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Abstract: Fractional Fourier transform (FrFT) is a useful tool to detect linear frequency modu-
lated (LFM) signal. However, the detection performance of the FrFT-based method will deteriorate
drastically in underwater multi-path environment. This paper proposes a novel method based on
time-reversal and fractional Fourier transform (TR-FrFT) to solve this problem. We make use of
the focusing ability of time-reversal to mitigate the influence of multi-path, and then improve the
detection performance of FrFT. Simulated results show that, compared to FrFT, the difference between
peak value and maximum pseudo-peak value of the signal processed by TR-FrFT is improved by
8.75 dB. Lake experiments results indicate that, the difference between peak value and maximum
pseudo-peak value of the signal processed by TR-FrFT is improved by 7.6 dB. The detection perfor-
mance curves of FrFT and TR-FrFT detectors with simulated data and lake experiments data verify
the effectiveness of proposed method.

Keywords: linear frequency modulation; time-reversal; fractional Fourier transform; detection
method; underwater multi-path environment

1. Introduction

The linear frequency modulated (LFM) signal is a broadband signal and its bandwidth
utilization is high. This characteristic makes the LFM signal receive more attention in the
field of underwater acoustic communication. For example, in the orthogonal chirp division
multiplexing (OCDM) communication system [1], a bank of orthogonal LFM signals acts as
the carrier to modulate transmission signal. In addition, LFM signal has the lower side-lobe
after pulse compression, and its Doppler frequency is not sensitive. Thus, the LFM signal
is often applied in some detection or ranging systems [2,3] by using matched filtering to
compress the received signal. It is easy to detect an LFM signal in a high signal-to-noise
environment. However, the detection of the LFM signal in the presence of high level noise
is a tough task.

Fractional Fourier transform (FrFT) is a generalization of Fourier transform (FT). In re-
cent years, it has been attracting more attention in the signal processing field [4–7]. In order
to practically realize the FrFT-based engineering application, research on discrete fractional
Fourier transform (DFrFT) is particularly needed. There are three main methods for calculat-
ing the DFrFT, namely, linear combination-type DFrFT [8], eigenvector decomposition-type
DFrFT [9] and sampling-type FrFT [10,11]. The simplest definition of DFrFT is linear
combination-type DFrFT. The computational complexity of linear combination-type DFrFT
approach is O(NlogN) , which is same as the fast Fourier transform (FFT). However, this
approach produces an error deviation in terms of continuous FrFT. Although the eigenvec-
tor decomposition-type DFrFT has a smaller deviation error with respect to the continuous
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FrFT, the computational complexity of this method reaches O(N2). The sampling-type
FrFT provides the best approximation and has a fast computing speed. For example, the
Reference [11] proposed the Pei sampling-type approach. It requires two chirp opera-
tions and one FFT operation. The computational complexity of the Pei sampling-type
approach is slightly larger than FFT. However, compared with other DFrFT approaches, the
sampling-type FrFT cannot perform the inverse operation, which will limit its application
scope. Designers require one to select the proper method to numerically calculate DFrFT
according to demands. The spectrum of infinite-length LFM signal in the optimal order
fractional Fourier domain is a pulse function [12]. While the spectrum of finite-length LFM
signal is a sinc function [6], it means that LFM signal can be easily detected in fractional
Fourier domain. Several methods based on FrFT have been proposed to detect LFM signal
with low signal-to-noise ratio. The authors in [13] compared the performance of FrFT
detector and Fourier transform (FT) detector. In [14], a lower computational complexity
LFM signal detector based on the integration of the 4th-power modulus of the fractional
Fourier transform is proposed. An adaptive FrFT detection algorithm is shown in [15]. It
combined statistic-based and FrFT-based method to detect moving target with a low speed
in heavy sea clutter. The signal to be detected at the receiving end is simply modeled as a
LFM signal corrupted by noise. However, in practice, the received signal is propagated
in the channel. Hence, the impacts of the channel, especially wireless channel, cannot be
ignored. For example, in the underwater acoustic channel [16], due to multiple reflections
from boundaries or scatters, the received signal can be viewed as the superposition of a
number of amplitude-weighted and delayed replicas of the original emitted signal. In this
scenario, the FrFT of LFM signal has multiple peaks [17] in the optimal order fractional
Fourier domain. The presence of spurious peaks indicates that the received signal has been
expanded. For FrFT detector, it is hard to decide whether the peak value is produced by
noise or multi-path when the signal-to-noise ratio is low. The performance of these LFM
detection methods drastically declines in this condition.

As discussed above, channel multi-path negatively affects the performance of tradi-
tional detector. Time-reversal (TR) provides an opportunity to utilize multi-path. TR can
make the extended signal focusing and lower the effects of multi-path. In ultrasound and
acoustic domain, Fink et al. have demonstrated that TR has the ability of super-resolution
focusing. In their work [18,19], they showed that the resolution is only limited by the
correlation of channel passed by transmitted signal, while it is no longer dependent on
the sensor aperture size. They also validated this theory by acoustic and seismic imaging
experiments. Furthermore, they proposed TR cavity [20], iterative TR [21], TR operator
decomposition (DORT) [22] and other methods [23,24] for target detection. Kuperman et al.
verified the focusing ability of TR in ocean experiments [25–27]. It is worth noting that
TR focusing ability is based on the reciprocity of the channel, while long time delays will
produce large mismatches that lead to TR focusing degradation[28]. In the electromagnetic
field, TR focusing has been confirmed in [29]. Moura and Jin derived TR detectors, ana-
lyzed the performance and verified their theory by real electromagnetic data [30,31]. In
addition, TR focusing has also acquired considerable attention and been applied in other
fields, such as communication [32,33], positioning [34,35] and imaging [36].

In this paper, we propose a TR-FrFT-based method for LFM signal detection in the
underwater multi-path environment. In our work, TR can be regarded as a pre-filter
to mitigate the effect of multi-path, and then the signal is transformed into the optimal
order fractional Fourier domain to be detected. The main contribution of this paper is
summarized as:

(1) We propose a novel method for LFM signal detection in underwater multi-path
environment. The new method can achieve energy focusing on the optimal order fractional
Fourier domain and realize low signal to noise ratio detection.

(2) Simulations and lake experiments were conducted and verified the effectiveness of
the proposed method for LFM signal detection.
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(3) Compared with the FrFT and matched filter, the proposed method has superior
detection performance in the underwater multi-path environment.

The rest of this paper is organized as follows. In Section 2, after providing prelim-
inaries of FrFT and the related detection method, problem statement is introduced. In
Section 3, firstly, the theory about time-reversal is briefly presented. Secondly, we devise
the proposed detection method. Simulations and lake experiments compared with other
methods are provided in Section 4. Section 5 concludes the work.

2. LFM Signal Detection Based on FrFT
2.1. Definition and Properties of FrFT

The FrFT of signal x(t) with angle α is defined by

Xp(u) = {Fp[x(t)]}(u) =
∫ +∞

−∞
x(t)Kp(t, u)dt, (1)

where Kp(t, u) is the

Kp(t, u) =


√
(1− j cot α) exp jπ

[(
t2 + u2) cot α− 2tu csc α

]
, α 6= nπ,

δ(t− u), α = 2nπ,
δ(t + u), α = (2n + 1)π,

(2)

where α is the rotation angle and represents the α-th power of the ordinary Fourier trans-
form operator, p is the fractional order, α = pπ/2 , Fp[·] denotes the fractional Fourier
transform operator, t represents the integral variable and the variable u has different physi-
cal meanings according to different fractional order p. When the rotation angle α = π/2
(the order p = 1), the transformation kernel is

K1(t, u) = e−j2πut (3)

The FrFT of x(t) with α = π/2 is

X1(t, u) =
∫ ∞

−∞
e−j2πutx(t)dt. (4)

X1(t) is the Fourier transform of x(t). Thus, FrFT is a generalization of FT.
The inverse FrFT is

x(t) = F−p[Xp(u)
]
=
∫ ∞

−∞
Xp(u)K−p(t, u)du. (5)

Equation (5) indicates that signal x(t) can be characterized by a set of orthogonal
basis functions K−p(t, u) with weight coefficient Xp(u). These basis functions are complex
exponential functions of LFM.

In the following, we list some useful properties of FrFT, which will be applied to the
mathematical derivation of proposed detection method.

(1) Linear property:

{Fp[ax(t) + by(t)]}(u) = aXp(u) + bYp(u) (6)

(2) Time shift property:

{Fp[x(t− τ)]}(u) = Xp(u− τ cos α) exp
(

jπτ2 sin α cos α− j2πuτ sin α
)

(7)
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In (6), a and b are arbitrary constants. Moreover, τ is the time shift value. More
properties of FrFT refer to [6].

2.2. FrFT Detection Method for LFM Signal

The LFM signal [37] s(t) can be expressed as

s(t) = A exp
(

jπµt2 + j2π f0t + ϕ
)

,−T/2 ≤ t ≤ T/2, (8)

where A is the signal amplitude, µ is the chirp rate, f0 is the starting frequency, ϕ is the
initial phase, T is the time width of LFM signal.

Without loss of generalization, both the starting frequency f0 and the initial phase ϕ
in (8) are set to 0, and (8) is reduced to

s(t) = A exp
(

jπµt2
)

. (9)

Substituting (9) into (1), we obtain the FrFT of the signal s(t):

Sp(u) = {Fp[s(t)]}(u)

= A
√

1− j cot α exp
(

jπu2 cot α
) ∫ +∞

−∞
exp

(
jπµt2

)
exp

(
jπt2 cot α− j2πtu csc α

)
dt. (10)

For an infinite time width LFM signal, when α = arccot(−µ), Equation (10) can be
simplified as [38]

Sp(u) = {Fp[s(t)]}(u)

= A
√

1− j cot α exp
(

jπu2 cot α
)

δ(u csc α),
(11)

where δ is Kronecker delta function. Equation (10) is a pulse function of u.
For a determined time width [−T/2, T/2] signal, when α = arccot(−µ), Equation (10)

can be simplified as [6]

Sp(u) = {Fp[x(t)]}(u)

= A
√

1− j cot α exp
(

jπu2 cot α
)

T sinc[πT csc(α)u].
(12)

When T → +∞, T sinc[πT csc(α)u] = δ(u csc α), it means that (12) is equivalent
to (11). The result shows that the finite-length LFM signal in the FrFT domain follows the
sinc function distribution under the condition that the rotation angle is αopt = arccot(−µ),
which is called the optimal rotation angle. This indicates that the LFM signal has its energy
concentrated in the optimal order fractional Fourier domain, where the optimal order
popt = 2αopt/π. We can use this property to detect LFM signal in the optimal order domain.
To this end, the objective is to find the optimal order popt, i.e.,

popt =arg max
p

∣∣Sp(u)
∣∣2 ∀u,

subject to 0 ≤ p ≤ 2
(13)

which is a non-convex problem, we can employ the brutal searching method to find the
optimal solution. However, it will cost heavy computations. In this paper, we adopt an
existing coarse-to-fine scanning method [39], as shown in Algorithm 1.
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Algorithm 1 The optimal transform order corresponding to the maximum value in FrFT
domain

1: Initialization: setting the transform order range P ∈ [0, 2]; setting the scanning space

ss = 0.1; setting the initial iteration number Num = 0;

2: while I > Num do

3: Compute p′ = maxp′∈P
{

max
∣∣Sp(u)

∣∣2};

4: Update: P = [max(0, p′ − ss/2), min(p′ + ss/2, 2)]; ss = ss/10; Num = Num + 1;

5: return result

Output: The optimal transform order popt = p′.

2.3. Problem Statement

In this section, we consider the FrFT detection problem for LFM signal in the un-
derwater multi-path channel. The schematic of FrFT detection is shown in Figure 1.
Considering the typical ray model [40], the underwater acoustic channel associated with
the target can be expressed as

h(t) =
M

∑
i=1

aiδ(t− τi), (14)

where ai and τi are the amplitude and the delay of the ith path, respectively. M is the total
number of paths.

Transceiver 

Surface

Bottom

Target

Step 1: Emit LFM signal ( )s t

Step 2: Receive echo signal ( )y t

Step 3:Search for the optimal transformation 
order and transforms          to the optimal 

fractional Fourier domain
( )y t

Step 4: Make decision

Direct path

Surface 
reflection path

Bottom
reflection path

Figure 1. The schematic of Fractional Fourier transform (FrFT) detection.

The traditional FrFT detection method has four steps.

Step 1: the transceiver emits LFM signal s(t) to illuminate the target.
Step 2: the transceiver receives the echo signal y(t).

y(t) = s(t) ∗ h(t) + n1(t)

=
M

∑
i=1

ais(t− τi) + n1(t),
(15)

where the symbol ∗ denotes convolution and n1(t) is the additive noise.
Step 3: the processor searches for the optimal transformation order and transforms y(t)to
the optimal fractional Fourier domain.
Step 4: the processor decides whether there is a target.
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Substituting (15) into (1) with x(t) set to y(t), it can be verified that the FrFT of the
received signal Yp(u) is given by

Yp(u) =
M

∑
i=1

AiSp(u− ui) + N1p(u), (16)

with

Ai = aiejπτ2
i sin α cos α−j2πuτi sin α, i = 1, 2, . . . , M,

ui = τi cos α, i = 1, 2, . . . , M, (17)

and Sp(u) is the FrFT form of the emitted signal s(t) with transform order p. N1p(u) is the
FrFT form of the additive noise n1(t) with transform order p.

The echo signal y(t) is extended in the fractional Fourier domain under the influence
of multipath. When the signal-to-noise ratio (SNR) is high, the main lobe (corresponding
to the direct path) and side lobes (corresponding to other paths) are clearly distinguishable,
it is then easy to be detected. When the SNR is low, in the fractional Fourier domain, the
noise will be disturbed and coupled with the spectrum of echo signal y(t), and then the
detection performance of the FrFT detector will be seriously deteriorated.

3. TR-FrFT Method for LFM Signal Detection in Underwater Multi-Path Environment
3.1. The Basic TR Processing Method

In this section, we briefly review the basic of TR processing. The method is composed
of three phases. During phase 1, the source emits a LFM signal s(t) passing through the
underwater acoustic channel h1(t) and received by the receiver. The expression of received
signal y(t) is refereed to (15). In the second phase, the sonar system time-reverses y(t) in
time domain and obtains y(−t). Next, the signal y(−t) is normalized to the power of the
original signal s(t) by a compensation factor a

a =

√
P{s(t)}
P{y(t)} , (18)

where P{s(t)} = 1
Ts

∫
Ts
|s(t)|2dt is the power of s(t) during the observation time Ts. More-

over, P{y(t)} = 1
Ty

∫
Ty
|y(t)|2dt is the power of y(t) during the observation time Ty.

After time reversal and power compensation, the re-emitted signal ytr(t) is

ytr(t) = ay(−t)

= as(−t) ∗ h1(−t) + an1(−t).
(19)

During phase 3, ytr(t) is transmitted back to the underwater acoustic channel h2(t)
again. The resulting signal z(t) is

z(t) = y(−t) ∗ h2(t) + n2(t)

= as(−t) ∗ h1(−t) ∗ h2(t) + an1(−t) ∗ h2(t) + n2(t).
(20)

where n2(t) is the additive noise in phase 3.
If the underwater acoustic channel is time invariant in the TR processing interval, we

have h1(t) = h2(t) = h(t). Equation (20) can be simplified as

z(t) = s(−t) ∗ a
∫
|h(t)|2dt + an1(−t) ∗ h(t) + n2(t). (21)
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Since the term a
∫
|h(t)|2dt is a constant, we can acquire z(t) ∝ s(−t) from (21).

Clearly, it means that the time extended signal can be compressed and focusing after TR
processing.

3.2. TR-FrFT Method

As described in Section 2.3, in an underwater multi-path environment, the result
of received signal is extended in FrFT domain. The false peaks will confuse the detec-
tor. Considering time-reversal processing has the characteristics of energy focusing and
compression, we propose a novel method based on TR-FrFT to detect LFM signal in this
complex environment. A schematic illustration of the novel method is shown in Figure 2.

Underwater acoustic 
channel h1(t)

s(t) y(t)

n1(t)

Time reversal and 
energy compensated

ytr(t) Underwater acoustic 
channel h2(t)

n2(t)
z(t)

FrFTSearching for popt

Zp(u)
Compared 

d



Detection 
result

Figure 2. Schematic illustration of the novel method based on TR-FrFT used to detect LFM signal in
an underwater multi-path environment.

The TR method is presented in Section 3.1. Substituting (14) into (20), z(t) can be
re-written as

z(t) = a
M

∑
i=1

a2
i s(−t) + a

M

∑
i=1

M

∑
l=1
i 6=l

aials(−t− τli) + a
M

∑
i=1

a2
i n1(−t− τi) + n2(t), (22)

where τli = τl − τi is the delay difference between the l-th path and i-th path.
Substituting (22) into (1) with x(t) set to z(t), the FrFT of z(t) is

Zp(u) = {Fp[z(t)]}(u)

= a
M

∑
i=1

a2
i Sp(−u) + a

M

∑
i=1

M

∑
l=1
i 6=l

aial Bτli Sp(−u + uτli ) + a
M

∑
i=1

a2
i Cτi N1p(u + uτi ) + N2p(u),

(23)

with

Bτli = ejπτ2
li sin α cos α−j2πuτli sin α, i = 1, 2, . . . , M, l = 1, 2, . . . , M,

Cτi = ejπτ2
i sin α cos α−j2πuτi sin α, i = 1, 2, . . . , M, l = 1, 2, . . . , M,

uτli = τli cos α, i = 1, 2, . . . , M, l = 1, 2, . . . , M,

uτi = τi cos α, i = 1, 2, . . . , M, l = 1, 2, . . . , M,

(24)

and Zp(u) is the FrFT form of the emitted signal z(t) with transform order p. N2p(u) is the
FrFT form of the additive noise n2(t) with transform order p.

There are four terms on the right hand side of (23). The first term is the focusing signal
with the coherent superposition of each paths. In the second term, the delay of each paths
are different in the FrFT domain resulting in non-coherent superposition. The last two
are about noise in the FrFT domain. Thus, processed by TR-FrFT, the optimal order FrFT
of z(t) is focusing. We can use the method shown in Algorithm 1 to search the optimal
transform order popt. Once the optimal transform order popt is found, the largest peak will
appear in the optimal order fractional Fourier domain.



Appl. Sci. 2021, 11, 583 8 of 19

Detecting the LFM signal is a binary detection problem. There are two situations, i.e.,
H0 : LFM signal is absent. H1 : LFM signal is present.

H0 : Zpopt(u) = a
M

∑
i=1

a2
i Cτi N1p(u + uτi ) + N2p(u), (25)

H1 : Zpopt(u) = a
M

∑
i=1

a2
i Sp(−u) + a

M

∑
i=1

M

∑
l=1
i 6=l

aial Bτli Sp(−u + uτli ) + a
M

∑
i=1

a2
i Cτi N1p(u + uτi ) + N2p(u). (26)

We choose the largest peak in FrFT domain as test statistic

`d = |Zpopt(u)|. (27)

The resulting detection decision rule can be expressed as

`d

H1
≷
H0

η, (28)

where η denotes a threshold. The LFM signal is assumed to be presented when the test
statistic `d > η. Otherwise, there is no LFM signal.

4. Experiments
4.1. Simulation Experiments

In this section, we conduct simulation experiments to show the FrFT detection problem
described in Section 2.3 and to verify the proposed method for LFM signal detection in
underwater multi-path channel. The frequency range of the transmitted LFM signal is
20–22 kHz, and the pulse length is 200 ms. The simulated underwater acoustic channel is
generated by the acoustic toolbox Bellhop [41]. The simulation environment is as follows:
shallow water wave-guide, the sound speed profile is shown in Figure 3, the bottom is to be
modeled as an acoustic elastic half-space, the density is 2 g/cm3 and other parameters are
presented in Table 1. The impulse response of the simulated channel is shown in Figure 4.
The main parameters of acoustic channel generated by Bellhop are reported in Table 2.
The simulated channel contains 6 paths. The first path has two surface reflections and one
bottom reflection. The second path and the sixth path have one surface reflection and one
bottom reflection. The third path has one surface reflection. The fifth path has one bottom
reflection. The fourth path is the direct path.

Table 1. Parameters of simulation environment.

Parameter Name Numerical Value

Attenuation 1.5 (dB/m) kHz
Water depth 100.431 m
Source depth 30 m

Receiver depth 50 m
Range 1000 m
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Figure 4. The simulated channel generated by Bellhop.

Table 2. Acoustic channel parameters.

Number Amplitude Relative Time
Delay (ms)

Number of Sea
Surface Reflections

Number of Seafloor
Reflections

1 5.403× 10−4 51.759 2 1
2 1.105× 10−3 28.946 1 1
3 1.460× 10−3 13.267 1 0
4 1.044× 10−3 10.639 0 0
5 1.605× 10−3 20.451 0 1
6 7.529× 10−4 37.115 1 1
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Calculated by Algorithm 1, the optimal order of y(t) is 1.0141. When the SNRs defined
in Section 4.3 is 0 dB, the waveform of the received signal is illustrated in Figure 5. The result
processed by the optimal order FrFT is shown in Figure 6. We can find that, due to the
influence of multi-path effect, the result in time domain is expended, and the corresponding
result processed by the optimal order FrFT has multiple peaks. The difference between the
maximum spurious peak and the main peak is 1.07 dB. The presence of spurious peaks
will affect the decision of the detector.

Figure 5. The waveform of received signal.
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Figure 6. The result of received signal processed by the optimal order FrFT.

We now use the TR-FrFT method processing the received data. First, let the received
signal pass through a TR system and acquire Figure 7. Second, calculating the optimal
order of z(t), we can obatin 0.9782 and we plot the result of TR-FrFT method in the optimal
order fractional Fourier domain in Figure 8. The difference shown in Table 3 between the
maximum spurious peak and the main peak is 9.82 dB. Compared to FrFT, the difference is
improved 9.01 dB. Obverse that the received signal processed by TR-FrFT achieves focusing
in the optimal order fractional Fourier domain. Compared to the FrFT method, TR-FrFT
has the ability to resist multi-path effects and a higher SNR.
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Figure 7. The waveform of received signal processed by TR.
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Figure 8. The result of received signal processed by TR-FrFT.

4.2. Lake Experiments

The LFM signal detection experiments were carried out in Danjiangkou Reservoir,
Xichuan County, Nanyang City, Henan Province on 15 July 2019. The original picture
of experimental work performed is shown in Figure 9. The depth of the experimental
water is about 40 m. In the lake experiments, we used two ships, named Ship A and
Ship B respectively, which are 100 m apart. The longitude and latitude of these ships
are shown in Figure 9. Ship A carries a transceiver with the functions of transmitting
and receiving signals, and the depth of the transceiver is 4 m. Ship B carries a target
simulator, which is used to simulate the underwater target echo signal. The depth of the
target simulator is 4 m. The parameters of transceiver and target simulator are shown
in Table 4 and 5 respectively. The transceiver emits the LFM signal, having the same
parameters as described in Section 4.1. The target simulator records the LFM signal and
sends it back. The transceiver receives the simulated echo signal. The waveform of the
received echo signal is shown in Figure 10 in the latest revised version. FrFT is performed
on the received signal, and the result is shown in Figure 11.
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Table 3. The comparison results of FrFT and TR-FrFT with simulated data.

Method The Difference Between Main and Side Lobes

FrFT 1.07 dB
TR-FrFT 9.82 dB

Figure 9. The original picture of experimental work performed.

Table 4. Parameters of transceiver.

Parameter Name Value

Length, width, and height 15 cm × 15 cm × 60 cm
Source level 192 dB ± 1.5 dB (18 kHz∼24 kHz) dB

Receiving sensitivity −185 dB
Passband 19 kHz∼23 kHz (±1 dB)
Stopband 15 kHz∼19 Hz (≥20 dB), 23 kHz∼27 kHz (≥20 dB)

Table 5. Parameters of target simulator.

Parameter Name Value

Length, width, and height 15 cm × 15 cm × 120 cm
Target strength 5 dB∼25 dB

Receiving and transmitting switching time 5 ms
The duration of recording signal 10 ms∼5000 ms

Figure 11 shows that, in the underwater multi-path environment, the received signal
is expanded, both in the time domain and the fractional Fourier domain. It is consistent to
the simulation results in Figure 6. The difference shown in Table 6 between the maximum
spurious peak and the main peak is 2.6 dB of FrFT from Figure 11.

We use TR to process the echo signal. The transceiver emits time reversed signal.
The target simulator records the TR signal and sends it back. The transceiver receives the
new simulated echo signal. The waveform of the received new echo signal is shown in
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Figure 12. The TR-FrFT results are shown in Figure 13. Comparing Figure 12 with Figure 10,
it can be seen that, the expanded received signal in the time domain is focused after being
processed by TR, while in the time frequency domain, the signal has little change before
and after processed by TR. The reason for this phenomenon is that the received signal has
a high signal-to-noise ratio, which makes the difference not prominent. However, we can
find a significant change in the optimal order fractional Fourier domain, which can be seen
in Figure 13. The results of the received signal processed by TR-FrFT indicate that the main
peak is enhanced and the false peaks are suppressed. The difference between the maximum
spurious peak and the main peak is improved 10.2 dB. The difference is improved 7.6 dB
comparing to FrFT. The TR-FrFT method has the ability to resist multi-path effects and
achieve signal focusing in the fractional Fourier domain.

Figure 10. The waveform of received signal with lake experiments data.
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Figure 11. The result of received signal processed by FrFT with lake experiments data.
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Figure 12. The waveform of received signal processed by TR with lake experiments data.
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Figure 13. The result of received signal processed by TR-FrFT with lake experiments data.

Table 6. The comparison results of FrFT and TR-FrFT with lake experiments data.

Method The Difference Between Main and Aide Lobes

FrFT 2.6 dB
TR-FrFT 10.2 dB

4.3. Detection Performance Comparison

In this subsection, we compare the detection performance of TR-FrFT detector and
FrFT detector in both simulated data and lake experiments data. To generate the perfor-
mance curves as a function of signal to noise ratio (SNR). We add numerically generated
noise to the simulated data and real data. The SNRs corresponding to simulated data is
defined by

SNRs = 10 log
(

P{s(t) ∗ h1(t)}
P{n1(t)}

)
= 10 log

(
1
T
∫

T |s(t) ∗ h1(t)|2dt
σ2

n

)
,

(29)

where T is the observation time of received signal; σ2
n is the power of n1(t).
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For real data, (29) is no longer suitable for calculating SNR, because it is hard to sepa-
rate the detected signal and mixed noise. The SNRr, which is an approximate calculation
of SNRs, corresponding to real lake experiments data, is defined by

SNRr = 10 log
(

Ps

σ2
n

)
, (30)

where Ps is the power of the experimental measured LFM signal.
In order to obtain the performance curve of TR-FrFT detector for a given probability

of false alarm PF, we need to select the threshold η. We generate 6000 independent Monte
Carlo trials and compute the test statistic given by (27). Then, we sort the results of test
statistics in ascend order. The threshold is selected to result in a given PF. After that, we
compute the PD by the chosen threshold. To do so, We generate 6000 new independent
Monte Carlo trials containing both signal and noise. Compare each test statistics with
the chosen threshold and count the numbers that the test statistic exceeds the threshold.
The detection probability PD is calculated as a ratio of A over B. A is the number of test
statistics that exceed the threshold. B is the number of new experiments.

With the same arguments, we can obtain the performance curves of FrFT and TR-FrFT
detectors. In order to make the simulation environment close to the real environment, we
add the Doppler frequency shift parameter to calculate the detection performance curve.
Figures 14–16 depict, for PF = 0.1, the detection performance of simulated data for FrFT
detector and TR-FrFT detector. The Doppler frequency shifts are set to 0 Hz, 40 Hz and
80 Hz in these three simulated experiments. Figure 17 shows the detection performance of
lake experiment data. Observe that the proposed TR-FrFT detector has the best performance
compared to the FrFT detector in both simulated and lake experiments data.
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Figure 14. Detection probability vs. SNR for FrFT and TR-FrFT with the simulated data. The false
alarm rate is PF = 0.1. The Doppler frequency shift is 0 Hz.
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Figure 15. Detection probability vs. SNR for FrFT and TR-FrFT with the simulated data. The false
alarm rate is PF = 0.1. The Doppler frequency shift is 40 Hz.
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Figure 16. Detection probability vs. SNR for FrFT and TR-FrFT with the simulated data. The false
alarm rate is PF = 0.1. The Doppler frequency shift is 80 Hz.
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Figure 17. Detection probability vs. SNR. The false alarm rate is PF = 0.1.

5. Conclusions

This paper proposes a novel method named TR-FrFT to detect LFM signal in under-
water multi-path environment. We show that the LFM signal in multi-path channel is
extended in fractional Fourier domain. TR method is employed to mitigate the multi-path
effect. The proposed detection method is devised and verified by simulation data and
lake experiments data, respectively. In addition, we compare the detection performance of
proposed method with FrFT detector. The results show that TR-FrFT detector is superior to
FrFT detector in the underwater multi-path environment.
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