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Featured Application: To derive all possible limit cycles of a freeplay nonlinear dynamic system
using time integrations with massive combinations of initial conditions efficiently and to analyze
the limit cycle oscillation (LCO) stability of the initial conditions.

Abstract: Time integration is commonly used to obtain accurate system responses, such as the limit
cycle oscillations (LCOs) for an aeroelastic system with freeplay. However, the integrations that start
with various initial conditions (I.C.s) are usually studied case by case, so only a few system states
can possibly be focused on. This paper proposes a state space iterating (SSI) scheme to find LCO
solutions using time integration by using another method. First, a large number of arbitrary I.C. cases
are used for time integrations, but only a very short integration time is required for each I.C. case.
Second, system behaviors are depicted visually through a method that combines a modified Poincaré
map and Lorenz map, in which the LCO solutions are found as fixed points via visual inspections.
To verify the SSI scheme’s ability to find LCOs, a typical plunge–pitch wing section is established
numerically. Time integrations with both the classic scheme and the proposed SSI scheme are carried
out. The LCO results of the SSI scheme are well-aligned with those from the classic scheme. The SSI
scheme visualizes the patterns of system responses using arbitrary I.C. cases and analyzes the LCO
stability, which provides more mathematical insights into an aeroelastic system with freeplay.

Keywords: time integration; initial condition; limit cycle oscillation; freeplay; Poincaré map; Lorenz map

1. Introduction

Nonlinearities inevitably occur in most real dynamic systems and can induce abundant
nonlinear behaviors such as limit cycle oscillations (LCOs), quasi-periodic motions, and
chaos. Aeroelasticity is a discipline that usually studies aircraft dynamic systems that
involve elastic structures subject to aerodynamic forces, inertia forces, and/or control
systems [1]. Over the decades, scholars have been aware that when freeplay—one of
the most ubiquitous and typical nonlinearities on the connecting parts of an aeroelastic
system—occurs, persistent and complex nonlinear behaviors will arise and affect the
system’s safety [2,3]. Therefore, the development of effective and efficient methods to
analyze the nonlinear behaviors in an aeroelastic system with freeplay has become a major
subject of concern.

Analyses of nonlinear behaviors involve at least two important aspects: (1) obtaining
the nonlinear responses in the form of time histories or some parameters that can re-
construct the responses (e.g., the amplitudes and frequencies for an LCO) to understand
“what is happening for the system”, and (2) obtaining as many and as detailed physical and
mathematical insights as possible to suggest “why it happens or how important it is”—for
example, analyzing the stability of an LCO or determining the type of an LCO bifurcation.

Various methodologies are available for obtaining nonlinear responses, such as the
harmonic balance (HB) method, continuation, and time integration, among which time
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integration is recognized as the benchmark for other methods due to its high accuracy
and compatibility with all kinds of nonlinearity [1,4]. Time integration solves equations of
motion under a set of discrete time instances using various finite difference schemes such
as Newmark, Euler, and Runge–Kutta, thus providing a straightforward approach to obtain
accurate solutions. The accumulating errors due to finite difference have been addressed
by many researchers via schemes using adaptive time steps, such as the fourth–fifth-order
Runge–Kutta (RK45) scheme and the precise integration method (PIM) [4–6]. In addition,
the difficulty when dealing with non-smooth nonlinearities such as freeplay can be handled
by a combined scheme of the Hénon method and RK45 (Hénon–RK45) [4,7]. The kernel
of Hénon–RK45 is to find all “switching points” where the non-smooth effects arise and
move the system states to those switching points accurately. Therefore, time integration
provides excellent access for the nonlinear responses of aeroelastic systems with freeplay.

However, several weaknesses of time integration are still seen in the following aspects:
(1) Time integration falls short when analyzing the effects of initial conditions (I.C.s), which
are quite significant for understanding nonlinear behaviors. The most widely adopted
process is to assign only one principal system state a series of non-zero values and study
the LCO behaviors case by case. For example, Padmanabhan and Dowell [8] studied an
all-moving surface model and a wing-store model with various structural nonlinearities,
such as cubic stiffness, cubic damping, and freeplay. In their study, less than one hundred
I.C.s were tested in time integrations for the second model, while that number for the
first model was only one. In each I.C. case, only the pitch angle was specified as a non-
zero value, and the integrations with different I.C.s were tested case by case, which was
quite time-consuming and only partially confirmatory. However, they did determine an
important conclusion: some aeroelastic models can be very sensitive to the I.C., which
might lead to completely different system behaviors such as decaying to zero, entering into
an LCO, or achieving oscillatory divergence. Tang and Dowell [9] studied three cases of
I.C.s in Section VI.A.3 in their paper. In all three cases, only one state—the displacement
at the wing-tip for the first case and at the store pitch angle for the second and the third
cases—was specified as a non-zero value, and the authors found that the LCO behaviours
could be very sensitive to both the I.C.s and flow velocity. Tang and Dowell [10] also
found that the flutter instability boundary was significantly dependent on the initial pitch
angle. However, the authors only assessed a few non-zero initial pitch angles. Many other
studies of the I.C. effects on LCO behaviors followed a similar method to that mentioned
above [11,12].

(2) Time integration inevitably loses efficiency to some extent when dealing with
freeplay due to the need to frequently search and verify the switching points of the system.
Moreover, aperiodic/quasi-periodic motions and chaos are commonly seen in aeroelastic
systems, even for simple wing section models [13,14], and a lengthy transient phase may
also appear before a steady LCO. As a result, a wide range of time intervals could be
required for confirming an LCO in time integration [4]. This presents a dilemma, where
accurate LCO results require all switching points to be located along with a long integration
time, while a large number of I.C. cases and airspeed cases demand high efficiency. To
balance the accuracy and efficiency is, therefore, not an easy task.

This dilemma spurred us to seek another way of using time integration when dealing
with aeroelastic systems with freeplay. First, the feature of high accuracy in time integration
should remain since this feature is the basis upon which time integration serves as the
benchmark for other methods. Therefore, calculations were carried out using the Hénon–
RK45 method in this paper. Second, inspired by the application of the Poincaré map ([15]
and Section 3.4 in [16]) on aeroelastic systems with freeplay [10,17–20], as well as the
heuristic and visualized method, using a Lorenz map (Section 9.4 in [21]), we propose a
novel scheme to implement a modified Poincaré map using a Lorenz map. In this way, we
can visualize the spatial patterns of all system states through massive I.C. cases and use a
short integration time for each I.C. case. Moreover, fixed points of the modified Poincaré
map that represent the LCO solutions can be easily obtained through a visual inspection
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of the graph of state patterns, which is very efficient. The LCO stability could also be
confirmed in the same way.

Because this new scheme requires an iteration procedure in state space, we named
it the state space iterating (SSI) scheme and applied it to a typical plunge–pitch wing
section subject to unsteady aerodynamic loads. The proposed SSI scheme yields two LCO
branches for the wing section, which are well aligned with those derived from the classic
time integration using the Hénon–RK45 method. The highlights of the SSI scheme are as
follows: (1) The spatial patterns of system states are clearly pictured, so one can easily find
LCO solutions and confirm the stabilities directly and visually; (2) the integration time for
each I.C. case is reduced to a few LCO periods, so a large number of I.C. cases would not
decrease the calculation efficiency; and (3) the proposed method can be easily extended
to all other kinds of structural nonlinearities and applied to an aeroelastic system with
higher dimensions.

This paper is organized as follows: Section 2 presents the state space equations for a
general aeroelastic system with freeplay and introduces the classic Hénon–RK45 method.
Section 3 introduces the proposed SSI method and explains how the Poincaré map and
Lorenz map are modified, applied, and finally form the SSI scheme together. A plunge–
pitch aeroelastic model is established in Section 4. Then, an LCO analysis based on the
Hénon–RK45 method is implemented in Section 5. Time integrations based on the SSI
scheme are carried out in Section 6, along with the discussions and a comparison to the
Hénon–RK45 method.

2. State Space Equations and the Hénon–RK45 Method
2.1. State Space Equations of an Aeroelastic System with Freeplay

The equations of the motion of an aeroelastic system with freeplay can generally be
expressed in the form of a set of piecewise linear state space equations (e.g., Equation (5)
in [3], Equation (8) in [4], and Equation (1) in [13]):

.
x = A0x + b fFP(xk) (1)

where x is nx system states; A0 is an nx × nx constant matrix; b is an nx × 1 constant vector,
and f FP is the freeplay function, reflecting the nonlinear connection between a displacement
and a structurally restoring force. Assume that only one freeplay involved in the present
work takes the k-th state xk as its input; then, the freeplay nonlinearity can be expressed as:

fFP(xk) =


Klin(xk − δ) xk > δ
0 |xk| ≤ δ
Klin(xk + δ) xk < −δ

(2)

where Klin is the underlying linear stiffness of the freeplay and 2δ is the amount of freeplay.
In the present paper, the k-th degree of freedom (DoF) of the system is called the “freeplay
DoF” and xk is called the “freeplay state”.

Equation (2) defines two non-smooth boundaries, which are known as the two
“freeplay boundaries”: Σ1 : xk = −δ and Σ2 : xk = δ. These two boundaries sepa-
rate the state space into three subdomains: (1) S0, where |xk| ≤ δ; (2) S1, where xk < −δ;
and (3) S2, where xk > δ. Within each subdomain, the system operates as a linear system,
so the system is actually governed by two linear subsystems: (1) the underlying linear
system (ULS), when the state x is in S0, and (2) the overlying linear system (OLS), when x
belongs to S1 ∪ S2. Figure 1 illustrates freeplay and the three subdomains S1,2,3, separated
by two freeplay boundaries Σ1,2 in state space.
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state space.

2.2. Time Integrations Based on the Runge–Kutta and Hénon Methods

Time integration using a combined fourth–fifth-order Runge–Kutta and the Hénon
method (Hénon–RK45) was proposed by Hénon [7] and is widely adopted when solving
a set of state space equations with non-smooth nonlinearities. For simplicity, the state
space Equation (1) are expressed as

.
x = f(x). The Hénon–RK45 method integrates the

equations using an ordinary fourth–fifth-order Runge–Kutta scheme (RK45) initially until
any freeplay boundary is crossed by xk(t). Assume that the latest time instance before
crossing is tbreak, and the states at that time are xbreak. Then, the Hénon method moves
the freeplay state xk to the about-crossing boundary precisely via the following steps: (1)
Change the integrating variable from time t to the freeplay state xk; that is,

d
dxk

[
x
t

]
=

[
dx
dt ·

dt
dxk

1 · dt
dxk

]
=

[ .
x/

.
xk

1/
.
xk

]
=

[
f(x)/

.
xk

1/
.
xk

]
(3)

Thus, a new set of state space equations can be constructed as below:

d
dxk

y = f∗(y) (4)

where y = [xT , t]T is the new vector of the states. (2) Integrate Equation (4) using RK45
from y0 = [xT

break, tbreak]
T as xk is moved from xk,break to the about-crossing boundary,

where y becomes ye = [xT
e , te]

T . (3) Resume the integration of x(t) using the RK45 scheme
from xe(te) until the next crossing event occurs, and then repeat steps (1) to (3) until the
system responses are obtained within a sufficiently long time range.

3. State Space Iterating (SSI) Scheme
3.1. Preliminary Concepts

In this section, four important concepts are introduced before we propose the state
space iterating (SSI) scheme: (1) the Poincaré map, (2) the Lorenz map, (3) the attractors,
and (4) the basins of attraction. The first two concepts are introduced in Section 3.1.1, while
the last two are provided in Section 3.1.2.

3.1.1. Poincaré Map and Lorenz Map

For a given initial condition (I.C.) x0, a start time t0, and a time range T, Equation (1)
determines a solution x(t), where t0 ≤ t ≤ t0 + T. Such a solution can be depicted as an
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orbit Γ in state space, as shown in Figure 2a, where the closed orbit ΓC indicates a periodic
solution of the system. The Poincaré map was defined by Poincaré in 1881 [15]. Perko
provided good interpretations of the Poincaré map in Section 3.4 of his book [16]. Suppose
that Σ is a hyperplane perpendicular to a periodic orbit ΓC at x0; then, for any point x ∈ Σ
sufficiently near x0, the orbit Γ through x at t = 0 will cross Σ again at another point
P(x). The mapping x→ P(x) is called a Poincaré map, or the first return map. Figure 2a
illustrates the Poincaré map in state space.

If we could find a fixed point xL on the Poincaré map—that is, xL − P(xL) = 0—then
a periodic solution would be found at xL and an LCO could be determined. However, only
a few researchers have tried to find the fixed points of a Poincaré map. An example can be
found in Monfared’s paper [17], in which he derived the expression of a Poincaré map P(x)
numerically and calculated the fixed points of P(x). Nevertheless, the results presented by
Monfared were dependent on an artificial parameter λ that has no physical meaning, as
the author stressed. The sophisticated procedures for finding fixed points on a Poincaré
map could be difficult to apply to a general aeroelastic system.

Other applications of Poincaré maps are actually based on phase diagrams, upon
which a set of points at the Poincaré section Σ are projected. This phase diagram consists
of many discrete points and is usually simply called a “Poincaré section”. Figure 2b
shows a Poincaré section derived by Dimitriadis [13], based on which the author explained
the mechanism of the associated bifurcations and confirmed that the system was likely
undergoing chaotic motion. Many examples can be found in Figure 12 in [10], Figure 10
in [18], Figure 13 in [19], and Figure 11 in [20]. The Poincaré section provides evidence
for the type of nonlinear response (e.g., LCO, quasi-periodic motion, or chaotic motion).
However, it cannot aid in time integration for finding LCOs. Instead, it usually plays the
role of confirming what has been derived from time integration.
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The Lorenz map was proposed by Lorenz [21] while studying his famous three-
DoF system from a simplified model of convection rolls in the atmosphere. An excellent
introduction on Lorenz’s system and the Lorenz map is presented by Strongatz in Section
9 of his book [22]. In Lorenz’s system, three system states, x, y, and z, vary with time. To
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grasp the features of the system, Lorenz focused only on the connection between the n-th
local maximum zn and the next one, zn+1, as shown in Figure 3. Then, a map zn+1 = L(zn),
known as the Lorenz map, was obtained through numerous combinations of zn and zn+1,
as presented in Figure 4. Both Figures 3 and 4 were originally presented by Strogatz [22].
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Figure 4. The Lorenz map reflects the feature of the nonlinear response in Figure 3 visually. This
figure is based on Figure 9.4.3 in Strogatz’s book.

The Lorenz map (Figure 4) is significant because it reflects the nonlinear pattern of
z(t). Note that there are almost no “thicknesses” to the graph in Figure 4, so the pattern of
is clear. For any given z0, we can predict z1 by z1 =L(z0), followed by z2 = L(z1) . . . ; thus,
an iteration procedure can be constructed and allows us to predict zn simply by using a
Lorenz map n times [22]:

zn = L(L(· · · L︸ ︷︷ ︸
n

(z0) · · · )) = Ln(z0) (5)

The fixed points of the Lorenz map, zL: zL − L(zL) = 0, also determine the periodic
solutions, that is, the LCOs, and one can find these fixed points via a visual inspection
(e.g., finding the intersections of zn+1 = L(zn) and zn+1 = zn in Figure 4). The Lorenz map
also provides a visual approach to determine the stability of z(t). Lorenz noted that z(t) is
always unstable since |L(zn)| > 1 can be seen at every point in Figure 4.

Since Figure 4 was obtained at a series of discrete points, the “worst-case” scenario of
z0 could disobey the pattern of L shown in Figure 4. Tucker [23,24] proved that the Lorenz
map does accurately reflect the real features of the system and that the Lorenz attractor



Appl. Sci. 2021, 11, 741 7 of 25

exists. Stewart [25] and Viana [26] provided some interpretations of Lorenz’s work and
stressed the significance of attractors in the Lorenz map. These attractors will be introduced
in the next section.

3.1.2. Attractor and Basin of Attraction

The attractor is a special set where mapping F shows the attracting features and is
helpful for analyzing nonlinear behaviors. For a system with nx states x(t), Strogatz defined
an attractor as a set Umin ⊂ Rnx of the mapping F : xn+1 =F(xn) as follows (see Section 9.3
in [22]): (1) Any x(t) that starts in Umin stays in Umin for all time; (2) there exists an open
set U containing Umin such that if x0 ∈ U, then the distance from x(t) to U tends toward
zero as t→ ∞ ; and (3) there is no proper subset of Umin that satisfies both (1) and (2).

In summary, a set Umin is an attractor of a mapping F : xn+1 =F(xn) if
1. ∀x0 ∈ Umin : x1 ∈ Umin
2. ∃U ⊇ Umin and ∀x0 ∈ U : lim

n→∞
Fn(x0) = xn ∈ Umin

3. there is no Usub ⊂ Umin satisfies 1. and 2.
(6)

where U is called the “basin of attraction” for the attractor Umin.
An LCO is actually a special attractor that contains only one point, a fixed point xL,

which allows
xL − F(xL) = 0 (7)

Note that the mapping F could be a Poincaré map, Lorenz map, or any other carefully
designed type of mapping which reflects the periodicity of the system when any LCO occurs.

3.2. Basic Ideas of SSI

As explained in Section 3.1.2, one can find an LCO solution for a system by finding
the fixed point of a mapping F. Suppose that the system has nL LCOs. Since each LCO xL,j
is an attractor and is associated with a basin of attraction UL,j, according to Equation (6),
we could define a set XL that collects all LCOs and a set UL that contains all basins of
attraction—that is, XL ={xL| xL − F(xL) = 0} and UL = ∪nL

j=1UL,j. Our final goal is to find
XL and distinguish each separate point xL in XL.

Two basic conceptions thus emerge: (1) If we use the Poincaré map P as F, there is no
method for finding fixed points easily; if we use a Lorenz map L as F, although it is easy
to find fixed points via a visual inspection of Figure 4, the results highly depend on the
accuracy of the local maxima. Since we have already used the Hénon–RK45 method to
move system states accurately into discontinuous boundaries, we expect to find a way to
use the states that we already have instead of spending additional and considerable time
to find local maxima. Therefore, we need to construct a new mapping F instead of using P
or L directly.

(2) If the set XL is extremely difficult to obtain, we can initially find the basins of
attraction UL because we know that XL ⊆ UL according to Equation (6). Moreover, if UL is
still too difficult obtain, then we can try to find an iteration in state space:

UL ⊇ X{1}0 ⊇ X{2}0 ⊇ · · · ⊇ X{n}0 ⊇ XL (8)

We can start with any X{j}
0 that could possibly be obtained, confirm that UL ⊇ X{j}

0 ⊇
XL, and then try to contract X{j}

0 by finding another set X{j+1}
0 which would satisfy UL ⊇

X{j}
0 ⊇ X{j+1}

0 ⊇ XL. Thus, an iteration X{j}
0 →X{j+1}

0 in state space needs to be constructed,
which may need some additional results from time integration. Finally, when we find XL
and the system patterns are clear enough, we can read all xL values easily from a figure
which is similar to Figure 4.

Thus, we have two goals: (1) design a mapping F and (2) construct the iteration procedure
shown in Equation (8), which will be implemented in Sections 3.3 and 3.4, respectively.
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3.3. Modification of the Poincaré Map and Iteration Plots

First, an NT-th time return mapping F = FNT is proposed based on the Poincaré
map. We specify a Poincaré section Σ at the upper freeplay boundary, Σ : x = δ; then,
let the system evolve from a point x0(t0) at Σ to another point x∗0(t

∗
0) at Σ after NT times

crossing Σ, where NT is the “crossing number” and can be specified as any positive integer.
The orbit of x(t), which represents the evolution, is obtained by time integration with the
Hénon–RK45 method and is illustrated in Figure 5a. The proposition of NT is based on the
consideration that one may encounter a lengthy transient phase of the system responses
due to an inappropriate selection of x0 and the complexity of the aeroelastic system with
freeplay. Figure 5b provides a general sense of the freeplay state xk when the system is
evolving from x0(t0) to x∗0(t

∗
0) following the orbit Γ.
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Next, we will observe the orbit Γ from another perspective and focus on the j-th
state xj. When the integration starts with x0(t0), we have xj(t0) = x0,j, while when the
integration is terminated at x∗0(t

∗
0), we have x∗0,j(t

∗
0) = x∗0,j. Inspired by the Lorenz map,

we next construct a two-DoF plane, as shown in Figure 6, where point A represents the
orbit Γ by means of its coordinates (x0,j, x∗0,j). This is similar to what Lorenz did in Figure 4,
where Lorenz used a point with the coordinates (zn+1, zn) to represent a segment of system
behaviors. By means of this method, each I.C. case x0 is associated with x∗0 and a point
on the two-DoF plane. If we select NS I.C. cases, then we will have NS points on the
plane. When NS is a large number, sufficient points on the plane could illustrate a spatial
pattern, indicating system behaviors. Based on this pattern, we can construct the mapping
FNT : x∗0 = FNT (x0). We call this two-DoF plane an “iteration plot”. Note that we need to
construct nx − 1 iteration plots (where nx is the number of system states), with each one
corresponding to a state except for the freeplay state xk, because xk always equals δ since
both x0 and x∗0 are at Σ.
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3.4. LCO Anlaysis Using the SSI Scheme

As explained in Section 3.2, an LCO is a fixed point xL of the mapping FNT : xL = FNT (xL),
from which we can find the fixed point simply by visual inspection. Add a line lequ in the
iteration plot for xj, which has a unit slope and indicates that lequ: x∗0,j = x0,j, as shown in
Figure 7a,b. Assume that NS points on the iteration plot form a perfect line l0, which intersects
lequ at Point A; then, A provides the j-th component of xL: xL,j = x0,j

∣∣∣A = x∗0,j

∣∣∣
A

. If a fixed
point can be found at all iteration plots, then at those fixed points, all system states will behave
as periodic motions, and an LCO is determined.
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Stability can also be determined visually. For simplicity, we use F to represent the
mapping instead of FNT . We define the slope F′ j as F′ j = dFj/dx0,j, where Fj is the j-th
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component of the mapping x∗0,j = Fj(x0,j). An LCO is unstable if
∣∣F′ j∣∣ > 1. We can prove

this by linearizing Fj near a fixed point. Suppose that the fixed point is at x0,j = x∗0,j = x. A
small perturbation δx0,j = x0,j − x is given as the input of the mapping. Then,

x∗0,j = Fj(x0,j) ≈ Fj(x) + F′ j(x) · (x− x0,j) (9)

which means that
Fj(x0,j)− Fj(x) ≈ F′ j(x) · (x− x0,j) (10)

or ∣∣δFj
∣∣ ≈ ∣∣F′ j(x0,j)

∣∣ · ∣∣δx0,j
∣∣ (11)

As time progresses, the mapping will be repeated over and over again a
s x∗0,j =Fj(Fj(. . .Fj(x0,j). . .)), finally yielding:

lim
t→∞

∣∣δFj
∣∣ = lim

N→∞

∣∣F′ j(x0,j)
∣∣N · ∣∣δx0,j

∣∣→ +∞ (12)

which indicates that the LCO is unstable. Conversely, if
∣∣F′ j∣∣ < 1, the LCO is stable.

Figure 7 illustrates situations of both a stable and an unstable LCO. For simplicity, only
one lequ representing F′ j = 1 is plotted.

However, to find fixed points may not be easy, since the patterns shown in the iteration
plots may be complicated. As shown in Figure 8, the NS points form a range R0 instead of
the l0 in Figure 7; therefore, there is no obvious fixed point that can be found. Presumably,
a fixed point is hidden inside of the intersection line L0: L0 = R0 ∩ lequ. Here, we introduce
an iterating procedure to gradually find the fixed point hidden in L0, which is the SSI
scheme proposed in this paper.
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First, for each state xj, specify a range X{n}0,j and select NS samples x0,j randomly from

that range (x0,j ∈ X{n}0,j ). By combining all X{n}0,j values, we obtain a set X{n}0 ∈Rnx−1 that

contains all NS I.C. cases, x0∈ X{n}0 . Carry out time integrations so that x∗0 = FNT (x0)

can be obtained. Here, we need to check if all x∗0 values still remain in X{n}0 : x∗0∈ X{n}0

because we need to make sure that X{n}0 is a subset of basins of attraction UL, as explained

in Sections 3.1.2 and 3.2—if not, expand the range of X{n}0 until any x0∈ X{n}0 leads to

x∗0= FNT (x0)∈ X{n}0 .
Second, construct iteration plots using x0 and x∗0 as explained in Section 3.4, where

NS points form a region R0 and intersect with lequ at L0, as shown in Figure 8. The

key point is that L0 normally occupies a smaller range X{n+1}
0,j on x0,j than X{n}0,j —that is,

X{n+1}
0,j ⊆ X{n}0,j . Thus, the range of X{n}0,j can be contracted to X{n+1}

0,j . By combining all

X{n+1}
0,j on the iteration plots, a new set X{n+1}

0 ⊆ X{n}0 ⊆ UL is found.

Repeat the two procedures above, and a series set X{1}0 , X{2}0 , . . . , X{n}0 can be obtained.

The iteration will stop once X{n}0 can no longer been contracted—that is, X{n+1}
0 ≡ X{n}0 . After

that, if R0 no longer has a “thickness” to the graph, as shown in Figures 4 and 7, the L0 in
Figure 8 will degenerate to a fixed point xL, where an LCO solution is found; otherwise, quasi-
periodic motion or chaotic motion should be suspected in the set {x|x ∈ L0 = R0 ∩ lequ

}
. The

present paper only focuses on LCOs, so any other kind of motion will be estimated as an LCO
with a perturbation on the orbit. Studies on LCOs together with all other kinds of nonlinear
responses are expected in our future works.

Note that when NT = 1, the proposed mapping is a Poincaré map. However, we found
that using NT > 1 could accelerate the determination of clear patterns on the iteration plots
and make the SSI scheme more robust. We tried using NT = 3, 5, 9, and 11, all of which
yielded the same LCO results but required different numbers of SSI iterations to contract
the set X{n}0 .

4. Numerical Model and Results of the Hénon–RK45 Method

In this section, a plunge–pitch wing section is introduced, as shown in Figure 9. Time
integration with the Hénon–RK45 method is used to obtain the nonlinear LCO behaviors
when symmetrical and non-preloaded freeplay nonlinearity is added to the pitch DoF
of the wing section. The amount of freeplay is 2δ = 0.1◦. The results in this section will
serve as the benchmark for the next section, where the SSI scheme is applied to the same
numerical model. The parameters of the wing section are listed in Table A1 in Appendix A.
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An unsteady aerodynamic model is established in the frequency domain follow-
ing Theodorsen’s method [27] and can be expressed as fa(k) = 1

2 ρU2Qq(k), where
ρ = 1.225 kg/m3 is the air density, k is the reduced frequency, U is the flow velocity (m/s),
Q is the aerodynamic influence coefficient (AIC) matrix, and q = [h, α]T are the generalized
modal coordinates, where h and α denote the plunge (m) and pitch angle (rad), respectively.
Then, the rational function approximation (RFA) introduced by Roger [28] and developed
by Karpel [29] and the minimal state (MS) method proposed by Sherwood and Karpel [30]
are used to approximate the aerodynamic loads in the time domain, f̃a(t). The equations of
motion for the wing section model are as follows:

(MS
..
q + DS

.
q + KS1q)/L = f̃a(t) = 1

2 ρU2A0q + 1
2 ρbUA1

.
q + 1

2 ρb2A2
..
q + 1

2 ρU2ADr
.
r = AE

.
q + U/bR

(13)

where MS, DS, and KS1 represent the structural mass, damping, and stiffness, respectively;
A0, A1, A2, AD, and AE are matrices of the aerodynamic coefficients; and R is a diagonal
matrix that contains two lag terms, r1 = −0.08 and r2 = −0.60. The accuracy of f̃a(t)
approximating fa(k) in Equation (13) is examined by converting f̃a(t) in the Laplace domain,
where L(̃fa(t)) = 1

2 ρU2Q̃(s)q(s). Next, let the Laplace operator be s = ik, where i is an
imaginary unit. Figure 10 shows a comparison between Q̃(ik) and Q(k) with 18 reduced
frequencies: k = 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25, 0.30,
0.35, 0.40, 0.45, and 0.50. This result proves that the aerodynamic model in Equation (13) is
qualified for further calculations.
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Figure 10. The aerodynamic influence coefficient (AIC) matrix obtained in the frequency domain and
approximated in the time domain via the rational function approximation (RFA) and the minimal
state (MS) methods. Two lag terms, −0.08 and −0.06, are included in the RFA.

When freeplay nonlinearity is added to the pitch DoF, the linear structurally restoring
forces KS1q will be replaced by KS0q. Equations of motion for the wing section with
freeplay can be expressed in the form of a set of piecewise linear state space equations:

.
x(t) = Alinx(t) + bKα fNL(α) (14)

where x = [qT ,
.
qT , rT ]

T
represents the system states; Kα is the linear stiffness of pitch

DoF; Alin represents the linear coefficient matrices for the ULS; b is a constant vector;
and the eigenvalues of Alin are shown in Figure 11. For a clear comparison, the eigen-
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values of matrix ANL of the OLS are presented in Figure 12. The parameters involved in
Equations (13) and (14) are presented in Appendix A.
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Figure 11. Eigenvalues of the underlying linear system (ULS) of the wing section model varying
with the flow velocity.
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Figure 12. Eigenvalues of the overlying linear system (OLS) of the wing section model varying with
the flow velocity.

5. LCO Results of Time Integrations with the Hénon–RK45 Method

An I.C. case x0 = x(t) is specified as a case where only the pitch angle α(t) starts with a
non-zero value α0, while the rest of the system states are zero—that is, x0 = [0, α0, 0, 0, 0, 0]T .
The amount of freeplay is 2δ = 0.1◦. We first carried out time integrations with the Hénon–
RK45 method at an airspeed of U = 20 m/s and various α0 values. The results show that
the system behaviors depend highly on α0. For example, when the initial non-dimensional
pitch angle, α0/δ, equals 5.00, a three-domain LCO (3-D LCO) is found in which the phase
trajectory of α(t) between 13 and 15 s passes all three subdomains defined in Section 2.1,
as illustrated in Figure 13b. However, when α0/δ = 1.00, a two-domain LCO (2-D LCO)
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emerges, and its phase trajectory passes only two subdomains, S0 and S2, as presented
in Figure 14.
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Figure 13. A three-domain LCO (3-D LCO) emerges when the flow velocity is 20 m/s and the initial non-dimensional pitch
angle is 5.00, where the response of the freeplay state is presented by (a) a time history of 0–15 s and (b) a phase trajectory of
13–15 s.
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Figure 14. A two-domain LCO (2-D LCO) emerges when the flow velocity is 20 m/s and the initial non-dimensional pitch
angle is 1.00, where the response of the freeplay state is presented by (a) a time history of 0–15 s and (b) a phase trajectory of
13–15 s.

To determine the effect of α0/δ on LCO behaviors, 100 cases of α0/δ that vary from 0.1
to 100 subjects with a 1-cos function and 73 cases of airspeed U that increases from 12 to
20 m/s following a piecewise linear function were considered, as illustrated in Figure 15.
Therefore, 7300 cases featuring a combination of α0/δ and U were specified, and the results
derived from the time integrations are presented in Figure 16.
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It was found that the 3-D LCO exists in a continuous region with a clear boundary,
while the 2-D LCOs are distributed in numerous separated regions, as shown in Figure 16.
A close-up of the boundary of the 3-D and the 2-D LCO regions is provided in Figure 17.
Since Figures 16 and 17 can only be obtained under various α0 and U values, we are still
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unaware about how other states will affect the two LCO regions if they have non-zero
values in the I.C. cases.
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The time integrations for the 7300 cases consume a total central processing unit (CPU)
time of 4687 s (about 1.3 h); however, only the effect of α0 is investigated among all system
states. All calculations in this paper were carried out via the software package MATLAB
r2014 running on a computer with a quad-core and an eight-thread processor (Intel Core
i5-10210U CPU @ 1.60 GHz and 2.11 GHz) and 16.0 GB of random access memory.

6. LCO Analysis of Time Integrations with the SSI Scheme
6.1. LCO Results under an Airspeed of 20 m/s

In this section, we seek to find all possible LCO solutions using time integration
with the proposed SSI scheme. The SSI scheme is introduced in Section 3. First, an
airspeed of U = 20 m/s and the amount of freeplay 2δ = 0.1◦ are prescribed. A Poincaré
section is specified as Σ: x2 = α = δ, and the crossing of system states x(t) to Σ is valid
only if the crossing direction follows x4 =

.
α > 0. Second, NT-time return mapping F:

x{n+1}
0 = F(x{n}0 ) is introduced with NT = 11, where x{n}0 and x{n+1}

0 are both at Σ. Our
final goal is to find all fixed points xL of F that actually represent the LCO solutions of the
system. To do so, a set X{1}0 ⊂ Rnx−1 is specified as follows:

X{1}0 = {x0| x0 s.t.



−0.1 ≤ x0,1 = h0 ≤ 0.1
x0,2 = α0 ≡ δ

−0.1 ≤ x0,3 =
.
h0 ≤ 0.1

0 < x0,4 =
.
α0 ≤ 30.0

−0.1 ≤ x0,5 = r1 ≤ 0.1
−0.1 ≤ x0,6 = r2 ≤ 0.1


} (15)
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NS = 1000 samples of x{1}0 ∈ X{1}0 are selected randomly using the Latin Hypercube Sam-

pling (LHS) algorithm. Then, NS states x{2}0 are calculated by mapping x{2}0 = F(x{1}0 )

using time integrations, and NS points based on x{2}0 and x{1}0 are plotted on nx − 1 = 5
iteration plots, as explained in Sections 3.3 and 3.4. The iteration plot for the plunge, x1,
is presented in Figures 18 and 19 provides an interpretation of Figure 18 to visualize the
connection between the mapping F in state space and the iteration plot for x1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 28 
 

U  = 20 m/s and the amount of freeplay 2  = 0.1° are prescribed. A Poincaré section is 
specified as  : 2x    , and the crossing of system states ( )tx  to   is valid only 

if the crossing direction follows 4 0x   . Second, TN -time return mapping F : 
{ 1} { }
0 0( )n nF x x  is introduced with TN  = 11, where { }

0
nx  and { 1}

0
nx  are both at  . 

Our final goal is to find all fixed points Lx  of F  that actually represent the LCO solu-

tions of the system. To do so, a set 1{1}
0

xn X   is specified as follows: 

0,1 0

0,2 0

0,3 0{1}
0 0 0

0,4 0

0,5 1

0,6 2

0.1 0.1

0.1 0.1
{ | . . }

0 30.0
0.1 0.1
0.1 0.1

x h
x
x h

s t
x
x r
x r

 



    
   
     

     
    
 
     

X x x



 (15)

SN  = 1000 samples of {1}
0x

{1}
0X  are selected randomly using the Latin Hypercube 

Sampling (LHS) algorithm. Then, SN  states {2}
0x  are calculated by mapping 

{2} {1}
0 0( )Fx x  using time integrations, and SN  points based on {2}

0x  and {1}
0x  are 

plotted on 1xn   = 5 iteration plots, as explained in Sections 3.3 and 3.4. The iteration 

plot for the plunge, 1x , is presented in Figures 18 and 19 provides an interpretation of 

Figure 18 to visualize the connection between the mapping F  in state space and the 
iteration plot for 1x . 

 
Figure 18. Iteration plot for pitch velocity in the first iteration. The airspeed is 20 m/s. 

-0.1 -0.05 0 0.05 0.1
-1

0

1

2

3

4

5

6
x 10

-3

Plunge (m): 

P
lu

ng
e 

(m
): 

{2}x0,1

x0,1
{1}

Figure 18. Iteration plot for pitch velocity in the first iteration. The airspeed is 20 m/s.
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Now, we need to check if the initial set X{1}0 specified in Equation (15) is contained in

the basins of attraction UL. Note that any initial plunge x{1}0,1 ∈ X{1}0,1 = [−0.1, 0.1] will still

remain in x{1}0,1 after the mapping—that is, x{2}0,1 ∈ X{1}0,1 . Similar situations are seen in the

other system states. Therefore, we confirm that for any x{1}0 ∈ X{1}0 , x{2}0 = F(x{1}0 ), which

means that X{1}0 ⊆ UL. Thus, we know that there must be some fixed points of F hidden

inside region X{1}0 .

To determine the fixed points, add a line lequ that represents x{1}0,1 = x{2}0,1 in Figure 18,
and find the intersection region L0 = R0 ∩ lequ, where region R0 consists of NS points.

Then, let X{2}0,1 be the range of L0 projected on x{1}0,1 , as shown in Figure 20; that is,

X{2}0,1 =
[
−7.34× 10−4, 5.42× 10−3]⊆ X{1}0,1 . A huge contraction is seen in X{1}0,1 →X{2}0,1 .

Similar procedures are implemented to states x0,3, x0,4, x0,5, and x0,6. Finally, we have

X{2}0 ⊆X{1}0 ⊆ UL. The procedure of X{1}0 contracting to X{2}0 is called “Iteration-1”.

Then, by repeating the procedures above, we can obtain X{3}0 from “Iteration-2”, X{4}0

from “Iteration-3”, and X{5}0 from “Iteration-4”. For the present wing section model, four
iterations are sufficient to find the LCO solutions accurately because further implementation
of the iterations will show that X{5}0 ≈X{6}0 ≈X{7}0 ≈ · · · . Table 1 presents the range of

X{n}0,j in each “Iteration-n” for each system state xj, while Figure 21 illustrates the first
four iterations.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 28 
 

 
Figure 20. Illustration of the range of ࢄ૙,{࢔}࢐ being contracted to ࢄ૙,࢐{࢔ା૚} by means of the spatial pat-
tern. The airspeed is 20 m/s. 

Table 1. Ranges of states, relative changes in ranges, and the central processing unit (CPU) time consumed in each itera-
tion. The airspeed is 20 m/s. An iteration will terminate if all ranges vary within 5% compared to those in the last iteration. 

Iteration-࢞ ࢐࢞  ࢔૚, m ࢞૜, m/s ࢞૝, °/s ࢞૞  ࢞૟  CPU time 

 ૙,௝{ଵ} min. −0.1 −0.1 0.00 −0.1 −0.1ࢄ 1
— 

max. +0.1 +0.1 30.00 +0.1 +0.1 

2 
૙,௝{ଶ} min. െ7.34ࢄ ൈ 10ିସ െ6.14 ൈ 10ିଶ 0.00 0.00 െ3.43 ൈ 10ିଷ 

82.82 s max. ൅5.42 ൈ 10ିଷ ൅5.60 ൈ 10ିଶ 29.98 ൅4.79 ൈ 10ିଵ 0.00 ∆หܺ{ଵ,ଶ}ห หܺ{ଵ}หൗ  −96.92% −41.23% 0.06% −8.12% −98.29% 

3 
૙,௝{ଷ} min. െ6.83ࢄ ൈ 10ିସ െ2.49 ൈ 10ିଶ 0.02 0.00 െ7.44 ൈ 10ିସ 

78.54 s max. ൅5.91 ൈ 10ିହ ൅1.57 ൈ 10ିଷ 27.42 ൅2.11 ൈ 10ିଵ ൅1.11 ൈ 10ିହ ∆หܺ{ଶ,ଷ}ห หܺ{ଶ}หൗ  −87.93% −77.46% 8.61% −55.81% −77.97% 

4 
૙,௝{ସ} min. െ5.35ࢄ ൈ 10ିସ െ2.50 ൈ 10ିଶ 0.00 0.00 െ7.44 ൈ 10ିସ 

78.66 s max. ൅4.97 ൈ 10ିହ ൅1.48 ൈ 10ିଷ 12.09 ൅2.12 ൈ 10ିଵ 0.00 ∆หܺ{ଷ,ସ}ห หܺ{ଷ}หൗ  −21.20% 0.23% 55.88% 0.77% −1.39% 

5 
૙,௝{ହ} min. െ5.04ࢄ ൈ 10ିସ െ2.52 ൈ 10ିଶ 0.00 0.00 െ7.47 ൈ 10ିସ 

78.27 s max. ൅6.10 ൈ 10ିହ ൅1.46 ൈ 10ିଷ 12.14 ൅2.11 ൈ 10ିଵ ൅1.10 ൈ 10ିହ ∆หܺ{ସ,ହ}ห หܺ{ସ}หൗ  −3.32% 0.81% −0.41% −0.30% 1.86% 

Figure 20. Illustration of the range of X{n}0,j being contracted to X{n+1}
0,j by means of the spatial pattern.

The airspeed is 20 m/s.



Appl. Sci. 2021, 11, 741 19 of 25

Table 1. Ranges of states, relative changes in ranges, and the central processing unit (CPU) time consumed in each iteration.
The airspeed is 20 m/s. An iteration will terminate if all ranges vary within 5% compared to those in the last iteration.

Iteration-n xj x1, m x3, m/s x4, ◦/s x5 x6 CPU time

1 X{1}0,j
min. −0.1 −0.1 0.00 −0.1 −0.1 —
max. +0.1 +0.1 30.00 +0.1 +0.1

2
X{2}0,j

min. −7.34× 10−4 −6.14× 10−2 0.00 0.00 −3.43× 10−3

82.82 smax. +5.42× 10−3 +5.60× 10−2 29.98 +4.79× 10−1 0.00

∆
∣∣∣X{1,2}

∣∣∣/∣∣∣X{1}∣∣∣ −96.92% −41.23% 0.06% −8.12% −98.29%

3
X{3}0,j

min. −6.83× 10−4 −2.49× 10−2 0.02 0.00 −7.44× 10−4

78.54 smax. +5.91× 10−5 +1.57× 10−3 27.42 +2.11× 10−1 +1.11× 10−5

∆
∣∣∣X{2,3}

∣∣∣/∣∣∣X{2}∣∣∣ −87.93% −77.46% 8.61% −55.81% −77.97%

4
X{4}0,j

min. −5.35× 10−4 −2.50× 10−2 0.00 0.00 −7.44× 10−4

78.66 smax. +4.97× 10−5 +1.48× 10−3 12.09 +2.12× 10−1 0.00

∆
∣∣∣X{3,4}

∣∣∣/∣∣∣X{3}∣∣∣ −21.20% 0.23% 55.88% 0.77% −1.39%

5
X{5}0,j

min. −5.04× 10−4 −2.52× 10−2 0.00 0.00 −7.47× 10−4

78.27 smax. +6.10× 10−5 +1.46× 10−3 12.14 +2.11× 10−1 +1.10× 10−5

∆
∣∣∣X{4,5}

∣∣∣/∣∣∣X{4}∣∣∣ −3.32% 0.81% −0.41% −0.30% 1.86%
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Figure 21. Iteration plots for each state in each iterating process, presenting the procedure for the range X{n}0,j being
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After Iteration-4, clear spatial patterns emerge on each of the five iteration plots, as
shown in the rightmost column of Figure 21. For example, we can focus on the iteration
plot for x0,4, which is located at the third row and fourth column in Figure 21, and re-plot
it in Figure 22. Three fixed points can be easily distinguished: one is at x0,4 ≈ 10.6 deg/s,
one is at x0,4 ≈ 0.45 deg/s, and the last one is at x0,4 = 0. The first two fixed points
represent two LCO solutions, while the last fixed point indicates a convergence of the
system responses. The amplitudes and frequencies are derived from the time integrations
of Iteration-4; then, a plot of the LCO amplitude/LCO frequency versus x0,4 is given in
Figure 23. It is found that the amplitude of the LCO arising at x0,4 ≈ 10.6 deg/s is larger
than 1.0, which indicates that this is a 3-D LCO, and the other LCO is determined as a 2-D
LCO, as its relative amplitudes are less than or around 1.0.

As a result, the system under an airspeed of 20 m/s has two LCOs: one is a 3-D LCO
that has a non-dimensional amplitude fluctuating within 7.22–7.27 and a frequency of
about 4.98 Hz, and the other one is a 2-D LCO whose non-dimensional amplitude is about
0.46 and whose frequency is 4.26 Hz. Moreover, both LCOs are stable since the slopes of
the mapping F near the fixed points satisfy |F′| < 1, as explained in Section 3.3.
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the convergence of the system response, are found. The airspeed is 20 m/s.
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Figure 23. LCO amplitudes and dominant frequencies versus pitch velocity for the fourth iteration.
The airspeed is 20 m/s.

6.2. LCO Results Varying with the Airspeed and a Comparison to Hénon–RK45

Similar procedures are implemented for the 18 cases of airspeeds, which increase from
12.4 to 26.0 m/s. Two branches of LCOs are found, as illustrated in Figures 24 and 25: (1) A
3-D LCO arises at 12.4 m/s, with ALCO and fLCO fluctuating within 2.48–2.85 and 4.29–4.51
Hz, respectively, depending on the I.C., and ends at about 26.0 m/s, where ALCO surges
over 100 and fLCO increases to 5.22 Hz; (2) a 2-D LCO exists at the airspeeds between 12.2
and 23.0 m/s, where ALCO increases from 0.082 to 0.487 while fLCO decreases from 4.74 to
3.76 Hz. It is also found that the amplitude and the frequency of the 3-D LCO are quite
sensitive to the I.C. at lower airspeeds (about 12.2–13.5 m/s), while such sensitivity almost
disappears at higher airspeeds. However, the I.C. almost has no influence on the 2-D LCO.
The SSI scheme also confirms that all LCOs are stable with respect to any system state.

The LCO results derived from time integrations with the Hénon–RK45 method and the
SSI scheme are compared in Figures 24 and 25. The Hénon–RK45 method uses 7300 I.C.s
(see Figure 15), and the LCO results are analyzed based on a simulation time of 15–20 s,
which means that the frequency resolution is 0.25 Hz according to Fast Fourier Transfor-
mation (FFT), leading to the discontinuity of frequency shown in Figure 25. In the case of
airspeed U > 24 m/s, the system response can be a stable LCO, quasi-periodic motion, or
chaotic motion, so the points on Figure 24 after U > 24 m/s have a somewhat irregular
distribution. However, with respect to the stable 3-D and 2-D LCOs, the results from the
SSI scheme agree well with those from the Hénon–RK45 method.
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Figure 24. Comparison of LCO non-dimensional amplitudes varying with airspeed between the state
space iterating (SSI) scheme and the time integrations with the Hénon–RK45 method.
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Figure 25. Comparison of the LCO dominant frequencies varying with airspeed between the SSI
scheme and the time integrations with the Hénon–RK45 method.

7. Conclusions

This paper proposed a state space iterating scheme (SSI) to find LCO solutions via a
visualization procedure. Inspired by the Poincaré map and the Lorenz map, an NT-time
return mapping F was defined and visualized as a set of iteration plots, in which the LCO
solutions were represented as the fixed points xL of F and were found within a range X0

that continuously contracts through a series of iterations: X{1}0 ⊇ X{2}0 ⊇ · · · ⊇X{n}0 . When

the range X{n}0 is sufficiently contracted and the spatial patterns shown in the iteration
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plots are clear enough, the fixed points can be easily distinguished via a visual inspection,
and thus, LCOs can be found.

To verify the SSI scheme, a typical plunge–pitch wing section with pitching freeplay was
established. Time integrations with a combined fourth–fifth-order Rung–Kutta method and
the Hénon method (Hénon–RK45), as well as the proposed SSI scheme, were applied to the
model. Both methods determined a three-domain LCO (3-D LCO) and a two-domain LCO
(2-D LCO) under a wide range of flow velocities. The SSI scheme confirmed the minimal
X{n}0 at the fourth iteration and ultimately found the two LCOs xL ∈ X{4}0 simply through a
visual inspection of the iteration plots. The LCO results obtained by SSI were found to be well
aligned with those of the Hénon–RK45 method, as shown in Figures 24 and 25.

The highlights of the study are as follows: (1) To obtain the LCO results, Hénon–RK45
checked 100 initial pitch angles for each of the 73 airspeed cases, without guaranteeing that
any other arbitrary initial conditions (I.C.s) would lead to the same LCO results, while SSI
used 1000 arbitrary I.C.s for each of the 18 airspeed cases, uncovered clear spatial patterns
of the system responses, and determined the basins of attraction of the system, which makes
the LCO results suitable for any I.C.; (2) the spatial patterns depicted by the SSI scheme
could be easily utilized in future studies on other nonlinear responses, such as quasi-
periodic motions and chaotic motions, which are usually analyzed via Poincaré sections;
(3) the SSI scheme can be easily extended to any other kind of structural nonlinearities and
applied to an aeroelastic system with higher dimensions.

However, further studies on SSI are needed, including its application to points (2) and
(3) above. We must also determine a better method for selecting arbitrary I.C.s and the
parameter NT , which is currently part of our ongoing research.
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Appendix A Parameters of the Wing Section Model

This appendix provides the parameters and matrices of the numeric model in Section 3.1.

Table A1. Parameters of the wing section.

Symbol Explanation Value Unit

c Chord length 0.200 m

b Half chord length 0.100 m

L Wing span 0.400 m

xα Distance between flexural axis and central of gravity 0.010 m

x f Distance between leading edge and flexural axis 0.075 m
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Table A1. Cont.

Symbol Explanation Value Unit

a a = (x f − b)/b −0.250 —

M Gross weight of the wing section 2.900 kg

S Static moment: S = −Mxα −0.029 kg·m

Iα Inertia moment of the wing section 0.024 kg·m2

Kh Linear plunge stiffness 2372.0 kg·m/s2

Kα Linear pitch stiffness 35.50 kg·m2/s2

Ch Plunge damping 3.32 kg·m/s

Cα Pitch damping 0.04 kg·m2/s

The structural modeling procedures are similar to those in Edwards’ work [31], which
deals with a three-DoF typical wing section:

MS =

[
M S
S Iα

]
, DS =

[
Ch 0
0 Cα

]
, KS1 =

[
Kh 0
0 Kα

]
, KS0 =

[
Kh 0
0 0

]
(A1)

Table 2. Matrices in the equations of motion of the wing section model.

A0 A1 A2

0.0081 1.2336 −5.0805 1.4583 −7.4112 −0.1568
0.0002 0.0308 −0.1270 −0.0264 0.1289 −0.0196

AD AE R

0.9756 0.9756 −0.3265 −0.2824 −0.08 0
0.0244 0.0244 −2.3639 −0.5666 0 −0.60

Alin =

 02×2 I2 02×2

−M−1
A KA0 −M−1

A DA
1
2 ρU2M−1

A AD

02×2 AE U/b ·R

 (A2)

ANL =

 02×2 I2 02×2

−M−1
A KA1 −M−1

A DA
1
2 ρU2M−1

A AD

02×2 AE U/b ·R

 (A3)

where 
MA = MS − 1

2 ρb2A2

DA = DS − 1
2 ρbUA1

KA0 = KS0 − 1
2 ρU2A0

KA1 = KS1 − 1
2 ρU2A0

(A4)

and

b =


02×1

M−1
A

[
0
1

]
02×1

 (A5)
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