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Abstract: A landslide inventory, after an intense rainfall event in 1998, Southwestern Korea, was
collected by digitizing aerial photographs. This left high uncertainty in the inventoried features to be
verified by ground truths. To reduce the uncertainty, the photographs were reexamined, supported
by the time slider in Google Earth. We observed 77 deformed slopes, which were similar in shape
and texture, to the inventoried landslides. We then sought to label the observed formations based on
their spatial relationship with surrounding conditions. A three-phase methodology was developed.
First, an inventory of landslide, no landslide, vulnerable slopes, and unlabeled features was analyzed
based on spatial cluster patterns, and then the dimension was reduced using the t-distributed
stochastic neighbor embedding (t-SNE). Second, the Apriori algorithm, based on association rule
mining, was used to identify common relations in the inventory using landslide antecedent factors
(derived from topographic and landcover maps) that are linked to areas of unlabeled features. Third,
the findings were validated using Landsat TM (Thematic mapper) and ETM+(Enhanced thematic
mapper) images acquired before and after the original inventory. Current research offers practical
and economical solutions (reduced reliance on paid remote sensing sensors and field survey) to
labeling and classification of missing or outdated spatial attributed information.

Keywords: automatic change detection; machine learning; landslide inventory; uncertainty; distribu-
tion pattern

1. Introduction

Complete records of previous slope failures, their distribution, and slope condition,
are among the best data for predicting the location of future failures. However, the inven-
tory record needs, to the extent possible, to include complete and specific information on
triggering factors, amount, type, area, volume, and date of incidents [1]. Slope activities,
in any specific study area, have unique type and spatial distribution patterns that are
determined by the prevailing antecedent (conditioning) factors. Specifically, the distribu-
tion of shallow landslides, a typical land degradation, tends to be spatially clustered and
to reflect the distribution and structure of the slope material [2–4]. Topographic factors,
such as slope condition, vegetation cover, soil type, and other land covers, tend to have
classes or values common to each specific landslide type. Knowledge of the specific slope
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formation conditions at incident locations allows identification, and spatial classification of
(previously unlabeled) slope formations with similar values of the antecedent factors.

To achieve such spatial pattern visualization, dimensionality reduction machine learn-
ing, with a t-distributed stochastic neighbor embedding (t-SNE) algorithm, offers a promis-
ing and practical capacity to analyze the structure of unlabeled slopes, leading to pattern
identification and matching to known locations with similar formations [5]. t-SNE has
been used to visualize high-dimensional datasets, such as remote sensing products and
open data, by the clustered embedding of high-dimensional data into lower-dimensional
space, such as a two- or three-dimensional map [6–8]. In addition, t-SNE is regarded as a
very efficient technique for detecting potential errors in a reference dataset through visual
analysis of a t-SNE plot [9]. Moreover, t-SNE returns highly compressed data, making
it suitable for identification of large margins within a dataset. However, t-SNE may be
unsuitable for datasets with recurring step-like temporal profiles [6].

The Apriori algorithm, based on association rule learning (ARL), is often used to
identify frequently occurring item sets (associations) within a dataset [10]. It operates on
large databases through several iterations based on a priori knowledge [11]. The Apriori
algorithm has been widely employed to determine association rules in nonlinear modeling
problems, and successfully applied to not only determine states of landslide deformation
but also predict landslide movements [12,13]. Use of machine learning to assess associations
among antecedents has become user friendly, especially with the adoption of the simple,
but effective, Apriori association rules function.

To verify associations between landslide locations, we need evidence of actual condi-
tions based on prior images or supporting reports. Semiautomatic techniques, including
supervised classification-based change detection and manual digitization, may be used to
extract landslides from satellite images [7]. More effective, in terms of time and effort, is the
automatic detection of landslides from satellite images using unsupervised classification-
based change detection [8]. Yang et al. [8] developed an automatic technique to detect
landslide scars in the Jinsha River area of China. The developed technique was based on
k-means classification of the Normalized Difference Vegetation Index (NDVI) time series
derived from Sentinel-2 data. Wright and van Schaik [9] reported that variations in vegeta-
tion phenology over time affect the spectral responses of vegetation in tropical seasonal
biomes, which can affect change detection applications. By contrast, Aydda et al. [14]
confirmed that lithology change detection can be useful for identification of eroded areas.
Therefore, in this study, a new automatic technique, based on lithology change detection,
was used to detect landslides that occurred during/after intense rainfall events in Pohang
state, Southwestern Korea.

Two machine learning algorithms and an automatic remote sensing extraction tech-
nique were used to label and classify additional spatial data, and provide missing attribute
information, to complement the existing incomplete 1998 landslide inventory.

2. Study Area

The geology of the study area is predominantly Mesozoic Cretaceous sedimentary
formations infiltrated by igneous (including volcanic) rocks, with further sedimentary
and igneous rocks from the Cenozoic Tertiary [15]. Most landslides occurred in areas of
tertiary sedimentary rock, mainly easily weathered mudstone and shale that make ground
conditions vulnerable to landslides.

In 1998, landslides occurred in response to heavy rainfall of 150 mm over two
days (25–26 July). After the rainfall event, a field reconnaissance survey was conducted
in the Pohang area, using a 1:50,000 topographic map, and 297, mostly transitional,
landslide locations were confirmed (258 of the landslides occurred in the Yeonil For-
mation surrounding the southern urban area and the coastal Duho Formation). A fur-
ther 14 landslides were traced by the National Geographic Information Institute (https:
//www.ngii.go.kr/kor/main.do) through the analysis of 1:20,000 scale aerial photographs
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(taken between 4 June 1996 and 14 December 2004). In addition, in the same year, field
investigations confirmed 21 no-landslide locations, representing safe slopes (Figure 1).
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Figure 1. Study area.

More recently, a field survey was conducted to find out if there are vulnerable or
deformed slopes that might be susceptible to landslide creep. GPS-based surveys from
2015 to 2020 provided information about locations where significant signs of deformation
were observed, such as tensile cracks, differential movement, continuous soil leakage, and
bending trees. A total of 20 vulnerable points were assessed. These included locations of
verified slope creep (8) identified by Park et al. [16], an additional point added by updated
field report, and 11 points with continuous soil leakage and curved trees. Some of these
have ground cracks or subsidence, and others have cracks in buildings and retaining walls,
caused by an earthquake of magnitude 5.4 that occurred on 15 November 2017.

The 1:20,000 scale aerial photographs were examined, in conjunction with time-slider
Google Earth images, and 73 locations, with similarly eroded landcover as in the 1998
inventory, were observed. It could not be determined with certainty whether these were
areas of the landslide because of the small study area and thick green cover. Therefore,
these locations were recorded as “unlabeled” landslide data. In Figure 1, we show a sample
of the mentioned unlabeled features (Figure 2).
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3. Methodology

The nature of slope failure processes is dependent on the layers underneath and
surrounding anthropogenic actions. Therefore, understanding of interdependencies among
slope failure conditions (landslide, no landslide, or vulnerable slope) may contribute to
a better understanding of patterns in newly collected data. In this research, unlabeled
landslides, previously undocumented incidents observed in optical remote sensing images,
were assumed to have occurred in July 1998 or later. The methodology, therefore, had
three main components: (1) spatial pattern identification from slope formation inventory
(20 vulnerable slopes, 73 unlabeled, 289 landslides, and 21 no landslides) using t-SNE
cluster analysis; (2) identification of conditioning factor dependencies using data min-
ing association rules; and (3) validation using temporal changes in Landsat processed
data (Figure 3).
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3.1. t-Distributed Stochastic Neighbor Embedding

t-SNE is a nonlinear machine learning dimensionality reduction algorithm. High-
dimensional data are converted into two or three dimensions appropriate for scatter
plotting [17]. The objective is to preserve as much of the significant structure of the high-
dimensional data as possible in the low-dimensional map. Different transformations
are applied in different regions such as to keep data points that are similar on a low-
dimensional manifold closer together, rather than keeping dissimilar data points apart as
in linear methods, such as principal component analysis (PCA).

A second interesting feature of t-SNE is a tunable parameter, called perplexity, which
balances attention between local and global aspects of data and has a complex effect on the
resulting distributions. The parameter can be used to predict the number of close neighbors
each point has.

SNE calculations use Gaussian (normal) distributions and a gradient descent cost
function that minimizes Kullback–Leibler divergence. While t-SNE calculations are very
similar, they use Student’s t-distribution to recreate the probability distribution in lower-
dimensional space [17]. The two steps of the t-SNE approach are as follows: First, create a
probability distribution defining the relationships between data points in k-dimensional
(high-dimensional) space; second, create a probability distribution defining the relation-
ships between data counterparts in lower-dimensional space using Gaussian (normal) dis-
tributions.

Step 1: Conditional probability in high-dimensional space. This step determines the
conditional probabilities defining potential neighbors or similarity between two points in
k-dimensional space using Gaussian (normal) distributions as follows:

pij =

exp
(
−‖xi−xj‖2

2σ2
i

)
∑k 6=l exp

(
−‖xk−xl‖2

2σ2
i

) (1)



Appl. Sci. 2021, 11, 556 6 of 17

If we consider two points (xi and xj) chosen randomly from the dataset, the probability
of xi picking xj as its neighbor or according to similarity is pj|i, which is proportional to the
probability density under a Gaussian (normal) distribution centered at xi with variance σi.

The model calculates the conditional probability for all pairs of points in the dataset.
If two points are very close to each other, the value of pj|i will be high (meaning that points
are similar to each other), and if the points are far from each other, the value of pj|i will be
small (meaning that points are dissimilar to each other).

Step 2: Conditional probability in low-dimensional space. This step finds the coun-
terparts of similar points (xi and xj) in the lower-dimensional space using a Gaussian
(normal) distribution.

If we considered yi and yj as the lower-dimensional counterparts of the points xi and xj,
respectively, the conditional probability (qj|i) for yj being similar to yi is shown as follows:

qij =

(
1 + ‖yi − yj‖2)−1

∑k 6=i(1 + ‖yk − yl‖2)
−1 (2)

The choice of cost function parameters in t-SNE is based on pure intuition and rule
of thumb as t-SNE does not have a solid mathematical basis. For example, perplexity
represents the perplexity of the conditional probability distribution induced by a Gaussian
kernel, the recommended value is N1/2 (where N = number of attributes or samples) and
is typically between 5 and 50. The number of principal components to keep can be found
through randomization of the expression matrix, while the number of iterations is simply
based on the rule the more iterations the better. When the algorithm reaches convergence,
a further increase in the number of iterations will only marginally change the plot and will
not enhance the results significantly.

3.2. Association Rule Learning

Apriori algorithms, as applied to data mining machine learning [18], use frequent
itemset mining and ARL over databases [19]. The Apriori algorithm identifies frequently
occurring patterns, and highlights general trends, in data. From these, three commonly
used measures of association can be estimated.

1. First-item support: an indication of how frequently an itemset appears in the dataset.
It is the number of records containing the itemset divided by the total number of
records in the database.

2. Confidence: the support count of x U y (i.e., the number of times “x” and “y” occur
together) divided by the support count of “x.”

3. Lift: the observed support relative to the support expected if “x” and “y” were
independent. It is calculated as the support count of x U y divided by the product of
individual support counts of “x” and “y” support the count of x U y divided by the
product of individual support counts of “x” and “y.”

The Apriori algorithm employs a level-wise search for frequent itemsets. It proceeds
by identifying frequent individual items in the database and extending them to larger and
larger itemsets, as long as those itemsets appear sufficiently often in the database [13]. For
more information about the Apriori algorithms, see [20].

In the R environment, a seed was assigned, and the Rtsne function in the Rtsne
package (T-Distributed Stochastic Neighbor Embedding using a Barnes–Hut Implemen-
tation) (https://cran.r-project.org/web/packages/Rtsne/) was run with optimizing the
other parameters, including steps and perplexity. Different parameter values were run in
a loop function to search for an optimum solution that easily differentiated between the
different entities. Increasing steps (after a certain amount), which consumes more time and
processing resources, does not significantly improve the results. By contrast, optimization
of the perplexity value is highly recommended in such analysis, especially in the case of a
complex distribution of features.

https://cran.r-project.org/web/packages/Rtsne/
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In preparation for the second phase, a data frame table was generated that included
the target labels with the corresponding values for each thematic map. Eight thematic
map layers, well cited and recommended as common conditioning factors of occurrence of
landslide incidents, were derived from topographic, soil, and land cover maps and from
Landsat 8 imagery. Elevation, slope angle, topographic wetness index (TWI), NDVI, tree
age, soil depth, soil permeability index, and distance to drains were stacked and resampled
to a common resolution (Figure 4).
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To run the Apriori analysis, we first preprocessed the input data to aid interpretation
of the association rules.

1. Consistent classification: a fixed number of classes for each thematic map. All the
continuous data were converted into a categorical data structure. The potential classifi-
cation methods (equal interval, natural break, standard deviation, and quantile) are ap-
propriate for different data structures and applications. In landslide research, natural
breaks, which preserve the natural distribution of the histogram, including real steps
or changes, are commonly used [21]. Jenks Natural Breaks (Fisher–Jenks optimization
algorithm) in the R classInt package (https://github.com/r-spatial/classInt/) was
used to classify the continuous data into five index classes (for consistency with other
naturally categorized maps).

2. Normalization of the classification with meaningful names, i.e., convert the integer
values to ordinal listings. We used 5–1, representing very high, high, moderate, low,
and very low values.

The targeted landslide inventory (vulnerable slopes, no slide, unlabeled, and active
landslides) data were collected from different sources, with different scales and feature
representations (points and polygons). In order to reduce locational error, a polygon of 30 m
diameter was generated for each point in the inventory (represent the average to maximum
width of landslide incidents in the study area), and then 10 points were randomly generated

https://github.com/r-spatial/classInt/


Appl. Sci. 2021, 11, 556 8 of 17

inside each polygon. This increased the likelihood, as much as possible, that the centers of
slopes and the exact locations of landslides were included in the dataset.

The derived inventory, stored in a single data frame with normalized values for
each of the thematic maps, was sorted, and missing data were removed. Using the Apri-
ori function in the R Arules package, Mining Association Rules and Frequent Itemsets
(https://cran.r-project.org/package=arules), the association analysis was performed, and
the association rules of each class of conditioning factors in the inventory were extracted.

For better control of the results, in terms of consistency, accuracy, length of rules, and
rule-friendly interpretation, the function parameters including minimum length of rules
(minlen), maximum length of rules (maxlen), support (supp), and confidence (conf) were
fixed for all classes.

3.3. Lnadslides Inventory Validation

Two Landsat level 1 image scenes (geometrically corrected and radiometrically cali-
brated), acquired on 20 May 1998 and 22 October 1999 by the Landsat TM and Landsat
ETM+ sensors (Figure 5), were processed as follows.
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1. A dark object subtraction algorithm was used to correct atmospheric effects on the
multispectral bands.

2. Inversion of principal component bands, produced by PCA, was used to reduce noise.
3. The ETM+ panchromatic band (15 m) was used to enhance the spatial resolution of

the ETM+ multispectral bands.
4. As landslides occurred on terrain contain clays (mud rocks) [22], band ratio 7/5 was

applied to distinguish argillic from nonargillic materials [23].
5. A map of change was created, from both band ratios, using image differencing change

detection.
6. The resultant change maps were classified using the IsoData algorithm, which is more

efficient than other unsupervised classification algorithms (k-means and Expectation
Maximization) for automatic extraction of objects from multispectral data [24].

Finally, we masked areas that were not of interest in the analysis (water bodies, urban
areas, and agriculture areas) using land cover/land use mapping of the study area.

https://cran.r-project.org/package=arules
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4. Results and Discussion
4.1. t-SNE Findings

Figure 6 shows 16 different runs at four perplexity values (40, 70, 100, and 130) and
four numbers of steps (100, 300, 500, and 700). Unfortunately, there is no particular number
of steps that yields a stable result. Different datasets can require different numbers of
iterations to converge [25]. The t-SNE algorithm adapts its notion of “distance” to regional
variations in data density, and cluster set sizes do not represent actual distances. This is
different from using, for instance, k-means to directly visualize the groups by designating
a unique identification number to each group [2]. The coloring shows well that the map
preserves the similarities within each class.

As a result, t-SNE naturally expands dense clusters and contracts sparse ones. It is
not suited for finding outliers because the sample arrangement does not directly represent
distance, as in PCA. However, the useful dimensionality reduction allows us to visualize
data in 2D [26]. During t-SNE processing, parameter optimization changed the obtained
results dramatically. While changes in the number of steps did not improve performance,
increasing the value of perplexity yielded more preferred solutions.

Vulnerable slope locations, which may be considered as slow-moving landslides, had
(in a certain extent) a close distribution pattern to landslides class locations. This is because
they tend to share similar mother rock (mainly shale) from the Yeonil Formation of the
Gyeongsang Basin formed in the third period of the Cenozoic Era. However, the vulnerable
slopes class was clearly isolated from other classes (unlabeled and non-landslide).
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Figure 6. t-SNE run results using different step numbers and perplexity limits for inventory classes:
no landslide (red dots), landslide (black dots), vulnerable slopes (blue dots), and unlabeled (green
dots). t-SNE, t-distributed stochastic neighbor embedding.

Some overlapping between the feature classes was observed in some locations, as
a result of (1) generalization in the delineation of points by the data provider, and (2)
the additional random point (1359 locations) that was created during processing. No-
landslide and landslide points occurred together because the no-landslide points are from
the same period as the 1998 landslide events (i.e., they include slopes that were prone,
but did not slide) and do not indicate absolute no-landslide regions (areas of very low
slopes, for instance). We concluded that using other common grouping functions, like
k-means or k-medoids, will not be able to group (classify) the inventory classes in a
meaningful way, especially in small and complex study areas. t-SNE has significantly better
visualization capacity through its expansion of dense clusters and contraction of sparse
ones [27]. As a result, unlabeled locations were increasingly clustered around landslide
locations, especially when using higher perplexity values.

4.2. Apriori Analysis Results

To run the association analysis, the antecedent data of the eight independent condi-
tioning factors, each classified into five index values (Figure 7), and the consequent slope
formation inventory data in four classes were stacked into one data frame. New counts of
the inventory classes (after generating random values in the polygon around the original
points) became landslide (2869), vulnerable slopes (151), unlabeled (730), and no-landslide
(209). The selected conditioning factors had been previously shown to be effective in
susceptibility analysis with landslide class alone [28].
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very high).

Settings for the initial Apriori function parameters (support = 50%, confidence = 70%,
max = 6%, and min = 2%) were applied to each class of the inventory separately. Generally,
the conditioning factors included all five classes, but varied in amount. However, the
distance to drains factors included just “low” and “very low” classes. Now, rather than
mention each conditioning factor class and its corresponding frequency of inventory classes,
the validity of using the association rules, offer to find the areas that share significant
importance in landslide and unlabeled features occurrence with reference to other factor
classes (Figure 8).
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for all classes: (a) no-landslide (six rules and support 0.544–0.723). (b) Vulnerable (seven rules and support 0.522–0.713).
(c) Landslide (six rules and support 0.521–0.744), and (d) unlabeled (eight rules and support 0.55–0.73).

Since there were many points in the landslide class compared to other classes, and
to avoid the consequent risk of overfitting, we ran the function for each class separately.
Apriori “association rules” were constructed in such a way that input could be adjusted
according to its functionality. Conditioning factors, the “antecedent,” were placed on the
left-hand side of the Apriori function, while the landslide inventory, the “consequent,” was
placed on the right-hand side.

Figure 8 shows the relationship in terms of association rules for each inventory class.
These were optimized by applying specific constraints for clear interpretation. The results,
produced by the machine learning function, showed 50–76% support and 100% confidence
using six, six, seven, and eight rules to describe the associations for the inventory classes,
landslide, no-landslide, vulnerable slopes, and unlabeled, respectively.

The vulnerable slopes class represents slopes condition that did not cause slope failure
over a long period, specifically from the main typhoons of 1998–2017. Consequently,
according to field inspection, these areas were mostly on moderate slopes with thick
vegetation cover and surrounded by different land uses such as infrastructure assets.

In this study, we sought to identify the original structure of the unlabeled class in the
inventory; therefore, we identified the common antecedents that are particularly associated
with that class.

Very low distance to drains (0–105 m) was found in all inventory classes, but was
most common in landslide and unlabeled classes, reflecting observed landslide occurrence
in most studies [29]. In a similar study, Althuwaynee et al. [28] produced landslide
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susceptibility maps that support this finding. In that work, in 40% of inventory locations
identified as highly susceptible, drain distances were from 48 to 100 m. Very high NDVI
values were evident in unlabeled and landslide areas, but not in vulnerable slopes and
no-landslide areas, confirming that reliance on aerial photographs was not appropriate
because of thick vegetation cover over the study area. In other studies, NDVI was not used
(for this reason); however, forest age, density, and type were used [4]. Low elevation values
(15–43 m msl) were associated with unlabeled and landslide classes, with less support
for the latter. Elevation values were very low (0–15 m) in vulnerable slopes (with high
support), but were insignificant in no-landslide class. The elevation layer was found to be
insignificant in the identification of the occurrence of a landslide in another study [4] using
chi-squared automatic interaction detection. High values of the soil permeability index
(from high to somewhat excessive) were found with all classes in the inventory. However,
in association with another antecedent (soil depth), it shows high support for most classes,
except vulnerable slopes. Moderate soil depths (20–50 cm) occur over all the classes and
are not considered an effective indicator to be used in association with the unlabeled data
class. For soil thickness, which generally ranges from 0 to 100 cm, thicknesses between 50
and 100 cm have the highest susceptibility occurring in almost 88% of the training dataset.
A thicker soil is likely to carry more water [30]. TWI was not significantly observed, by
analysis, as antecedent factor to initiate or motivate the landslides.

Tree age, with very low intensity (short aged to non-forest), had little significance in the
vulnerable slopes class but was insignificant in other classes, making this antecedent factor
ineffective in the current study. This noneffectiveness accords with previous landslide
susceptibility analysis [4,28].

4.3. Automatic Landslide Detection for Validation

To best identify landslides using change detection, we removed changed areas of
one-pixel value (900 m2) and generated buffer circles of 300 m diameter around the original
inventory locations. Figure 9 shows the results of change detection overlain on the original
landslide inventory map. The results show that many active changes occurred around the
unlabeled landslide data inventory (Figure 9).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 20 
 

susceptibility maps that support this finding. In that work, in 40% of inventory locations 
identified as highly susceptible, drain distances were from 48 to 100 m. Very high NDVI 
values were evident in unlabeled and landslide areas, but not in vulnerable slopes and 
no-landslide areas, confirming that reliance on aerial photographs was not appropriate 
because of thick vegetation cover over the study area. In other studies, NDVI was not used 
(for this reason); however, forest age, density, and type were used [4]. Low elevation val-
ues (15–43 m msl) were associated with unlabeled and landslide classes, with less support 
for the latter. Elevation values were very low (0–15 m) in vulnerable slopes (with high 
support), but were insignificant in no-landslide class. The elevation layer was found to be 
insignificant in the identification of the occurrence of a landslide in another study [4] using 
chi-squared automatic interaction detection. High values of the soil permeability index 
(from high to somewhat excessive) were found with all classes in the inventory. However, 
in association with another antecedent (soil depth), it shows high support for most classes, 
except vulnerable slopes. Moderate soil depths (20–50 cm) occur over all the classes and 
are not considered an effective indicator to be used in association with the unlabeled data 
class. For soil thickness, which generally ranges from 0 to 100 cm, thicknesses between 50 
and 100 cm have the highest susceptibility occurring in almost 88% of the training dataset. 
A thicker soil is likely to carry more water [30]. TWI was not significantly observed, by 
analysis, as antecedent factor to initiate or motivate the landslides. 

Tree age, with very low intensity (short aged to non-forest), had little significance in 
the vulnerable slopes class but was insignificant in other classes, making this antecedent 
factor ineffective in the current study. This noneffectiveness accords with previous land-
slide susceptibility analysis [4,28]. 

4.3. Automatic Landslide Detection for Validation 
To best identify landslides using change detection, we removed changed areas of 

one-pixel value (900 m2) and generated buffer circles of 300 m diameter around the origi-
nal inventory locations. Figure 9 shows the results of change detection overlain on the 
original landslide inventory map. The results show that many active changes occurred 
around the unlabeled landslide data inventory (Figure 9). 

 
Figure 9. Results of 7/5 band ratio change detection. Figure 9. Results of 7/5 band ratio change detection.



Appl. Sci. 2021, 11, 556 15 of 17

Figure 10 summarizes the landslide location data obtained by automatic change
detection for each landslide inventory polygon as follows.
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Figure 10 clearly shows that unlabeled and landslide have the largest numbers of
locations (B). Any changes within a circle of 30 m diameter were considered as a single
event, and that is shown as the value of C. Thus, C/A values are normalized detection
values suggesting a valid relationship between landslide and unlabeled data locations,
with the latter probably representing the missing (undocumented) landslides.

5. Conclusions

This research presents an economical solution, using machine learning with geospatial
technology, to the classification of unlabeled slope structures using only the existing slope
condition inventory (without need to carry out extensive fieldwork). The methodological
process adopted here was designed sequentially to deliver insights into, or information
about, the nature of unlabeled landslide inventory data. Thus, the results of each phase can
be used as a standalone solution, or one can proceed with all phases for a higher degree of
confidence (especially in cases where the inventory has a complex structure, or the study
area is small with a semi-uniform surface).

Two machine learning algorithms were investigated with a multiclass inventory: first,
nonlinear clustering t-SNE, which preserves as much of the significant structure of the
high-dimensional data as possible in a low-dimensional map; and second, Apriori data
mining to find the common rules of association between the inventory and the antecedent
factors. These algorithms revealed, with acceptable degrees of confidence, the nature of
the unlabeled data. However, without a validation step, significant doubt, arising from
uncertainty in the data and the models, remains. Moreover, the rules of association for
vulnerable slopes and no-landslide conditions were not effective in landslide or unlabeled
slope identification, confirming a passive prediction capacity identified through a previous
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study in landslide susceptibility modeling in similar study area [4,28]. Therefore, an
automatic change detection technique was used with actual optical images to verify the
findings. Eventually, the objective was achieved with multiple validation tests and well-
designed integrated methodology. Without needing extensive fieldworks, and using open
data and an open coding environment, the presented approach will help with updating
of any natural hazard’s incident inventory (medium or regional scale study area), as well
as inventory that has different slope failures or slope conditions (creeps, unstable, etc.).
Furthermore, this is especially useful in scarce data environments.
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