CD inputs (CU’ and CD’). The example data structure for a single counter unit is shown
in Figure 2.

Appl. Sci. 2021, 11, 10183 4 of 23

CU

CD

R

LD

PV

CV

QU

QD

CU'

CD'

Figure 2. Minimum representation of a counter data structure.

2.2. The Counter CALL

The standard allows three ways of calling counter operations in IL. The first is to call a
function block with the current parameters passed in parentheses [1]—e.g.,:

CAL CNT (CU:=IN_CU , CD:=IN_CD ,R:=IN_RES ,
PV:=IN_PV , LD:=IN_SET , CV=>CNT_VAL)

This type of call may have a complete list of assigned parameters or may have only
a portion of the parameters assigned. In this case, the unassigned parameters take the
values stored previously ([1]: Table 42, page 105). This way of calling function blocks is
available in CoDeSys [16], Concept [17] software, and also in the IEC counters of SIMATIC
S7 PLCs [18].

The next two ways are more ambiguous and require more commentary. The second
one consists in preparing suitable data in particular fields of the counter structure, and then
calling the function updating the counter without any parameters using the CAL command.
Not all fields of the counter structure have to be filled in immediately before the function is
called. If some values are not assigned to the structure fields, the function uses the values
of the structure fields stored earlier. This way of calling the counter function block in
Instruction Language (IL) is shown in Listing 2. As can be seen, there is a set of instructions
(LD) for loading data into the current result (CR) register and storing data to the individual
fields that make up the counter structure (ST). All these instructions merely fill in the
relevant fields. The counter functionality is realized only when the CAL instruction is
executed. This method of calling counter operations is available in the CoDeSys [16],
Concept [17], and ISaGRAF [19] environments.

However, the provisions of the standard allow also using so-called short IL operators.
When, in fact, the operation updating the state of the counter is performed, since the
standard allows the use of operators (CU, CD, R, LD and PV). In this case, each short
operand updates the counter state, which may improve the readability and conciseness
of the program code. However, the standard says that each use of the short command is
interpreted as sending a value from CR to the appropriate field of the counter structure,
followed by a call (CAL) to the function that updates the counter. For the system designer
it is a big difference that significantly affects the implementation of the counter block
and also has a big impact on the execution time of this block. In the Siemens Simatic
S7-300/400 controllers the basic counters for this system (Simatic Counters) do not form
a function block, so there is no problem to use only counter elements that are necessary
at the moment. It may seem that in this case the processing time of the counter is shorter
than the longest one. Among the implementations of the standard known to the authors,

Appl. Sci. 2021, 11, 10183 5 of 23

only Concept allows using operator based programming. Other implementations, such as
CoDeSys and ISaFRAF, do not allow this method of calling counter functions.

Listing 2. Counter block calling using CAL instruction.

In the field of the short operators, the standard is somehow weak. The example code
is presented in Listing 3. It is easy to imagine now that the counter does not require the
existence of the CAL instruction in the program, which actually implements the counter’s
functions based on the information gathered earlier, but simply executes individual in-
structions that exist in the program. In fact, a program written using the short commands
(operators) needs to be translated to the second way, and thus will take longer to execute
than a program explicitly using the CAL command, because every short operator requires
store operation and implicit CAL instruction.

Listing 3. Counter block using operators.

There is another problem. The CU and CD inputs have built-in edge detectors. It
is conceivable that the edge detectors will become an integral part of, either special load
operations or increment and decrement operations. However, in a classical processor
version, this will not change much, as these tasks will simply disappear from the IL
notation, but the commands will still require their execution. It is worth noting that there
exist implementations of the standard like ISaGRAF [19] where the CU and CD inputs do
not have built-in edge detectors. In such a case, the user should implement edge detectors

Appl. Sci. 2021, 11, 10183 6 of 23

as external blocks or functions preceding the counter call. Anyway, edge detectors must be
somehow executed. Realizing a CPU based on FPGAs, the execution of these operations
will be entrusted to the hardware part. This applies to the instructions already described,
like CU and CD with simultaneous edge detectors, as well as to the R and LD instructions,
which are also not really simple operators.

3. FPGA Counters Implementations

Counters’ function block is proposed in this section together with the CPU unit
integration. Hardware and software-like counters are presented.

3.1. CPU Unit

Field Programmable Gate Arrays offer great opportunities for hardware support of
some tasks related to the implementation of the function blocks. In the classical solu-
tions the microprocessor-based CPU is equipped with procedures/functions/macros that
are responsible for function blocks functionality. This solution is based on the program
processing of data stored in the data memory (Figure 3). Software routines for standard
function blocks are part of the PLC operating system. The implementation of tasks consists
in creating an appropriate data structure in the Data Memory and performing a specific
function. It is necessary to have memory to store data structures and to spend CPU time
on calling a specific function. Such a unit turns out to be ineffective from the point of view
of resource consumption and time of individual tasks.

The basis of the integrated hardware–software controller is a dedicated CPU with a
developed microprocessor, the machine language of which complies with the IEC 61131-
3 standard. Problems of the CPU construction are presented in [11]. As shown in the
paper [11], the FPGA-based central processing unit has the ability to perform operations
in two clock-blocks. Consequently, it should be noted that the execution times of all basic
operations will be 20 ns at a CPU clock frequency of 100 MHz. As shown in the work [20]
and [21], this also applies to instructions that have been proposed to be equivalent to the
function blocks of flip-flops and edge detectors. Tests have been carried out for standard
FPGAs, which have shown that all basic operations and operations associated with binary
function blocks are performed in one clock, so complex operations take the same amount
of time as the basic instructions.

DATA
MEMORY

MARKERS

FUNCTION
BLOCKS

DATA
(TRIGGERS
BISTABLES
COUNTERS

TIMERS)

PII

PIQ

PROGRAM
MEMORY

MIAIN
PROGRAM

FUNCTIONS

FUNCTION
BLOCKS

CTRL/FUNCTION
UNIT

CR

ALU

PLC

Figure 3. The architecture of the classical CPU of the PLC.

The solution proposed in the paper is to construct a controller with integrated blocks of
hardware supporting the performed operations—IHSPLC (Integrated Hardware-Software
PLC). Among others, it can be implemented in the FPGA system. Figure 4 presents the
idea of the controller implemented in this way.

Appl. Sci. 2021, 11, 10183 7 of 23

DATA
MEMORY

MARKERS

PII

PIQ

PROGRAM
MEMORY

MIAIN
PROGRAM

FUNCTIONS

CTRL/FUNCTION
UNIT

CR

ALU

IHSPLC

HARDWARE BLOCKS

TRIGGERS BISTABLES COUNTERS TIMERS

Figure 4. The idea of the Integrated Hardware-Software PLC.

The standard [1] defines no data width for Current Result. It is easy to implement a
software-based PLC with dynamically resized width of CR, but it is hard to implement
this idea in hardware, especially if it must work in an atomic way. The proposition
is presented among others in [11]—this concept may be combined with bit-byte idea
presented in [22–24]. As the effect, the proposed in this paper bit.WORD IHSPLC works on
CR_bit (CR_b) and CR_word (CR_W) accumulators (Figure 5). It is not inconsistent with
the provisions of the Standard, because the user can write common instructions (e.g., LD),
and it is up to the compiler to decide (considering the data type) which CR the processed
data is sent to.

DATA
MEMORY

MARKERS

PII

PIQ

PROGRAM
MEMORY

MIAIN
PROGRAM

FUNCTIONS

CTRL/FUNCTION
UNIT

CR_b

ALU_b

bit.WORD
IHSPLC

HARDWARE BLOCKS

TRIGGERS BISTABLES COUNTERS TIMERS

CR_W

ALU_W

Figure 5. The structure of the bit.WORD IHSPLC.

In order to accelerate the operation of standard function blocks they are implemented
in the hardware. Appropriate logical resources are used in FPGA to implement hardware
acceleration. In other words, the functions that were responsible for processing data orga-
nized into special structures are replaced with hardware logical structures that determine
the results. These logical structures connect data structures with operations. However, the
main problem is on the junction of the hardware units and CPU.

For newly designed microprocessors, it is possible to integrate function blocks into
the CPU structure. It can be easily integrated with the rest of the structure. However, when
designing hardware accelerated blocks, it must be designed with minimum latency for
communication. The structure of counters function block proposed in the paper is just
driven by means of the CR, address, clock signal and set of enable signals. It ensures

Appl. Sci. 2021, 11, 10183 8 of 23

minimum delay for data exchange between function blocks and CPU (Figure 6). It does
not matter whether the counter function blocks are hardware counters, software-like or
even fully software implemented blocks.

Figure 6. The interface between function unit and hardware-supported blocks.

3.2. Hardware Counters

In the hardware counter function block design the main problem is not to design the
counter, but the whole environment. The counter itself is not a problem, because this task is
well controlled in the HDL synthesis. The description of the counter presented in the standard
is presented in Listing 4a, while the Verilog description is presented in the Listing 4b.

However, the main problem presented in detail in Section 2 is the execution moment
of the counter. It is not the problem in the hardware counter as described in Listing 4b.
The active clock edge executes the counter. However, such a counter is executed based on
the state of inputs like ’CU’, ’CD’, etc. Those inputs must be stored somehow, because the
counter can be driven only by means of CR_b. Moreover, one of the most important parts
of the counter is PV that must also be remembered. It can be constructed as presented
in Figure 7.

The counter presented in Figure 7 receives an active clock edge together with other
parts of the environment. It is unambiguous with the counter execution, so it is compliant
with conclusions drawn in Section 2 for Listing 3 and short operators. When the design
should be compliant with the action presented in Listing 2, every counter’s input must be
remembered, but the counter may be executed after CAL instruction. The proper structure
with counter’s Verilog description is presented in Figure 8 and Listing 5, respectively.
The call (CAL) is implemented by means of clock enable (CE) input that is built-in in the
FPGA D flip-flop. The RTL (Register-Transfer Level) schematic of the counters function
block is presented in Figure 9.

One more thing needs some comment. The structure presented in Figures 7 and 8
returns ’cv’, ’qu’ and ’qd’. However, the CPU expects only CR_b and CR_W inputs, so ’qu’
and ’qd’ must be multiplexed and every single counter must be connected to the CR_b
and CR_W by MUXes too. The structure presented in Figure 10 is a complete hardware
counters function block for four counters.

Appl. Sci. 2021, 11, 10183 9 of 23

Listing 4. (a) The description of the counter presented in the standard, (b) the Verilog description of
the counter.

3.3. Software-Like Counters

It is quite easy to imagine a software counter. It is just a variable that is increment-
ed/decremented in case of particular events. Hardware-based counters that are designed
by means of D (or others) flip-flops are also well known. Hardware-based counters work
very fast in relation to software counters. Software counters must be executed somehow by
means of the program, so it lasts (Listing 1, Section 2). However, there is no problem to
design a very big block of independent counters. It is clear that those counters cannot work
concurrently, but it is not a problem in the PLC that by definition works serially. The draw-
back of hardware-based big counter structure is the flip-flop and connections utilization. So,
the idea is to compound those two implementations—in a nutshell, to implement software
idea in hardware.

Appl. Sci. 2021, 11, 10183 10 of 23

Figure 7. The structure of the hardware-based counter block.

Figure 8. The structure of the hardware-based counter block with CAL.

Appl. Sci. 2021, 11, 10183 11 of 23

Listing 5. Verilog description of the counter block with CAL.

Figure 9. RTL schematic of the proposed counter structure.

Appl. Sci. 2021, 11, 10183 12 of 23

Figure 10. The structure of the counter function block for four counters.

To design software-like counters, memories that implement elements of the structure
presented in Figure 2 are necessary. Of course, memories should be driven by means of
CRs (CR_b and CR_W), enabling inputs that realize consent to store data to particular
memories and common address inputs. However, it would not be good to read data to
CR, perform operations and write back data to the memory. It would be time ineffective.
The best way is to design MUXes that are driven by decoded instruction. The structure
with only Counter Value as a circuit result is presented in Figure 11.

The idea is based on a MUX, which decides what happens to the counter at any
given event—increment, decrement, set, reset—depending on which counter instruction is
currently being executed. The ENable bits for each instruction are involved in controlling
the multiplexer, as well as the signal coming from the CR_b that conditions every change of
the CV state. This signal additionally controls the ENable signal of the counter cell. In the
first case, such writing is blocked using an additional AND gate.

Similarly, the question can be asked whether it is necessary to continuously calculate
the state of the binary outputs of the counter—QU and QD. Note that this may mean the
determination of their state during each cycle of the loop, so it takes time. An alternative is
to determine the state during the execution of the command testing the binary state of the
counter. The third solution requires additional memory, but the QU and QD calculation is
executed once during CAL. Calculating the state of the binary outputs requires, of course,
performing the comparison operation, which, in case of the existence of the CAL operation,
is done during the execution of this operation. A fragment of a program for calculating the
binary state of the counter, using the basic operations of the controller, could look as it is
presented in Listing 6.

Appl. Sci. 2021, 11, 10183 13 of 23

Figure 11. Software-like counters with conditioning.

Listing 6. Proposed method of Counter outputs generating using standard PLC operations.

The implementation of such a program would only require that the computing unit
have access to the current state of the counter (CV) and the Preset Value (PV) cell.

The structure of soft-like counters block dedicated for short operators is shown in
Figure 12. The most important element of the structure is the CV memory, which stores
the current counter state. The multiplexer on the data input of this memory allows us to
write the value from the PV memory, to keep the current value of the counter or to write a
value modified by count up, count down or reset operation. The second important element
of the structure is the PV memory. This memory can be modified only by the state of the
CR_W. All these functionalities are implemented by means of OP_MUX. AND gates work
as the edge detectors for the CU and CD inputs. In order to detect the rising edge of a
variable coming from CR_b, two memories for remembering its previous state must be
used. Additionally, two comparators are applied that are used to control the reaching of
limit values by the counter—MIN and MAX. These values are constant for each data type
of the counter value.

The MUX_1 multiplexer is used to produce the state of the counter’s binary outputs—
QU and QD. It is implemented in a combinational way, so it is calculated after every
input change. The QU and QD outputs are calculated during reading their state. There
is no need to implement the memory, but in opposite to microprocessor-based solutions,
it takes no clock cycles to elaborate the QU and QD values. The content of CV and PV

Appl. Sci. 2021, 11, 10183 14 of 23

memories, for particular address, are compared for QU and CV memory is compared with
zero for QD.

However, the idea presented in Figure 12 has the same problem as hardware counter
presented in Figure 7—it realizes every instruction like it was an operand executed im-
mediately. This nuance was presented in detail in Section 2. It is necessary to introduce a
block that could realize CAL. In such a case, memories form an environment to a call block.
The call block (CALL_UNIT) presented in Figure 13 is just a simple combinational process
consistent with Listing 5, so it works as a decoder for MUX_1. This CALL_UNIT block
takes into account the MIN and MAX values.

As can be seen in Figure 13, edge detection this time requires the use of two memory
cells CU and CU’ (CD and CD’), because the rising edge detection itself occurs during the
execution of the CU (CD) operation, but this result is consumed only at the CALL operation.
This requires storing not only the state of the previous CR bit, but also information about
current CR_b state.

Presented in Figure 13 construction requires extra elements—CU’, CD’, R and LD bit
memory and CALL_UNIT. The undeniable advantage of this design is that it remains a
single-clock-edge design.

Figure 12. The structure of soft-like counters block dedicated for short operators (CAL not required).

Appl. Sci. 2021, 11, 10183 15 of 23

Figure 13. The structure of the soft-like counter block with a CALL_UNIT.

3.4. Summary

Presented in Section 3, the solutions are single clock edge units. This means that the
machine cycle is executed within one clock cycle. However, it must be stressed that two
kinds of units were presented:

• An operator that executes whole counter (Figures 7 and 12 for hardware and software-
like counters, respectively),

• Operators that prepare data in memories, but the counter execution shall take place
after the CAL instruction (Figures 8 and 13).

Furthermore, it must be stressed that the first idea prevents the use of a CAL operand
as a separate execution moment, so this unit implements only a subset of the features
defined in the standard. The second idea enables us to execute a counter after every
single counter operator, e.g., CU CNTx, but the compiler must split the operator into two
instructions (store + CAL). The idea with separate CAL (Figure 13) is more flexible, but its
drawback is that simple operators are realized in two clock cycles.

4. Experimental Results

Units presented in Section 3, that is, hardware and software-like counters, have been
implemented using Verilog HDL. Simulations have been run to check for the bugs and to
improve the units. After implementation of each solution, a comparison was made between
FPGA resources utilization, as well as the determined maximum clock frequencies. Second
part of the experiments concerned Siemens PLCs. Different units were tested in order to
compare counters in ready-made PLCs with presented in the paper solutions.

The comparison of the logic utilization for hardware and software-like counters is
presented in Table 1 and Figure 14. One of the simplest devices of the Xilinx 7th family has
been used (xc7a100tcsg324). Synthesis has been done for different numbers of implemented

Appl. Sci. 2021, 11, 10183 16 of 23

counters: 2-1024 (address: 1-bit to 10-bit). The versions with CAL are implemented
(hardware—Figure 8; software-like—Figure 13).

Table 1. The comparison of the logic utilization for hardware and software-like counters.

No. of Counters Hardware Counters Software-Like Counters
LUT LUTRAM FF LUT LUTRAM FF

2 169 0 140 184 70 0
16 1321 0 1120 184 70 0
64 5407 0 4480 184 70 0

128 10,919 0 8960 254 140 0
256 21,600 0 17,920 394 280 0
512 43,298 0 35,840 760 560 0
1024 86,687 0 71,680 1330 1120 0

,

,

,

,

,

,

,

,

,

Figure 14. The comparison of the logic utilization for hardware and software-like counters.

As can be seen in Figure 14 the number of LUTs utilized for hardware counters
increases linearly (80 LUTs/CNT) with the number of counters. Furthermore, the number
of FFs also increases linearly (Table 1; 70 FFs/CNT)—this is a serious disadvantage of this
solution. This solution quickly utilizes huge amounts of resources. However, hardware
counters do not use LUTRAMs. Software-like counters are completely different after
their implementation. The execution unit of the counter requires about 184 LUTs and
70 LUTRAMs, but each counter instance increases the number of LUTs by approximately
1.1, and the number of LUTRAMs increases by 1 LUTRAM per counter. Their functionality
is based on memory blocks, so LUTRAMs are widely utilized. Moreover, LUTs and
LUTRAMs used in FPGA are 6-input tables, so the utilized resources are constant for the
number of counters not exceeding 64. The occupancy of elements of the structure is in this
case smaller and increases much slower than for the hard structure.

To fully compare hardware counters with software-like ones, the timing analysis
is necessary. The maximum clock frequency (in MHz) of those solutions is presented
in Figure 15.

Appl. Sci. 2021, 11, 10183 17 of 23

Figure 15. The time analysis for hardware and software-like counters ([MHz]).

As can be seen for software-like counters, the frequency is always lower and decreases
faster with increasing the number of instances of the counters. Hardware counters are
much faster, even for the big structures.

Summarizing the results for the utilization and time analysis, it can be concluded that
for a small number of counters required in a given application, they can be implemented
in a hardware way, while for a large number of counters, a software-like solution should
be used.

In order to prove full functionality of the idea presented in the paper, simple CPU
units with basic instructions were implemented together with counters as presented in
Figure 6. Synthesis was carried out for xcvu5p-flvc2104-1-i (Virtex UtraScale+). Results
are in Table 2—it considers the conclusion that hardware counters are suggested for small
numbers of instances while software-like ones are dedicated for a large number of counters
instances. The xcvu5p FPGA is much more powerful than xc7a100t, but in this application,
the difference manifests itself mainly in maximum frequency.

Table 2. Result for CPU with counters.

No of Counters CPU + Hard CNTs CPU + Soft CNTs

2 LUT/FF/LUTRAM/BRAM 300/179/33/0.5 -
fmax [MHz] 302 -

16 LUT/FF/LUTRAM/BRAM 1481/1159/33/0.5 -
fmax [MHz] 300 -

64 LUT/FF/LUTRAM/BRAM 5384/4523/33/0.5 338/39/103/0.5
fmax [MHz] 298 230

128 LUT/FF/LUTRAM/BRAM - 408/39/173/0.5
fmax [MHz] - 224

256 LUT/FF/LUTRAM/BRAM - 548/39/313/0.5
fmax [MHz] - 218

512 LUT/FF/LUTRAM/BRAM - 828/39/593/0.5
fmax [MHz] - 216

1024 LUT/FF/LUTRAM/BRAM - 1467/39/1153/0.5
fmax [MHz] - 216

Units with simple operators (Figures 7 and 12) were also implemented in xc7a100t
FPGA. The direct comparison for 16, 256 and 1024 counter instances is presented in Table 3.
In terms of both speed and utilized logic, there are no drastic differences between units
for simple operators and with CAL instruction. For hardware units, it is even more
advantageous to implement a unit with CAL in terms of speed. This is probably due to
the ‘cutting’ of combinational circuits with registers, which is good for critical paths. In a
soft-like unit, more memory is implemented for the CAL unit, which in turn adversely
affects the operating frequency.

Appl. Sci. 2021, 11, 10183 18 of 23

Table 3. Direct comparison of designed counter block.

Counters
16 256 1024

LUT/FF/LUTRAM fmax LUT/FF/LUTRAM fmax LUT/FF/LUTRAM fmax
[MHz] [MHz] [MHz]

Hard CNTs
(operators) 1401/1056/0 164 22,097/16,896/0 145 89,364/67,584/0 150
Hard CNTs

(CAL) 1321/1120/0 177 21,600/17,920/0 177 86,687/71,680/0 166
Soft-like CNTs

(operators) 198/0/66 130 396/0/264 119 1271/0/1056 108
Soft-like CNTs

(CAL) 184/0/70 123 394/0/280 114 1330/0/1120 103

A comparison of the time required for the CPU to process all the operations associated
with the counter has also been made. There are 16 such instructions. For solutions with
the CAL operator, the execution of this instruction must be added in addition, while for
solutions with short operators, the CAL instruction must be added to each instruction that
affects the counter, that is: CU, CD, R, and PV/LD R. Depending on how the state of the
QU and QD outputs are working out, these executions may also be required for operations
of reading these states. For the presented CPU, the execution of each instruction requires
one clock cycle, so determining the time to operate the entire counter is to multiply this
number by the execution time of a single instruction. The situation is different for the
Siemens solutions presented for comparison. Such a comparison for a few selected Siemens
solutions is presented in Table 4. The table shows the measured processing time for the
program using all capabilities of the counter, as well as using its individual fragments.

There is huge disproportion for the older controller S7-315 between the implemen-
tation of the counter operations as a whole for the classical solution and the standard
compliant (Table 4). This disproportion has been removed in newer solutions. It can also be
seen that the structure proposed by the authors significantly exceeds the time performance
of all units taken for comparison.

However, due to the different possible solutions and the fact that the vendor PLCs
perform even relatively more tasks than the presented solution, it was decided to make
another, seemingly more interesting comparison. For example, in the S7-315 controller,
the edge detection operations take three times more than basic instruction and these
operations for the S7-319 take almost four times more time to execute. The operation of
loading the counter status into CR for this controller takes more than thirty times longer
than the basic instruction! In the authors’ proposed solution, these operations take the
same amount of time as the basic instructions. The execution times of individual counter
tasks were compared with respect to the duration of the instruction that seems to be basic
for every CPU controller—the instruction for reading the status of the contents of the PLC’s
memory cell M (Marker, Memory) was taken into account. Now it is much clearer that the
implementation of counter operations proposed by the authors in terms of time is much
more efficient than the one occurring in Siemens PLCs, regardless of whether counters are
16-bit or 32-bit, and whether in the classic version (not compliant with the provisions of the
Standard), or in the version compliant with the Standard (most closely to short operators’
ones). In the best case, for the S7-315 controller and the counter not conforming to the
Standard the difference reaches more than four times, while for the counter conforming
to the Standard and the S7-1516 controller, the difference is more than five times. These
differences are due to the fact that the counter operations, for the proposed units, thanks
to the hardware support, are implemented at the same time, or rather should be said,
the same number of clock periods, as the basic instructions (such as reading or writing a
memory cell).

Appl. Sci. 2021, 11, 10183 19 of 23

Table 4. Comparison times of counters operators’ execution times for Simatic Controllers.

S7-319 S7-319 S7-315 S7-315 S7-1214C S7-1516 S7-1516
Classical IEC Counter Classical IEC Counter IEC Counter Classical IEC Counter
Counter 16 bit Counter 16 bit 32 bit Counter 32 bit

Full Counter 957/106 1228/136 7700/59 26,730/206 7050/176 720/65 932/85
Only CU Input 137/15 1018/12 1050/8 19,630/151 1430/36 100/9 162/15
Only CD Input 133/15 40 */4.5 * 1140/9 1000 */7.5 * 970 */24 * 90/8 120 */11 *
Preset Counter 197/22 80 */9 * 1350/10 2200 */17 * 1800 */45 * 100/9 147 */13 *
Reset Counter 114/13 80 */9 * 790/6 1500 */11.5 * 1240 */31 * 100/9 143 */13 *

Read QU N.a. 40 */4.5 * N.a. 900 */7 * 410 */10 * N.a. 120 */11 *
Read QD 41/4.5 30 */3 * 510/4 500 */4 * 200 */5 * 70/6 130 */12 *
Read CV 114/13 20 */2 * 1050/8 1000 */7.5 * 1000 */25 * 70/6 110 */10 *

Basic instr.:
load memory bit 9 9 130 130 40 11 11

A/B—A number is a time of execution in ns, and the B is a quotient of this time and the time taken from the last
row. * Calculated as increase of the block execution time compared to values in row “Only CU Input”.

The comparison of execution times for proposed in the paper units is presented
in Table 5.

Table 5. Comparison of execution times for proposed in the paper units.

Hard Hard Hard Soft-Like Soft-Like Soft-Like
Figure 7 Figure 8 Figure 8 Figure 12 Figure 13 Figure 13

(OPs) (one CAL) (OP + CAL) (OP) (one CAL) (OP + CAL)

Frequency [MHz] 300 300 300 200 200 200
Full Counter 53.28/16 56.61/17 113.4/32 80/16 85/17 160/32

Only CU Input 6.67/2 10/3 10/3 10/2 10/2 10/2
Only CD Input 6.67/2 10/3 10/3 10/2 10/2 10/2
Preset Counter 6.67/2 10/3 10/3 10/2 10/2 10/2
Reset Counter 6.67/2 10/3 10/3 10/2 10/2 10/2

Read QU 6.67/2 6.67/2 6.67/2 10/2 10/2 10/2
Read QD 6.67/2 6.67/2 6.67/2 10/2 10/2 10/2
Read CV 6.67/2 6.67/2 6.67/2 10/2 10/2 10/2

Basic instr.:
load memory bit 3.33 3.33 3.33 5 5 5

A/B—A number is a time of execution in ns, and the B is a quotient of this time and the time taken from the
last row.

Most often, control programs do not use all the functionality of counters. An example
of a program that only realizes counting up events (CU), allows clearing the counter state
(R), and also reads its binary output (QU)—indicating that the setpoint (PV) has been
reached—is presented in Table 6.

Table 6. Example program execution times.

Hard Soft-Like Hard Soft-Like Hard SOft-Like
Figure 7 Figure 8 Figure 12 Figure 13 Figure 12 Figure 13

(OPs) (OPs) (one CAL) (one CAL) (OP + CAL) (OP + CAL)

Frequency [MHz] 300 200 300 200 300 200
Basic instruction 3.33 5 3.33 5 3.33 5

Execution time [ns] 26.67 40 30 45 36.65/30 55/45
Program Listing 7a Listing 7b Listing 7c/Listing 7d

As can be seen from Table 6, the program executed with the use of operators for the
circuits of Figures 7 and 8 has the best time performance. It is also worth noting that in
the case of solutions from Figures 12 and 13, only one operator command containing the
default CAL instruction can be used, while the remaining commands can be as in the
solution from the middle columns. The execution time of the program so written will then
be equal to the execution time of the program from the middle column.

Appl. Sci. 2021, 11, 10183 20 of 23

Listing 7. Example programs.

The above example uses only some of the functionalities of the counter, as it is often
used in practice. The time needed to execute the above functionality for the S7-319 controller
is, respectively: 1328 ns for counters compliant with the standard and 415 ns for counters
realized in the Simatic standard. The S7-1516 unit—from the family of the newest and the
most efficient units—need to execute the program, respectively, in: 405 ns for counters
compliant with the standard and 250 ns for Simatic standard counters. So the fastest PLC,
using a 16-bit classic counter, runs the presented program about 5 times longer than the
slowest unit presented in this paper. In the case of the fastest unit, presented in the most
left-hand side column of Table 6, this disproportion is twice as large.

Appl. Sci. 2021, 11, 10183 21 of 23

5. Conclusions

This paper presents the idea of hardware support for IEC61131-3 compliant counter
operations. The developed concept can be used in practice, whereby the counter block can
work with a dedicated microprocessor/microcontroller or a general-purpose unit. The min-
imalistic interface between the CPU and the counter block allows building PLCs with
very low latency for counter operations. The concept of bit.WORD integrated hardware/-
software controller is presented. One part of the microprocessor performs operations on
BOOL-type variables only, while the other part enables operations on WORD-type (32-bit)
variables. Such a concept enables some parallelism of the performed operations that are ex-
ecuted concurrently, e.g., bit and word data could be written to counter block concurrently.

The presented concepts have been described in Verilog HDL language and implemented
in an FPGA device with a dedicated software core CPU performing basic operations.

Two types of counters are presented. The first one is a classical hardware counter built
on the basis of flip-flops. The second type, software-like, is also hardware-based. However,
it draws on ideas of software implemented counters in its design. It is based on memory
cells on which operations are performed. Both structures are very fast and make it possible
to execute the counter update operation in a single clock cycle. Nevertheless, hardware
counters provide faster structures. However, they utilize flip-flops, making these structures
effective for small counter blocks. Hardware counters with some small modifications can
work as high-speed counters which count events regardless of the program [25]. Software-
like counters are a slightly slower design (in the range of max frequency), but they are based
on memory-dedicated FPGA structures. This makes even a counter block for 1024 counters
not a big problem. Experimental results show the validity of the adopted solutions.

Changes accompanying the fourth industrial revolution, Industry 4.0, such as large-scale
communication, increased automation, improved communication, self-monitoring, and pro-
duction of smart machines, have led to the need for increased performance of programmable
logic controllers. The Integrated Hardware-Software PLC idea is especially suitable for that
purpose. First, the control loop is relatively short in relation to classical solutions. Second,
bit.WORD units can work concurrently and in the future, support for “out of order” technol-
ogy is planned. Third, different communication modules can be easily integrated with the
PLC core, so the integration in digital communication networks is possible.

Author Contributions: Conceptualization, M.C. and R.C.; methodology, M.C., R.C. and A.M.; soft-
ware, M.C., R.C. and A.M.; hardware, R.C.; validation, M.C., R.C. and A.M.; formal analysis, M.C.;
investigation, M.C., R.C. and A.M.; writing—original draft preparation, M.C. and R.C.; writing—
review and editing, M.C., R.C. and A.M.; supervision, R.C. and M.C. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Polish Ministry of Science and Higher Education funding
for statutory activities.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ALU Arithmetic-Logic Unit
CD Count Down
CE Clock Enable
CPU Central Processing Unit
CR Current Result (accumulator)
CR_b Current Result: bit
CR_W Current Result: Word
CU Count Up
CV counter value
FF Flip-Flop
FPGA Field Programmable Gate Array

Appl. Sci. 2021, 11, 10183 22 of 23

IHSPLC Integrated Hardware-Software PLC
IL Instruction List
LD Load preset value
LUT Look-Up Table
LUTRAM Look-Up Table Random Access Memory
PII Process Image Input
PIQ Process Image Output
PLC Programmable Logic Controller
PV Preset Value
R Reset counter
RTL Register Transfer Level
ST Structured text
QU Output Up
QD Output Down

References
1. International Electrotechnical Commission. EN 61131-3:2013, Programmable Controller—Part 3: Programming Languages; Technical

report; International Electrotechnical Commission: Geneva, Switzerland, 2013.
2. John, K.; Tiegelkamp, M. IEC 61131-3: Programming Industrial Automation Systems; Springer: Berlin/Heidelberg, Germany, 2010.
3. de Sousa, M. Proposed corrections to the IEC 61131-3 standard. Comput. Stand. Interfaces 2010, 32, 312–320. [CrossRef]
4. Plaza, I.; Medrano, C.; Blesa, A. Analysis and implementation of the IEC 61131-3 software model under POSIX real-time operating

systems. Microprocess. Microsyst. 2006, 30, 497–508. [CrossRef]
5. Chmiel, M.; Mocha, J.; Hrynkiewicz, E.; Polok, D. About Implementation of IEC 61131-3 IL Function Blocks in Standard

Microcontrollers. Int. J. Electron. Telecommun. 2014, 60, 41–46. [CrossRef]
6. de Sousa, M. Data-type checking of IEC61131-3 ST and IL applications. In Proceedings of the 2012 IEEE 17th Conference on

Emerging Technologies & Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–8.
7. Carrillo, S.; Polo, A.; Esmeral, M. Design and Implementation of an Embedded Microprocessor Compatible With IL Language in

Accordance to the Norm IEC 61131-3. In Proceedings of the IEEE International Conference on Reconfigurable Computing and
FPGAs. ReConFig 2005, Cancun, Mexico, 9–11 December 2011; pp. 28–30.

8. Okabe, M. Development of processor directly executing IEC 61131-3 language. In SICE Annual Conference; The University of
Electro-Communications: Tokyo, Japan, 2008; pp. 2215–2218.

9. Rudrawar, S.; Patil, M. Design Furthermore, Implementation of FPGA Based High Performance Instruction List (IL) Processor.
IOSR J. Electron. Commun. Eng. (IOSRJECE) 2012, 1, 38–45. [CrossRef]

10. Hajduk, Z.; Trybus, B.; Sadolewski, J. Architecture of FPGA embedded multiprocessor programmable controller. IEEE Trans. Ind.
Electron. 2015, 62, 2952–2961. [CrossRef]

11. Mazur, P.; Czerwinski, R.; Chmiel, M. PLC implementation in the form of a System-on-a-Chip. Bull. Pol. Acad. Sci. Tech. Sci. 2020,
68, 1263–1273.

12. Monmasson, E.; Idkhajine, L.; Cirstea, M.; Bahri, I.; Tisan, A.; Naouar, M. FPGAs in industrial control applications. IEEE Trans.
Ind. Inform. 2011, 7, 224–243. [CrossRef]

13. Ichikawa, S.; Akinaka, M.; Hata, H.; Ikeda, R.; Yamamoto, H. An FPGA implementation of hard-wired sequence control system
based on PLC software. IEEJ Trans. Electr. Electron. Eng. 2011, 6, 367–375. [CrossRef]

14. Milik, A.; Hrynkiewicz, E. Synthesis and implementation of reconfigurable PLC on FPGA platform. Int. J. Electron. Telecommun.
2012, 58, 85–94. [CrossRef]

15. Mocha, J.; Kania, D. Hardware Implementation of a Control Program in FPGA Structures. Electr. Rev. 2012, 88, 95–100.
16. 3S-Smart Software Solutions GmbH. In User Manual for PLC Programming with CoDeSys 2.3; 3S-Smart Software Solutions GmbH:

Kempten, Germany, 2010.
17. Schneider Electric. In Concept 2.6 User Manual; Schneider Electric: Rueil-Malmaison, France, 2010.
18. Siemens AG. SIMATIC S7 S7-1200 Programmable Controller System Manual; Siemens AG: Nurnberg, Germany, 2019.
19. ISaGRAF. ISaGRAF, Software Release 5.2, User Guide, 2009. Available online: https://docplayer.net/21858762-Isagraf-getting-

started-software-release-5-2.html (accessed on 20 September 2021).
20. Chmiel, M. FPGA-based implementation of bistable function blocks defined in the IEC 61131. Microprocess. Microsyst. 2019,

65, 37–46. [CrossRef]
21. Czerwinski, R.; Chmiel, M. Hardware-Based Single-Clock-Cycle Edge Detector for a PLC Central Processing Unit. Electronics

2019, 8, 1529. [CrossRef]
22. Chmiel, M.; Hrynkiewicz, E. Concurrent Operation of the Processors in Bit-Byte CPU of a PLC. Control Cybern. 2010, 39, 559–579.

[CrossRef]
23. Chmiel, M.; Kloska, W.; Mocha, J.; Polok, D. FPGA-based two-processor CPU for PLC. In Proceedings of the International

Conference on Signals and Electronic Systems (ICSES16), Kraków, Poland, 5–7 September 2016; pp. 247–252.

http://doi.org/10.1016/j.csi.2010.03.006
http://dx.doi.org/10.1016/j.micpro.2006.06.001
http://dx.doi.org/10.2478/eletel-2014-0004
http://dx.doi.org/10.9790/2834-0143845
http://dx.doi.org/10.1109/TIE.2014.2362888
http://dx.doi.org/10.1109/TII.2011.2123908
http://dx.doi.org/10.1002/tee.20670
http://dx.doi.org/10.2478/v10177-012-0012-8
https://docplayer.net/21858762-Isagraf-getting-started-software-release-5-2.html
https://docplayer.net/21858762-Isagraf-getting-started-software-release-5-2.html
http://dx.doi.org/10.1016/j.micpro.2018.11.006
http://dx.doi.org/10.3390/electronics8121529
http://dx.doi.org/10.1016/S1474-6670(17)30563-3

Appl. Sci. 2021, 11, 10183 23 of 23

24. Chmiel, M.; Mocha, J.; Lech, A. Implementation of a Two-Processor CPU for a Programmable Logic Controller Designed on
FPGA Chip. In Proceedings of the International Conference on Signals and Electronic Systems (ICSES18), Cracow, Poland, 10–12
September 2018; pp. 13–18.

25. Siemens. Application Examples for High-Speed Counters (HSC), Application Example; Siemens AG: Nurnberg, Germany, 2016.

	Introduction
	Theoretical Background
	The Counter
	The Counter CALL

	FPGA Counters Implementations
	CPU Unit
	Hardware Counters
	Software-Like Counters
	Summary

	Experimental Results
	Conclusions
	References

