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Abstract: In this paper, we propose several methods to improve the performance of multiple object
tracking (MOT), especially for humans, in dynamic environments such as robots and autonomous
vehicles. The first method is to restore and re-detect unreliable results to improve the detection.
The second is to restore noisy regions in the image before the tracking association to improve the
identification. To implement the image restoration function used in these two methods, an image
inference model based on SRGAN (super-resolution generative adversarial networks) is used. Finally,
the third method includes an association method using face features to reduce failures in the tracking
association. Three distance measurements are designed so that this method can be applied to various
environments. In order to validate the effectiveness of our proposed methods, we select two baseline
trackers for comparative experiments and construct a robotic environment that interacts with real
people and provides services. Experimental results demonstrate that the proposed methods efficiently
overcome dynamic situations and show favorable performance in general situations.

Keywords: computer vision; multiple object tracking; online object tracking; image restoration;
data association; visual embedding

1. Introduction

The multiple object tracking (MOT) problem aims to assign IDs to multiple detected
targets and to estimate the trajectory of the object until each tracking target disappears.
Recently, high-performance real-time MOT research studies are required for scenarios such
as human-computer interaction, autonomous vehicles, and humanoid robots. For this rea-
son, researches for improving real-time MOT performance such as [1–5] have been actively
conducted. Existing MOT frameworks can be classified into two types, offline and online,
depending on the temporal range of data to be considered [6]. The offline methods [7–9]
consider the range from the past to the future, while the online methods [10–14] consider
the range from the past to the present. In general, the offline methods perform better
than the online methods by global optimization considering the future state, but they are
not suitable for real-time tracking applications such as the previous scenario examples.
The online MOT frameworks for real-time tracking are often applied in complex, dynamic,
or unexpected situations, but overcoming tracking failures in these environments remains
a challenge.

Online MOT frameworks need the best data association in every frame because only
current and past frames are considered. In the MOT problem, the data association generally
means updating the state of an object being tracked by the collaboration of a motion
model and an appearance model. The motion model compares the positional similarity
between the current state of the tracking object and the current detection result. In this
case, prediction methods such as Kalman filters [15,16] or particle filters [17,18] are used to
predict the current position of the tracking object, and the appearance model compares the
similarity of the appearance between the past state of the tracking object and the present
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detection result. In this case, a method such as visual embedding is used to effectively
extract features from a noisy image.

The dynamic movements of a tracking object and a camera in a real-time environment
cause the reliabilities of the motion model and the appearance model to decrease. Motion
models are negatively impacted by the complexity of moving the camera and objects
separately. This is because the motion models of existing frameworks generally adopt
linear functions, making it difficult for them to infer objects with nonlinear movements.
Appearance models are negatively affected by motion blurs caused by dynamic movements.
Because the surrounding pixel information is mixed, the detailed pixel representation,
especially the texture information of the picture, is lost, and the outline of the object is
blurred. This causes difficulties in distinguishing the boundary between the background
and the object. The motion blur refers to a phenomenon in which pixels bleed due to the
movement of the photographing object while the photosensor of the camera records an
image [19–21]. The phenomenon occurs often when there is vibration caused by an uneven
road surface, when the tracking target moves quickly, and when the camera mounted on
the moving platform moves. As a result, the dynamic situation during multiple object
tracking negatively affects the motion model and the appearance model.

In this paper, we propose three methods to overcome the limitations of existing
multiple object tracking in the event of dynamic movement. The first is to perform re-
detection after the image restoration on the detection result whose reliability is lowered
by noise. This makes it possible to calibrate ambiguous detection results that the detector
could not screen. The second is to classify and restore the damaged area before the image is
entered into the appearance model. This makes it easy to guess the intact state of a damaged
image and match the state of the existing object that the appearance model remembers
with the current detection of the state change. We adopt and train a GAN (generative
adversarial networks)-based image inference model to recover damaged images due to
dynamic situations in the previous two approaches. The third method introduces a face
appearance model, which is an association method that uses face features. This improves
the performance of the discrimination using a large amount of information on the face and
a relatively low number of occlusions.

Many MOT studies use the MOT Challenge [22] Benchmark dataset to evaluate the
performance of the framework. However, since it targets a stationary or smoothly moving
environment, it is difficult to simulate an environment (e.g., robot, car) in which real-time
MOT is applied. We thus constructed a robot environment that can provide services in a
real-time environment and produced the images observed from the robot viewpoint as a
benchmark set following the MOT16 benchmark rule.

Our main contributions in this paper are as follows.

1. We present three methods to enhance the performance for multiple object tracking
in a dynamic environment. Those three methods overcoming the dynamic situation
contributes to improved detection, improved identification, and a lower chance of
association failures, respectively.

2. Since each of the proposed methods has modularity, there is no cost for re-learning
the entire framework, so it can be easily attached to various trackers.

3. To demonstrate the effectiveness of the proposed methodology, we constructed a
benchmark set on a real robot environment and verified our approaches through
experimental ablation studies.

2. Related Work

Online multiple object tracker. Strong motion models and appearance models are
essential for online MOT methods due to the consideration of the optimal selection in
the current frame without future frames. With the advent of the latest advanced object
detectors [23–25], various MOT methods that link their tracking based on detection results
have become popular. The work in [26] proposed a simple motion model based on a Kalman
filter affected by the performance of the latest CNN (convolutional neural network)-based
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object detector. Furthermore, [27] proposed a model using a CNN-based appearance
model for [26]. The authors in [28] proposed a method of classifying the correct detection
candidates among the crowd and selecting the optimal detection candidate using the
heatmap generation model. [29] adopted an RNN (recurrent neural network) to cope with
the problem of the occlusion between objects by integrating the spatial and temporal
information. The work in [30] improved model performance by integrating the information
from the CNN intermediate layer to compensate for the information loss that existing
tracking frameworks result from using only the last CNN information in a detector. In the
situations of providing real-time services, dynamic or unexpected movements frequently
occur, but the existing MOT methods do not often cope with such situations resulting in the
poor associations. On the contrary, we apply a method to overcome the dynamic situations
to the traditional online MOT frameworks and evaluate its effectiveness in the experiments.

GAN-based image inference model. Generative adversarial networks (GAN) [31]
propose an adversarial loss in which two competitors, discriminator and generator, compete
and learn from each other. Deep Convolutional GAN (DCGAN) [32] designed a CNN-based
generator for image inference using a GAN. It indicates that when using the adversarial
loss for the image inference problem, the pixel distribution close to the actual data can be
obtained, resulting in more realistic images compared to the autoencoder-based model. As
a result, great progress in the image inference problem such as the style transfer [33–35],
the super resolution [36], and deblurring [37]. In this paper, we implement an image
restoration module for MOT by adopting and learning a GAN-based image inference
model for the damaged image restoration.

Appearance embedding model. Identifying whether two images represent the same
person or not is accompanied by considerable difficulties due to the curse of dimensionality.
In particular, identifying an unaware person adds to the difficulty. To overcome these
problems, image embedding methods [38,39] using CNN were proposed recently. These
models can learn to represent the whole body or a part of the body as feature vectors
with small dimensions, and after learning, they are able to extract features of people that
are not involved in the learning. In particular, [39] proposed a learning method using
the triplet loss which achieves great results in facial recognition. We try to use a face
feature to relax the problem that occurs when only a body feature is used to implement
the identification function. There are two problems with using body features only. Firstly,
because the boundaries become blurred when the occlusion between multiple people
occurs, the embedding results mixed with the features of several people can be extracted.
Secondly, the objects may be wearing similar clothes, which leads to less differentiation. To
alleviate these limitations, we propose an appearance model using face features with a low
incidence of occlusion and high discrimination.

3. Method

Our main goal is to overcome association failures caused by dynamic situations when
executing MOT in real-time. Figure 1 shows the overall structure of our framework as data
flows. In this section, we propose three strategies to achieve our goals in the order of data
flow. The following summarizes each of the methods we propose.

Figure 1. A schema of the proposed model. It illustrates the integration and work flow of our three methods.
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Section 3.1 Re-detection: Re-detection is performed in the detection/re-detection process.
This section describes the process of defining ambiguous detection results and re-detecting
them after image restoration to increase the reliability of the detection results.

Section 3.2 Site restoration: This section presents the site restoration process of defining
the noisy area and restoring the image of such an area to improve the reliability of the
image to be used in the appearance model.

Section 3.3 Face appearance model: the face appearance model is performed in the data
association process, and defines how to associate the appearance model that uses face
features to overcome connection failures of baseline trackers.

3.1. Re-Detection

Since the online MOT framework does not consider the future state, the best choice
is needed at every frame. Since the candidate for the association is generally proposed
from the detection result, it has a high dependency on the detection result. Therefore, if the
false detection on an object from an image with noise can be reduced, the tracking on the
wrong object and the loss of the tracked object due to the detection failure can be prevented.
Figure 2 illustrates our re-detection method. It aims to increase the detection reliability by
re-detection after reconstructing the image for the ambiguous detection results that are not
too low or not high enough.

Figure 2. Schematic representation of the proposed re-detection method. It illustrates how the re-detection method works
according to the data flow.

Firstly, the raw detection result is required to classify the ambiguous detection result.
The raw detection result Dorigin of the current input image x can be obtained using the
pre-trained HumanDetector as follows.

Dorigin = {d1, d2, . . . , ddetectsNum} ← HumanDetector(x) (1)

The variable d means a detected instance which includes the location information
(x, y, w, h) and the confidence cbody, thus, d = (bdetect, cbody). Here, bdetect means the x,y
coordinates, area, and height values that make up the bounding box, and cbody means the
reliability of the detected object.

To classify an ambiguous detection set, Dorigin should be separated into an ambiguous
detection set Damb and a verified detection set Dveri f ied depending on whether re-detection
is needed or not, respectively. We define the confidence threshold, τdetect and τamb to
classify detection results with the confidence that is not too low or not too high enough.
τdetect stands for the most basic threshold for the detection, and τamb is a threshold to find
ambiguous detections by ignoring low confidences. This process is defined as ambiguous
detect filtering and is formulated as:

Dveri f ied =
{

d | cbody ≥ τdetect, d ∈ Dorigin
}

(2)

Damb =
{

d | τdetect > cbody ≥ τamb, d ∈ Dorigin
}

(3)
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If the value of the confidence cbody is lower than τamb, the target is determined to be a
non-object, thus it is excluded from the detection set and not used in the tracker.

For the classified ambiguous detection set Damb, the re-detection set Dredetect can be
obtained using the following definition. It functions to restore the ambiguous detection
regions and then re-detect them by reusing existing detectors. The RestorationModule
used to restore damaged images uses a GAN-based image inference model. The detailed
procedure of training the module to optimize our model is described in Section 4.1.

Dredetect ← HumanDetector(RestorationModule(Crop(xcurrent, Damb))) (4)

To classify reliable detections from the re-detection result set Dredetect, we use the
following definition. It classifies the re-verified detection using the detection threshold
τredetect for the confidence credetect.

Dre−veri f ied =
{

d | credetect ≥ τredetect, d ∈ Dredetect
}

(5)

As a result of these processes, a combination of Dveri f ied and Dre−veri f ied can be used
to construct a detection set Dcomplete to be used for the tracking association. However, since
the re-detected object may indicate the same object as the existing detection result, there is
a possibility that the duplicate objects exist in Dcomplete. Therefore, NMS (non-maximum
suppression) is performed to remove the redundancy after constructing the union. The fol-
lowing definition refers to the NMS process, wher τnms is the IOU (intersection over union)
threshold for the NMS.

Dcomplete = NMS(Dveri f ied ∪ Dre−veri f ied, τnms) (6)

The final detection set Dcomplete is used as a set of candidates for restoring the blur
sites in the Section 3.2.

3.2. Site Restoration

Frameworks for the online MOT problem generally require one or more powerful
appearance models. The appearance model aims to determine that a tracklet (an object
being tracked) and a detected object are the same object based on their visual information.
The appearance model is mainly used when the motion model cannot predict due to the
complicated movement of the object, or when re-identification is needed based on the
visual data of the object due to the failure of the detection. However, unpredictable noise
such as motion blur caused by the movement of an object has a negative effect on the data
association because of difficulties in the identification of the appearance model. We thus
discriminate whether the detected objects are blurry images or sharp images before the
image is used in the appearance model, and then restore the detection regions of those
discriminated as blurry images. Figure 3 represents our site restoration method.

Figure 3. Schematic representation of the proposed site restoration method.

To classify whether each element of Dcomplete is blurry or sharp, we use the Laplacian
kernel, inspired by [40]. Laplacian kernels are generally used to detect edges of an image,
but can be used to quantify the blur of an image as well. The usability is based on the fact
that sharp images show a large number of edge detections. On the contrary, blurry images
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show a small number of edge detections. The variance value of the convolution operation
using a Laplacian kernel is called Laplacian variance, which means the quantified blur.
Therefore, we can discriminate that the Laplacian variance value is blurry at when low or
and sharp at when high.

We define the function to find Laplacian variance of the detection set D as:

L = {li | i = 1, 2, . . . , detectsNum} ← LaplacianVariance(GrayScale(x), D) (7)

If the Laplacian variance is lower than the blur threshold τblur, d is determined to be thea
blurry image.

Dblurry =
{

d | l ≤ τblur, d ∈ Dcomplete
}

(8)

Finally, the image restoration is conducted on the blurry image using the Restoration
Module. Consequently, in order for the reconstructed image to be used in the appearance
model, the damaged areas of the original image are replaced with the reconstructed image.

3.3. Face Appearance Model

When tracking a person, the face of the target can be observed in many situations,
allowing face data to be used for identification. The face data is advantageous for iden-
tification compared to the other recognizable information of the body. For example, it is
less likely to meet people with similar faces than to meet people with similar fashions.
In addition, features are less likely to be mixed because the possibility of occlusion is
relatively less than when using the whole body. We propose an appearance model that
uses face features to compensate for the problems that arise when using only body features.
Figure 4 depicts our proposed face appearance model.

Figure 4. Schematic representation of the proposed face appearance model.
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Our association method aims to associate candidates that are not yet associated after
executing that of the baseline tracker. The unassociated detection set is defined as Dmissed =
{d1, d2, . . . , dmissedDets} and has the detection position d as an element. The unassociated
tracklet set is defined as Tmissed = {H1, H2, . . . , HmissedTrks} and has a tracklet H as an ele-
ment. Since the tracklet has its past trajectories, it is defined as H =

{
h1, h2, . . . , hhistoryNum

}
where h is the past position as an element.

For the extraction of face features, the following definitions are used to detect and
embed the candidates’ faces. At this time, the embedding is performed only for those
whose detected face confidence are greater than or equal to τ f aceDetect as follows:

b f ace, c f ace ← FaceDetector(Crop(x, d)) (9)

v← FaceEmbeddingModule(Crop(x, b f ace)) i f c f ace ≥ τ f aceDetect (10)

Consequently, the feature vector vd is obtained from the detection position d, and the
feature vector set VH is obtained from the tracklet H. VH is defined as
VH =

{
vhp |p = 1, 2, . . . , f eatureNum

}
which is a set of feature vectors vhp from the past

position h of tracklet H. f eatureNum denotes the number of face features derived from H,
and satisfies f eatureNum ≤ historyNum since a face may not be detected at a past position.

To make the association, the face appearance model needs to calculate the similarity
between one detect and one tracklet—that is, the distance between vd and VH . We propose
three distance measurements to consider various environments when calculating the dis-
tance.

The first distance measurement uses the minimum distance between vd and VH as
follows:

lmin = min
p
(
∥∥vd − vph

∥∥
2). (11)

The second distance measurement uses the average distance between vd and VH as
follows:

lmean =
1

f eatureNum

f eatureNum

∑
h=1

(
∥∥vd − vph

∥∥
2). (12)

The third distance measurement uses the distance between vd and the most recent
vector vp f eatureNum of VH as follows:

llast =
∥∥∥vd − vp f eatureNum

∥∥∥
2
. (13)

The distance between the detect and the tracklet is measured by selecting the appro-
priate measurement from the three proposed distance measurements. If the distance is less
than the threshold τ f ace, it is determined to be the same person and the association can be
proceeded. The detailed association procedure is defined with the following Algorithm 1.
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Algorithm 1: Proposed face appearance model algorithm
Input : X = {x1, x2, . . . , xend} # Image sequence

∆ = {D1, D2, . . . , Dend} # Detection result set
Output :{T1, T2, . . . , Tend} # Tracking result set
Data : D = {d1, d2, . . . , ddetectsNum} # Detection set for a frame

T = {H1, H2, . . . , HtracksNum} # Track set for a frame
H =

{
h1, h2, . . . , hhistorysNum

}
# The past position set of an object being

tracked
d # Location of a detected object
h # The past position of an object being tracked

Initialization: T ← ∅
foreach x, D ∈ (X, ∆) do

Tmatch, Tlost, Dmatch, Dcandidate ← BaselineTracker.AssociationMethod(x, D)
foreach H ∈ Tlost do

VH ← FaceEmbeddingModule(FaceDetector(H))
foreach d ∈ Dcandidate do

vd ← FaceEmbeddingModule(FaceDetector(d))
l ← DistanceCalculate(VH , vd) # by Equations (11)–(13)
if l < τ f ace then

Tmatch ← Tmatch ∪ H, Tlost ← Tlost − H
Dmatch ← Dmatch ∪ d, Dcandidate ← Dcandidate − d
Association(H, d)
break

end
end

end
BaselineTracker.NewTracks(Dcandidate)

end

4. Experiment
4.1. Experiment Configuration

Baseline tracker. Two baseline trackers are selected according to several conditions
to test our method. The first condition is that our method aims to overcome the problems
occurring in the real-time environment; thus, we apply the proposed method to the online
MOT framework. The second is to select validated trackers that are listed in the MOT
Challenge [22]. The last condition is that open-source project models are selected to avoid
polarization and to evaluate the performance fairly. In accordance with those conditions,
we adopt MOTDT [28] and DeepSORT [27] as baseline trackers. MOTDT proposes a Faster
RCNN-based hitmap generation model to filter the correct candidates from the expanded
candidates by combining the current detection results with the previous tracking results.
This approach shows effectiveness in situations where the data is noisy because the detector
additionally finds objects that failed detection. DeepSORT uses the Kalman filter-based
motion model proposed by SORT [26] and proposes a CNN-based appearance model.
DeepSORT has a high dependency on detection results when constructing candidates, but
it is effective in dynamic situations due to the simple association method. For the human
detector to provide detection results for the two baseline trackers, we use YOLOv2 [23] 544
× 544 trained with the VOC (2007 + 2012) [41] dataset.

Restoration module. We use the SRGAN (super-resolution GAN) [36] as the image
restoration module used in the re-detection and site restoration sections. SRGAN applies
an adversarial loss to solve the super resolution problem and proves that the pixel values
to be interpolated can be located in a realistic manifold. It is more effective than existing
models using MSE (mean squared error). Based on these properties, SRGAN is used to
estimate high-resolution sharp images from low-resolution blurry images. The traditional
SRGAN uses the high-resolution image and the reduced low-resolution image for the
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ground truths and the input data, respectively, to learn to estimate the high-resolution
image from the low-resolution image. However, in order for the tracker to adapt properly
to dynamic movements, it is necessary not only to estimate high-resolution images from
low-resolution images but also to estimate sharp images from blurry images. Therefore,
our image restoration module is trained using high-resolution sharp images for the ground
truths and low-resolution blurry images for the input data. Figure 5 shows how to construct
a dataset to train our image restoration module.

Figure 5. The construction of a training data pair for the image restoration module.

To create one training data pair consisting of a low-resolution blurry image and a
high-resolution sharp image, one chunk needs to be configured. This chunk is constructed
by selecting an odd number of images from a set of images arranged in a chronological
order. From the constructed chunk, the low-resolution blurry image can be obtained by
averaging the images and scaling it down to a quarter, and high-resolution sharp images
can be obtained from the middle image of the chunk. In order for our image restoration
module to focus on restoring a person’s image, we need to exclude the background of the
learning image. Therefore, we detect and crop humans in high-resolution sharp images
and crop the same positions in low-resolution blurry images to produce training data pairs.

There are a few conditions in taking a video to construct a training dataset:

1. It should aim for people who are not included in the benchmark set for fair evaluation.
2. To simulate a natural and precise blurry image, the image must be taken at a high

refresh rate with dynamic movement.

According to the above conditions, images are taken at a 240 Hz refresh rate, the chunk
size is set to 7, and datasets of 31,640 pairs (body 21,220 pairs, face 10,420 pairs) are extracted
from the images. The configuration for learning is based on the SRGAN default setting with
400 epochs. Figure 6 shows the examples of the restoration using our image restoration
module.

Face appearance model. For the face detector, we use a mobileNet SSD [25] trained
with a WIDERFACE dataset, which follows the mobileNet default configuration of the
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object detection API provided by the TensorFlow official project. FaceNet [39] is used for
the face embedding, which is trained to represent face features in 128d using triplet loss
with the MS-Celeb-1M dataset. The input image size is 224 × 224 according to the FaceNet
default setting. When resizing, the interpolation method uses the inter-linear method.

The reconstructed images from the image restoration module may have a positive
effect on the face appearance model. However, even if those images have visually real-
istic results, they may adversely affect the recognition performance. We thus evaluate
the improvement in the performance of the face recognition compared to the existing
interpolation method when ×4 up-sampling low-resolution face images are restored using
our image restoration module. To measure the performance of the face recognition of both
methods, we use the benchmarking method using the LFW(Labeled Faces in the Wild)
dataset [42] proposed by FaceNet.

Figure 7 shows the re-id benchmark results. The performance with the size of 20 × 20
is lower than that of bicubic interpolation because the GAN model generates some artifacts
due to the severely lacking information, but for 30 × 30 to 60 × 60, superior results are
shown when using our method. Since the amount of information for the recognition is
large enough for over 70 × 70, the difference in performance is insignificant. Consequently,
our restoration module positively affects the appearance model.

Figure 6. The examples of the image restoration. The upper and lower parts represent the raw input images and the inferred
images, respectively.

Figure 7. The comparison of the identification performances of the restored images using the bicubic interpolation
method and the image restoration module. The FaceNet default settings are used to extract the identification performance.
The vertical axis represents the accuracies and the horizontal axis is the size of the original image to be up-sampled.
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4.2. Benchmark Set

Our methods are proposed to enhance the performance by overcoming problems
in dynamic situations. To see the contributions of our methods, we construct a robot
environment dataset and evaluate the performance according to the MOT16 [22] benchmark
method. A Turtlebot v2 is used for mobility and the recording camera is a Galaxy S8 +
12MP mounted on the robot. The video is taken following the scenario where the robot
interacts with the user or patrols inside the building, and the ground truths are made
by labeling humans’ bounding boxes with a handcraft according to the manner of the
construction of the MOT16 benchmark set. Table 1 lists the details of our benchmark sets.

Table 1. The details of benchmark sets built on three different scenarios.

Interaction-1 Interaction-2 Patrol

Frame 2700 1242 2868
Bounding box 5814 6201 9913

ID 38 68 133
Explanation destination

guidance 1
destination
guidance 2

patrol

FPS 30 30 30
Image size 1920 × 1080 1920 × 1080 1920 × 1080
Length(sec) 90 41.4 95.6

Crowd low middle high

The Interaction-1 and Interaction-2 benchmark sets are based on the robotic guidance
scenarios. The guidance robot interacts with the person and moves to its service destination.
During the process, the users follow the robot with nonlinear movements that are difficult
to predict. Interaction-1 and Interaction-2 include a small number of people and a relatively
large number of people, respectively.

The Patrol benchmark set is based on a robotic patrol scenario. If the robot has no
current purpose in progress, it patrols the lobby until a new command is received from the
user. A large number of people appear in the scenes, and the robot repeats the actions of
getting close to and away from the people to patrol.

Our dataset contains more dynamic scenes than the MOT16 dataset because it is based
on images taken from a robot in service. To validate the degree of dynamic movements,
we quantify them with Laplacian variance, taking advantage of the fact that a dynamic
movement inevitably produces motion blur. Figure 8 represents the Laplacian variances in
our dataset in comparison with the MOT16 datasets.

All three datasets used in our experiments are found to show lower Laplacian vari-
ances compared to the MOT16 datasets. This indicates that the edge detection by the
Laplacian kernel is difficult due to the dynamic movements.

We are concerned about whether the reason for the low Laplacian variances is the
camera characteristics or not. To address this concern, we additionally constructed an
image set, Robot-Stop, which observes moving people in the stationary condition of the
robot. The experimental results demonstrate that the low Laplacian variances of our
datasets are not given by the camera characteristics because the second highest result was
observed amongst all the datasets.
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Figure 8. Measured Laplacian variances of each dataset. The horizontal and vertical axis represents
the dataset and the averaged value of the Laplacian variance for each dataset, respectively.

4.3. Experiment Results

Evaluation metric. We use Multiple Object Tracking Accuracy (MOTA) [43], ID F1
score [44], the ratio of Mostly Tracked targets (MT), the ratio of Mostly Lost targets (ML),
and the number of ID Switches (IDS) as the performance metrics, which are significant
among several metrics used in the MOT Challenge. Specifically, MOTA and IDF1 are
considered to be the most important performance metrics. MOTA represents false positives,
missed targets, and identity switches together, and IDF1 represents the consistent tracking
rate of object ID. In our experiments, we consider the MOTA score as the first priority and
the IDF1 score as the second priority in performance. For the evaluation, the MATLAB-
based MOT Challenge Development Kit is used according to the MOT16 benchmark rule,
and the three dataset benchmarking results are given with their weighted average scores.

Evaluation baseline tracker. The default τdetect value of the detector may provide
biased performance to some trackers. Therefore, to avoid this, we first observe the perfor-
mances of the selected detector’s detect confidence threshold, τdetect, and fix the threshold
that results in the highest performance for the baseline tracker.

In the experimental results for the baseline shown in Figure 9, the best values of τdetect

are 0.31 for MOTDT and 0.40 for DeepSORT. We specify MOTA and IDF1 scores for the
thresholds as the baseline performance to compare with our methods.

Figure 9. MOTA and IDF1 scores varying τdetect for two baseline trackers, MOTDT and DeepSORT.
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Evaluation and ablation studies. The finalized model proposed in this paper is
combined with three aforementioned methods. The ablation study confirms the effective-
ness of the combination of each method. When combining methods, we set parameters
that record the highest performance of each of the three methods without the additional
hyperparameter settings for each combination.

Table 2 shows the experimental results of the ablation study. The arrows after eval-
uation metrics indicate that the higher (↑) and lower (↓) values represent the better per-
formance. In this table, specifically, the method column refers to which of the three
methods—the re-detection, the site restoration, and the face appearance model (simplified
as “face appearance”)—are applied to the corresponding baseline tracker.

Table 2. Experimental results of ablation studies based on the baseline trackers, MOTDT and
DeepSORT. Highlighting represents the best performance.

Baseline Method MOTA (↑) IDF1 (↑) MT (↑) ML (↓) ID sw (↓)

MOTDT

- 32.513 43.931 40 120 162

re-detection 32.641 44.017 41 118 172

site restoration 32.818 44.263 41 120 163

face appearance 32.832 44.226 42 120 159

re-detection
site restoration 32.959 44.355 42 118 173

re-detection
face appearance 32.886 44.492 43 118 163

site restoration
face appearance 33.118 44.419 43 120 160

re-detection
site restoration

face appearance
33.164 44.531 44 118 167

DeepSORT

- 53.607 56.114 83 69 132

re-detection 53.929 57.616 84 67 137

site restoration 53.707 56.165 84 69 130

face appearance 53.834 56.471 83 68 123

re-detection
site restoration 54.007 57.656 85 67 137

re-detection
face appearance 54.093 57.943 85 67 134

site restoration
face appearance 53.989 56.709 84 68 117

re-detection
site restoration

face appearance
54.180 57.906 85 67 130

The proposed models generally perform better than the baseline methods, even when
using some of our methods, and the best when all methods are combined. Specifically,
comparing our finalized model with the baseline, the MOTA score is improved by 0.65%
in MOTDT, 0.57% in DeepSORT, and the IDF1 score by 0.6% in MOTDT and 1.79% in
DeepSORT.

Analysis of re-detection. Two experiments are conducted to adjust the aforemen-
tioned thresholds, τamb and τredetect, to find the optimal parameters for the re-detection
method. In the first experiment, τamb ranges from 0 to τdetect, and τredetect ranges from τdetect
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to 0.9. Those parameters are adjusted in units of 0.05 to identify tendencies in performance.
Delicate evaluation is conducted in the second experiment, adjusting those parameters
to 0.01 units for the ±0.05 range on the value which shows the maximum MOTA score
in the first experiment and where the IDF1 score was above the baseline. Figures 10 and
11 represent the results of the first and second experiments, respectively, where the green
dotted line represents the baseline performance.

Figure 10. The results of the first experiment varying τredetect and τamb in 0.05 units. The vertical and horizontal axes
represent the MOTA and IDF1 score and τredetect, respectively. Specifically, the green dotted line and the multiple colors of
other lines represent the baseline performance and each τamb, respectively.

According to the results shown in Figure 11, the highest score is achieved when the
value of τamb and τredetect are 0.25 and 0.61 in MOTDT and the value of τamb and τredetect are
0.3 and 0.64 in DeepSORT, respectively. The reason why DeepSORT is enhanced more than
MOTDT when using re-detection is that DeepSORT uses only detect results as tracking
linkage candidates. This indicates that DeepSORT is more dependent on detect results. On
the contrary, MOTDT uses not only the detect results but the locations estimated by the
motion model as an association candidate. Consequently, DeepSORT is more affected in
the performance improvement by our re-detection method.

Analysis of site restoration. We perform an experiment to adjust the aforementioned
threshold, τblur, to find the optimal parameter for the best configuration of the site restora-
tion method. As an additional experiment, we compare SRGAN, which we use in the
image restoration module, with DeblurGAN, a representative model based on GAN for
the Deblur problem. DeblurGAN is trained on our the same dataset as SRGAN, and the
detailed training configuration follows the default settings suggested in the paper. Figure
12 shows the effect of the image restoration module on the appearance model by adjusting
the τblur by 1 unit for the range from 0 to 200.
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Figure 11. The experimental results of the second experiment to find delicate parameters based on the parameters that
performed the best in the first experiment. τredetect and τamb vary in units of 0.01 ranged over the value of the base parameter.

Figure 12. Experimental results to evaluate the effect of SRGAN- or DeblurGAN-based image restoration modules on the
appearance model of the baseline tracker. The experiment proceeds with increasing τblur by 1 unit.

As illustrated in Figure 12, the results show the highest performance for τblur with the
value of 24 on MOTDT and for τblur with 70 on DeepSORT. They indicate that MOTDT is
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effective in severely dynamic situations, but DeepSORT is effective in relatively weakly
dynamic situations. The further experimental results represent the predominance of
SRGAN in most cases. In fact, the images restored by DeblurGAN tend to make blur effects
disappear more clearly. However, when we zoomed in on the image as shown in Figure 13,
specific patterns that are newly created are observed. We speculate that this pattern has a
negative effect on the appearance model.

Figure 13. An inferred image by DeblurGAN. We apply the learning method and dataset proposed in [37].

Analysis of the face appearance model. We conduct an experiment with three dis-
tance measurements (Equations (11)–(13)) to find an optimal parameter for τ f ace in the face
appearance model. Figure 14 shows the effect of the face appearance model on the baseline
tracker adjusting τ f ace by 0.01 unit for the range from 0 to 1 for each distance measurement.

Figure 14. Experimental results to validate our proposed face appearance model. Specifically, the color of each line
represents the corresponding distance measurement.

As shown in Figure 14, MOTDT achieves the highest performance when its distance
measurement is llast and the value of τ f ace is 0.65. This indicates that, because MOTDT has
a relatively large number of tracking candidates, using the most recent face information
contributes to the better performance rather than using all of the past face information.
Moreover, when only the face information of the last state is used, the embedding vector
distances are relatively close due to the rare changes of the face. The performance is thus
improved at a relatively strong threshold. DeepSORT achieves the highest performance
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when the distance measurement is lmean and the value of τ f ace is 0.58. Because DeepSORT
relies on the detection results to configure tracking candidates, comparing the limited candi-
dates with the past face information more intensively contributes to the better performance.
In addition, since the face information of the entire past states is used, various embedding
vectors should be considered, resulting in the improved performance at relatively weak
thresholds.

Experiments on MOT challenge datasets. In order to check how effective the finished
model is when applied to an unfamiliar environment, experiments are conducted in a new
environment using parameters found through previous experiments. We use the MOT
Challenge dataset for simulating a new environment. Among all MOT Challenge datasets,
only four of those which are based on the moving platform (MOT16-(05,10,11,13)) are used
to match the scope of our paper. The experimental results are reported in Table 3, and the
arrows after evaluation metrics indicate that the higher (↑) and lower (↓) values represent
the better performance.

Table 3. Experimental results to confirm the effect of the proposed model applied to an unfamiliar
environment. The parameters found through the previous experiment are used without change,
and the MOT Challenge dataset is used as a test set. Highlighting represents better performance.

Baseline Test Data Method MOTA (↑) IDF1 (↑) MT (↑) ML (↓) ID sw (↓)

MOTDT

MOT16-05 - 36.037 47.269 9 51 53

ours 36.066 46.419 9 51 57

MOT16-10 - 13.492 22.463 3 40 46

ours 13.785 23.129 4 38 48

MOT16-11 - 39.481 42.308 5 39 31

ours 39.863 42.91 5 38 34

MOT16-13 - 3.7642 11.057 0 94 14

ours 3.8253 11.188 0 93 13

DeepSORT

MOT16-05 - 38.09 45.215 13 53 41

ours 37.87 45.293 13 53 41

MOT16-10 - 7.9477 17.072 1 40 34

ours 8.1507 18.532 1 40 35

MOT16-11 - 34.794 32.311 7 39 67

ours 34.848 32.968 8 39 66

MOT16-13 - 2.5328 7.8663 0 97 8

ours 2.5764 8.3659 0 97 7

The experimental results show the performance improvement of the main metrics,
MOTA and IDF1, in the datasets (except for one of the four datasets). The reason why
performance has not improved in some datasets can be interpreted as a problem of exces-
sively low image quality. A dataset with improved performance (MOT16-(10,11,13)) has a
high resolution of 1920 × 1080 and has little noise, whereas a dataset without improved
performance (MOT16-05) has a low resolution of 640 × 480 and a lot of noise. Since low
resolution and a lot of noise cause reasoning failure of the Image Restoration Module
and Face Embedding Module, the threshold value used for verification needs to be strict.
Therefore, when the image quality is significantly different from the experimental environ-
ment, retuning the τredetect, τblue, and τ f ace values to strict values may be advantageous
for improving performance. From the overall experimental result, it is validated that our
proposed methodology enhances the tracking performance when applied to a general
situation.
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Qualitative results. Several qualitative assessments are conducted, summarizing
some of the benchmark results. DeepSORT is selected for evaluation as the baseline
tracker, and Figure 15 represents three qualitative evaluation results. The top row of each
assessment is the benchmark result of the baseline tracker, and the bottom one is that of our
proposed model on the baseline tracker. The bounding boxes with the same color in each
evaluation result are meant to be recognized as the same objects by the tracker. In particular,
the red bounding boxes represent the object which shows the largest difference between
the proposed model and the baseline tracker. The examples clearly show that the three
methods we propose are capable of maintaining the IDs of objects properly by overcoming
the visual changes and the congestion of objects that occur in dynamic situations.

Figure 15. Qualitative examples of our finalized model with all three proposed methods based on the DeepSORT baseline.
(A), (B), and (C) denote the experimental results in the Patrol, Interaction-1, and Interaction-2 datasets, respectively.

(A) shows the selected frames in the Patrol dataset. This dataset causes severe motion
blur, especially for distant objects due to the camera rotation. In the case of the
baseline, the detection of the object fails, which is marked in red, and the tracking
is terminated. On the other hand, the ID is constantly tracked in red on our model
because it maintains the detection in a high success rate, even for blurry objects, by
performing the re-detection based on the restoration functionality.

(B) shows an example of the experimental results in the Interaction-2 dataset that has
a lot of occlusions between objects that are relatively far apart. In the case of the
baseline, the association failure of the object indicated by the red bounding box occurs
due to the noise generated by the dynamic movement. On the contrary, our method
maintains the object’s ID constantly because the accuracy of the appearance model is
improved by restoring the noise using the site restoration method.
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(C) includes the experimental examples on the Interaction-1 dataset in which humans
are observed at close range and many occlusions are detected due to movements.
In particular, for the occlusion of the objects indicated by the red and black bounding
boxes, the tracking is terminated after the occlusion and a new ID is assigned in the
case of the baseline. The reason for the mistracking is the confusion of the appearance
model caused by the mixed features. On the other hand, in our method, the ID remains
intact because the use of a face feature alleviates mixing of features.

5. Conclusions

In this paper, we propose three methods to enhance the performance of multiple
object tracking, especially in a dynamic environment. First, re-detection and site restoration
methods use the approach to remove noises from an image to improve the detection
and identification performance, respectively. To remove the noises of the image, we
implement the image restoration module by adopting and learning the GAN-based image
inference model suitable for the dynamic environment. Moreover, the face appearance
model uses an approach that uses face features to reduce the likelihood of an association
failure. We design three distance measurements to efficiently calculate the distance between
multiple features so that our appearance model can be applied to a general-purpose
environment. In order to validate the effectiveness of our proposed methods, we construct
dynamic robot environments and conduct experiments with robot service scenarios. As a
result, the performance of the multiple object tracking is improved significantly due to the
adaptability of our proposed model to the dynamic environment in comparison with the
existing trackers. The image restoration module proposed by us has a limitation in that
it cannot utilize the characteristics of time series data because it restores using only one
image. In the future, if a recurrent architecture-based image inference model using a neural
network is applied to an existing image restoration module, better performance is expected
to be achieved for dynamic situations using the time series characteristics of the dataset
as well.
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