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Abstract: In this research, 200 corrosion images of steel and 500 crack images of rubber bearing are
collected and manually labeled to build the data set. Then the two data sets are respectively adopted
to train VGG-Unet models in two methods, aiming to conduct Damage Segmentation by inputting
different size of data set. One method is Squashing Segmentation to input squashed images from high
resolution directly into VGG-Unet model while Cropping Segmentation uses cropped image with
size 224 × 224 as input images. Because the proportion of damage pixels in the data set is different,
the results produced by the two data sets are quite different. For large size damage (such as corrosion)
segmentation, Cropping Segmentation has a better result while for minor damage (such as crack)
segmentation, the result is opposite. The main reason is the gap in the concentration of valid data
from the data set. To improve the capability of crack segmentation based on Cropping Segmentation,
Background Data Drop Rate (BDDR) is adopted to reduce the quantity of background images to
control the proportion of damage pixels from the data set in pixel-level. The ratio of damage pixels
from the data set can be decided by different value of BDDR. By testing, the accuracy of Cropping
Segmentation becomes relatively higher under BDDR being 0.8.

Keywords: fully convolutional network; damage segmentation; VGG-Unet; pixel-level data balance

1. Introduction

The collapse of I-35W Mississippi River bridge in America in 2007, killed 13 people,
injured 145 people and led to millions of economic losses in dollars [1]. The main reason of
the accident is significant corrosion in its bearings caused by the lack of regular inspection
and repair work. Furthermore, in 2019, the Nanfang’ao bridge in Taiwan collapsed, killing
6 people and injuring 12, due to negligence of long-term detection and maintenance.
The damages on the components may be very ordinary but strongly affect the functions of
components. These components seriously influence the capacity of the bridge and even
endanger the safety of the bridge. Thus, bridge management is becoming one of the major
issues to keep their infrastructures’ esthetic and durability.

However, it is quite difficult for some countries to solve the issue. For example, about
40% of over 61,000 bridges are 50 years or even older in America, according to infrastructure
report card of American Civil Engineering Society (ASCE). In Japan, many infrastructures
such as tunnels and bridges which are constructed during the period from 1954 to 1973,
nowadays are facing many ageing deterioration problems [2]. This ageing deterioration
issue is concerned not only in developed countries, but also in some developing countries.

Appl. Sci. 2021, 11, 518. https://doi.org/10.3390/app11020518 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0168-8241
https://doi.org/10.3390/app11020518
https://doi.org/10.3390/app11020518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020518
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/518?type=check_update&version=2


Appl. Sci. 2021, 11, 518 2 of 17

In China, 40% of bridges are over 25 years while the maintenance cannot involve all these
bridges, according to statistics from experts [3]. Due to the count of aged bridges which
need to be inspected is large, efficiency is an important factor to solve the problem.

The traditional method, manual inspection, according to the observed sizes and
locations of damage [4], takes a lot of operation time, expensively spends for the special
inspection vehicles and needs to constrain or stop the transportation. The innovative
method applying Unmanned Aerial Vehicles (UAVs) or robots could collect images fast
for civil infrastructures [5], and damage detection is available for some special structure
members where are difficult to access by traditional manual inspection. This would
obviously fasten the process of diagnosing the status of the detected infrastructure. Both
traditional and innovative methods, it is necessary to mark the damages to evaluate the
status of inspected structures after collecting pivotal images of rubber bearings. However,
the operation also costs large amount of human processing hours.

To address this issue, a lot of methods based on image processing to detect damages
or structures have been proposed [6]. Image Processing Techniques (IPTs) is one of entire
suite for detecting, assessing and segmenting some specific defects, once visual data of
infrastructures are collected [7]. For instance, cracks or palling on concrete [8,9]. IPTs can
detect and identify damages from components images, basing on remarkable assumptions,
such as cracks having darker colors and thinner patterns than background. To improve
robustness of detecting damages, basic edge detection and contour detection methods [10]
like fast Haar transform [11] and fast Fourier transform [12] method were reliable. Even
though IPTs-based methods are shown to be fast and effective for damage identification,
the performance of thresholding algorithms for noises, lighting and distortion data in
images is questionable [13]. In fact, nearly all images for damage detection are taken
under the real-world situations and more or less with some noises. Thus, the adaptability
improvement of IPTs-based methods is desired. Continuously, Machine Learning (ML)-
based approaches are conducted as feasible solutions for damage detection [14,15].

2. Literature Review

The application of multiple layer structured Convolutional Neural Networks (CNN),
such as VGG16 [16], AlexNet [17], ResNet [18], GoogLeNet [19], DenseNet-121 [20], make
it possible to develop approaches with higher accuracy to classify the damages from the
images taken by cameras installed on UAVs or robots. For example, Deep Learning-based
image classification have been conducted to detect cracks on the concrete [21], cracks on
the road [22], or defects on the steel [23]. It can find the images with damages and tell you
which categories the damages belone to. However, these traditional classification methods
using CNN for damage classification are unable to determine the location of the damages
from the images, since only the categories of the damages are known by the CNN models.

To locate the damages from full images, Faster Region-based Convolutional Neural
Network (Faster R-CNN) [24] is studied to make bounding box for detected objects, named
as object detection. In inspection of structural damage in engineering, object detection is
adopted to detect and locate cracks on road [25], cracks on concrete [26], bricks on historic
masonry structures [27,28], or even multiple damages [29]. Another network for object
detection technique is YOLO [30], and it also be taken successfully for damage detection
on bridges [31]. However, object detection techniques are still at the grid-cell level for
detecting multiple damages. It means that characteristics of the included damage, such
as size, cannot be inspected directly, even though objective images must be cropped into
little patches.

Image segmentation using Fully Convolutional Network (FCN) is an excellent mean
to detect and predict objects in the images, pixel to pixel, to show its location and size [32].
FCN is one of extended CNN because it converts predicted results from a class of full image
to a class of each pixel and finally shows a semantic segmentation image, by adopting
upsampling layers to upsample convolutional layers. It is successfully used in detecting
structures from aerospace images of several cities [33]. For damage detection, Ni et al.
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proposed FCN-based cracks prediction method for images of concrete [34] and Li et al.
have proved the feasibility of crack width calculation from segmentation results [35].
The more powerful feature of FCN is that it can be taken to detect and label the structural
components from images. For example, rubber bearing detection [36] or even whole
bridge component recognition [37]. Segmentation method can detect structural damage
robustly from real world images in more universal sources. Most of segmentation for
damages were proposed for laboratory photographs with fix camera to object distance
and angle to recognize the damage correctly. However, some components are installed
under the deck of bridge, where the lighting condition is not so ideal for detecting damages.
And because of influences by safety and environmental factors, high-resolution images
provided by cameras installed on UAVs or robots could not always be in a fix distance or
angle. Therefore, the proportion of damaged pixels is often small in the data set composed
of such images. Due to these factors, the capability of FCN models for minor damage
detection is sometimes severely affected.

In addition, the traditional segmentation method, Squashing Segmentation, uses
the data set composed of squashed full images with small size [17]. In order to adapt
these networks, the images from the data set are usually squashed before training and
testing, even though the modern cameras provide high-resolution images. The process
of compression would lose part of object’s feature information from the original images,
leading to the decrease of accuracy. Hence, the traditional segmentation method is not
much suitable for damage detection in high-resolution images. Some damage detection
methods using Cropping Segmentation, which means that cropped small size images
are used to train the Deep Learning models instead of squashed full images [21,26]. This
method is only used for cracks on the concrete because there little interference in the
background which may reduce accuracy, while there are few related studies for damage
detection from real world images.

Besides, one of methods for improving accuracy is changing the structure of the data
set, such as enlarging the size of data set and making balance between images of each
category [25,29]. For methods using squashed images, the only mean is adding more
images for the category with lower images. However, because not all cropped small pieces
of images contain damage pixels in the data set of Cropping Segmentation, the method to
delete such images are worth studying. Compared with traditional method adding images,
this method can make the data balance more effectively and the concentration of pixel of
each category is easier to detect. Thus, the method can make the balance of each category
in pixel-level, rather than image-label.

In this study, Squashing Segmentation and Cropping Segmentation based on VGG-
Unet [38] (a kind of FCN) are adopted and compared with each other to respectively predict
corrosions from steel bridges and cracks from rubber bearings in the high-resolution images,
in pixel-level. These images are taken in real world under unspecified light and angle.
The two results are compared to find the the influence of the concentration of damage pixels
in the data set on the damage detection capability of the model. After that, to improve
detection accuracy, Background Data Drop Rate (BDDR) is defined to make a balance
between all categories of pixels by shrinking the size of data set.

3. Methodology
3.1. Structure of VGG-Unet
3.1.1. Overall Structure of VGG-Unet

In general, to detect the location of the objects from images, one VGG-Unet architecture
consists of two parts. One part using five down-sampling blocks is based on VGG16
structure to capture context. The other part based on U-Net [39] consists five up-sampling
blocks and uses a symmetric expanding path to make precise localization enable. Figure 1
shows the architecture of VGG-Unet. This section introduces the details or backgrounds of
the layers used in the VGG-Unet.
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Figure 1. Overall architecture of VGG-Unet.

As VGG16, the input size of the images is 224 × 224 pixels with three channels
(Red, Green and Blue) in VGG-Unet. In architecture of VGG-Unet, down-sampling is com-
bined from Convolutional (Conv) layers connected with the Rectified Linear Unit (ReLU)
layer and Maxpooling layer, while up-sampling block is consisted of Upsampling layer and
convolutional layer, which is followed by an auxiliary layer named Batch Normalization
(BN) layer. During the process of up-sampling block, some layers are copied and then
concatenated with the output of convolutional layer. After the data calculated through
a down-sampling block, the width and height becomes half. The up-sampling block can
double the width and height of the input. The detail of each layers is shown in Table 1.

3.1.2. Layers

The essence of deep learning is to extract the features of the detected object. The most
important step to carry out this process is convolution, by Convolutional layers. Convo-
lutional layers are adopted in both down- and up-sampling blocks. A set of kernels with
learnable weight to perform the convolution operation are used in the layer, as shown in
Figure 2. Each kernel slides on the input array with a specific step size defined as stride
and the convolution implemented by this process. The multiplications are done between
the element from kernel and the element from subarray of input to get a receptive field.
Then the multiplied values are summed with bias added to get a value in the output
array. To maintain the output size is equal to the input size, adopt zero-padding (Pad)
for the input array. The output size of a convolutional layer depends on the size of input,
Pad numbers, kernel size, and stride, which can be calculated as the example in Figure 2.

Figure 2. Example of Convolutional layer.
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Table 1. The detailed configuration and specifications of VGG-Unet.

Layer Type Pad Kernel Size Stride Output Size Note

1 Input - - - 224 × 224 × 3

2 Conv + ReLU 1 3 × 3 × 64 1 224 × 224 × 64
down-sampling block 13 Conv + ReLU 1 3 × 3 × 64 1 224 × 224 × 64

4 MaxPooling 0 2 × 2 2 112 × 112 × 64

5 Conv + ReLU 1 3 × 3 × 128 1 112 × 112 × 128
down-sampling block 26 Conv + ReLU 1 3 × 3 × 128 1 112 × 112 × 128

7 MaxPooling 0 2 × 2 2 56 × 56 × 128

8 Conv + ReLU 1 3 × 3 × 256 1 56 × 56 × 256

down-sampling block 39 Conv + ReLU 1 3 × 3 × 256 1 56 × 56 × 256
10 Conv + ReLU 1 3 × 3 × 256 1 56 × 56 × 256
11 MaxPooling 0 2 × 2 2 28 × 28 × 256

12 Conv + ReLU 1 3 × 3 × 512 1 28 × 28 × 512

down-sampling block 413 Conv + ReLU 1 3 × 3 × 512 1 28 × 28 × 512
14 Conv + ReLU 1 3 × 3 × 512 1 28 × 28 × 512
15 MaxPooling 0 2 × 2 2 14 × 14 × 512

16 Conv + ReLU 1 3 × 3 × 512 1 14 × 14 × 512

down-sampling block 517 Conv + ReLU 1 3 × 3 × 512 1 14 × 14 × 512
18 Conv+ReLU 1 3 × 3 × 512 1 14 × 14 × 512
19 MaxPooling 0 2 × 2 2 7 × 7 × 512

20 Upsampling - - - 14 × 14 × 512

up-sampling block 121 Concatenate - - - 14 × 14 × 1024
22 Conv + BN 1 3 × 3 × 512 2 14 × 14 × 512
22 Conv + BN 1 3 × 3 × 256 2 14 × 14 × 256

23 Upsampling - - - 28 × 28 × 256

up-sampling block 224 Concatenate - - - 28 × 28 × 512
25 Conv + BN 1 3 × 3 × 256 2 28 × 28 × 256
26 Conv + BN 1 3 × 3 × 128 2 28 × 28 × 128

27 Upsampling - - - 56 × 56 × 128

up-sampling block 328 Concatenate - - - 56 × 56 × 256
29 Conv + BN 1 3 × 3 × 128 2 56 × 56 × 128
30 Conv + BN 1 3 × 3 × 64 2 56 × 56 × 64

31 Upsampling - - - 112 × 112 × 64
up-sampling block 432 Concatenate - - - 112 × 112 × 128

33 Conv + BN 1 3 × 3 × 64 2 112 × 112 × 64

34 Upsampling - - - 224 × 224 × 64 up-sampling block 535 Conv + BN 1 3 × 3 × 3 2 224 × 224 × 3

36 Output - - - 224 × 224 × 3

Another key aspect in VGG-Unet is Maxpooling layer, which reduces the spatial size
of the input array and often defined as downsampling. It uses a subarray to get the max
values. Figure 3 shows the example of MaxPooling layer with a stride of two. Hence, once
the input array goes pass the Maxpooling layer, the width and height become half. Once
the array go through Maxpooling layer, the memory becomes a quarter of the original
one. This can release more memory for more calculation and the training efficiency is
significantly improved.

The largest difference between CNN and FCN is up-sampling blocks, which replaces
the position of the neural layer in CNN. Up-sampling blocks are adopted to make the
feature array back to pixels in three channels, which is called image visualization. Upsam-
pling layer is widely used in the up-sampling blocks. It increases the width and height
from the input array. Any element in the input array would be repeated in two directions,
shown as Figure 4. Every time after upsampling, resolution would become 2 × 2 of the



Appl. Sci. 2021, 11, 518 6 of 17

input array. Since the number of Up-Sampling layers and MaxPooling layers are same,
the input and output size of images are same.

Figure 3. Example of MaxPooling layer.

Figure 4. Example of Upsampling layer.

Copying and concatenating for layers come from U-net and is a unique feature that
different from other FCNs. The output of convolutional layers can catch the objects’
features into abstract information, and then the outputs can be transferred into spatial
information to make annotations by the up-sampling blocks. However, Convolutional
layers and Pooling layers will lose spatial information, which is more serious in the pooling
process. For image segmentation, spatial information and abstract information are equally
important. Thus, traditional FCN don’t have good results and high accuracies. Since each
time pooling process will seriously lose spatial information, to solve the problem, Copying
and concatenating are proposed to connect the features in down-sampling blocks to the
corresponding up-sampling blocks in U-net. Figure 5 shows the process of copying and
concatenating during down- and up-sampling in VGG-Unet.

Figure 5. Example of copying and concatenating.
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3.2. Process of Training and Predicting

Traditional semantic Deep Learning methods come from definition of computer sci-
ence serval years ago and then adopted into engineering area until then. Input images of
these methods tend to be lower resolutions because of the hardware limitations. However,
with the development of hardware especially cameras, GPUs and monitors, 4k or even
higher resolution images are possibly taken and more conveniently and fluently shown to
people. Due to Damage Segmentation is pixel-level damage detection, some improvement
for input data should be taken into consideration to use these Deep Learning methods.
Here are two methods for Damage Segmentation and the processes of training is shown as
Figure 6. One method is called Squashing Segmentation and to input full images which are
squashed into 224 × 224 pixels before training process, whatever original sizes are. This
is traditional semantic segmentation for object. Notably, this method loses a lot of charac-
teristics information of small objects during process of squashing but remain relationship
information between objects. Since cracks are not large enough objects in high resolution
images, and just accounts less than 2% of pixels in one image, another method called
Cropping Segmentation is adopted to input cropped images with size of 224 × 224 pixels
for training. During cropping processes, width and height of small pieces of images are
same as stride as 224 pixels, and the left parts less than 224 pixels in width and height
of original images are discarded. The schematic of cropping is shown as Figure 7. This
method keeps original size of damage pixels while training, avoiding the loss of character-
istic information of damages during squashing process. To compare the results of different
training methods or input data size, each data set runs 50 epochs. All the described works
is based on workstation installed with GPU (NVIDIA Geforce GTX 1080). All the training
processes are performed on Ubuntu system and coded by Python 3.6. Virtual environment
was established by TensorFlow 1.2 and Keras 2.0.

Figure 6. The training process of Damage Segmentation.

After training different VGG-Unet models under different methods, the next step
to do is predicting damages from images of test data set. To compare the performance
of different VGG-Unet models, here each data set chooses the best FCN model from
50 epochs to evaluate. The testing process for VGG-Unet model training from Squashing
Segmentation is similar as training process, and it inputs squashed images before prediction.
After predicting and get outcomes, these predicted images are resized as original images
before squashing with same size. And testing process of the other method, Cropping
Segmentation, is to input cropped images, whose size is 224 × 224 pixels, for prediction.
The outcomes after predicting are stitched back to full images. The processes of prediction
are shown as Figure 8.
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Figure 7. The schematic of cropping.

Figure 8. The predicting process of Damage Segmentation.

4. Building Data Set and Choosing Configurations
4.1. Damage Images and Annotations

200 steel images and 500 rubber bearing images are collected from different bridges,
under different illuminance conditions and at different shooting angles. Then the damage
these images are manually marked by Image Labeler, which is built-in application in
MATLAB. After labeling the damages and getting the annotation files, these annotation
files are renamed as the same name as original images. After that, images are divided
randomly for the next steps. For corrosion images, 80% of images are prepared for training
and the other images are both for validation and testing. And for rubber bearing damage
detection, 80% of images for training, 10% for validation and the other part is for testing.
To compare the difference results of squashed full images and cropped images, images
and annotations from the data set are copied and cropped into small images with size of
224 × 224 pixels for Cropping Segmentation, after getting the data set. Table 2 shows the
detail of data set. Since not all rubber bearing images are with damages, the number in
parentheses represents the quantity of images excluded non-damage images.

Table 2. The proportion of data set after dropping background data.

Damage Class Image Type Training Validation Testing

Corrosion on steel Squashed images 160 40 40
Cropped images 9728 2719 2719

Damage on rubber bearing Squashed images 400 (193) 50 (22) 50 (27)
Cropped images 34,626 (1968) 5027 (409) 4218 (261)

To compare the influence of different weights of damage pixel in data set, Mean
Damage Ratio (MDR), is widely used for evaluating the data set of segmentation. Damage
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Ratio refers to the number of damage pixels in each image divided by the total number of
pixels in the image. The average of these outcomes in the data set is MDR. By calculating,
MDR of corrosions is about 30% while MDR of cracks is less than 2%. Thus, corrosion is a
kind of large area damage, and crack is a kind of minor damages.

4.2. Evaluation Method for Accuracy

To evaluate accuracy of the outcome, Confusing Matrix is widely used in Deep Learn-
ing, especially for classification. However, segmentation calculate accuracy through the
number of pixels of each class in one image instead of the quantity of images of each class
from all images in the data set. In this research, all VGG-Unet models are trained for two
classes segmentation. Thus, the pixels predicted as damages or rubber bearings are counted
as Positive, while others are Negative. And if the class of predicted pixels is same as the
class in annotation, these pixels are predicted as True while others are False. The name of
pixels in Confusing Matrix of Damage Segmentation for two classes is shown as Figure 9.

Figure 9. Confusing Matrix of detection.

Many criteria for accessing accuracy of semantic segmentation have been proposed
and widely used. Here are 4 popular metrics to evaluate the prediction ability of VGG-Unet
model at the level of pixel. Most traditional method is called pixel accuracy (PA), which
means calculate the accuracy pixel by pixel and defined as (1). Compared with PA, mean
pixel accuracy (MPA) takes quantities of pixels from different classes into account, and it
would calculate the average of accuracy of all classes. The (2) shows how to calculate
MPA, and here k means the number of true classes in one image. Mean intersection over
union (MIoU) and frequency weighted intersection over union (FWIoU) [39], combine the
pixels of one class together as one union, shown as (3) and (4). FWIoU also considers the
proportion of all classes and select the weight for each class.

PA =
TP+TN

TP+FP+FN+TN
(1)

MPA =
1
k

(
TP

FN + TP
+

TN
FP + TN

)
(2)

MIoU =
1
k

(
TP

FP + TP + FN
+

TN
FP + TN + FN

)
(3)

FWIoU =
1

TP + TN + FN + FP

(
TP(TP + FN)

FN + TP + FN
+

TN(TN + FP)
FP + TN + FN

)
(4)

However, PA and FWIoU don’t enlarge the weight of damages and just calculate
from percentage of damage pixels. These two methods are suitable for large area object
segmentation such as corrosion or structure, but unreasonable for small damages like
cracks, since the undamaged size (TN) of images occupies too many pixels. On the contrary,
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MPA and MIoU, magnified the weight of damages as same as the weight of other parts.
These methods are good for segmentation evaluation for small damages, which just occupy
a small proportion of pixels in the images. Thus, these two methods are widely adopted for
the data set with carefully selected and processed damage images to judge the capabilities of
FCN models on detecting the severity of the minor damages. However, it is not all time that
we want to excessively increase the weight of damages, especially for real-word damage
inspection. One reason is that most images in the process of inspection do not include
damages, while the damage pixels only account a small part in the whole data set. Another
reason is humans judge damage from images through the characteristics of continuous
pixels rather than a small number of independent pixels. Thus, some independent pixels
which are not precisely predicted cannot influence people’s understanding of labeled
images, however, it greatly affects the accuracy value. What’s more, using these two
methods make the evaluation result fluctuate greatly when the damage occupies different
areas in the images. These are caused by excessively increasing the weight of minor
damages. To make a balance between no increase damage weight and overly increase
damage weight, a method could control the weight of objects is defined. This method is
called relative weighted intersection over union (RWIoU) using following equations:

α =

(
TP + FN

TP + TN + FN + FP

)x
(5)

β =

(
FP + TN

TP + TN + FN + FP

)x
(6)

Then,

β =
1

α + β

(
αTP

FP + TP + FN
+

βTN
FP + TN + FN

)
(7)

where, x is a rational number and x ∈ (0,1). In this evaluation method, x is the key to
magnify the weight of damage pixels by controlling the value of x. If x is equal to 0, RWIoU
is same as MIoU while if x is equal to 1, RA is same as FWIoU. Since x is an undetermined
value, RWIoU under different value of x is named as RWIoUx.

All the pervious equations for calculation accuracy are used for images containing
damages. However, in real life, most images taken by human beings, robots or even UAVs
are intact and not contain damages. In this condition, TP and FN are equal to 0 and k is 1
in the research, Thus, PA, MPA, MIoU, FWIoU and RWIoU can be simplified and the final
equation is same as following:

PA, MPA, MIoU, FWIoU, RWIoU =
TN

FP + TN
(8)

5. Results and Evaluation

Some prediction results are shown in Figure 10. In the figure, image A, B and C are
corrosion image and D, E and F are from rubber bearing data set. These images prove that
the VGG-Unet model trained from squashed images could generally identify the location
of damage on the rubber bearing, not only for corrosions, but also for rubber bearing
cracks, as shown in (c). However, the VGG-Unet model may ignore some pixels of damage
because some features of damages are lost during the process of compressing, especially
minor damages.

On the contrary, the results trained by Cropping Segmentation have a large gap in the
ability to identify corrosions and rubber bearing cracks. The model for corrosion prediction
has a good performance on detection corrosions from steel structure, while only a few
crack pixels on the rubber bearings are predicted, even though the two VGG-Unet models
are trained from the same methodology and hyperparameters. From the experiment of
other researchers, the larger data set should help Deep Learning models to reach higher
accuracy. The volume of the data set of rubber bearing is several times larger than that of
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the corrosion data set and the number of damage pixels is not much different, while the
detection results have such a large difference. The largest possibility is the differences on
proportion of the target object in the whole data set. Due to the damage pixels from the
data set don’t have enough percentage during training process, the VGG-Unet model is
not so sensitive to them.
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Fig.9 Prediction results: (a) original images, (b) ground truth, (c) Squashing Segmentation results, 
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Corrosion on steel 
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Cropping 81.6 70.4 57.1 71.4 59.1 

Figure 10. Prediction results: (a) original images, (b) ground truth, (c) Squashing Segmentation results, (d) Cropping
Segmentation results.

The accuracy results are calculated and shown in Table 3. From the table, it shows that
Cropping Segmentation has a better capability on predicting corrosions than Squashing
Segmentation, while the results of these two methods are similar when it comes to rubber
bearing detection. And the results corrosion prediction from two evaluation methods
which don’t enlarge the weight of damage, don’t have a large gap, compared with other
two methods of increasing the weight of damages. Nevertheless, if only focus on the rubber
bearing images with damages, the evaluation method of enlarging or not enlarging the
weight of damage will produce large difference in results. This is because that the TN pixels
are accounted for a large proportion and seriously affect the calculation of accuracy under
each method. In this case, RWIoU is an alternative method to balance the huge disparity
between the evaluation results.The table proves that the balance of the number of pixels in
each category in the data set can affect not only the ability of prediction results, but also
the accuracy of evaluation results.
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Table 3. Accuracy of Damage Segmentation.

Data Set Method PA MPA MIoU FWIoU RWIoU0.1

Corrosion on steel Squashing 75.6 57.7 44.2 62.7 46.8
Cropping 81.6 70.4 57.1 71.4 59.1

Damage on rubber bearing Squashing 99.2 (98.7) 75.8 (55.4) 74.4 (52.7) 98.7 (97.8) 80.7 (64.3)
Cropping 99.4 (99.0) 73.8 (51.4) 73.4 (50.7) 98.9 (98.0) 79.9 (62.8)

6. Pixel-Level Data Balance
6.1. Process

The previous research shows that Cropping Segmentation should have a better per-
formance on detecting objects. To improve the capability of minor damage detection,
especially for cracks, Background Data Drop Rate (BDDR) is defined to control the propor-
tion of pixels in each category from the training and validation data set. BDDR means the
percentage of randomly dropped out images in the background. The example of dropping
background data is shown as Figure 11. After cropping original images, the background
images are automatically separated from the data set by Python code, by counting whether
there are labeled pixels from the corresponding annotations. If there are no pixels labeled
as damage from annotation file, the cropped images are ragarded as background images.
Then these background images are randomly deleted from the data set, according to the
given BDDR. After that, the left images are mixed with damage data to be a new data set
for training VGG-Unet model. In this research, the testing data set isn’t changed, due to it
is not used in training the VGG-Unet model and does’t effect the accuracy of the model.

Figure 11. Process of dropping background data.

The original data set is the cropped images from rubber bearing, which is shown in
Table 2 as above. Another four different BDDR parameters are tested: 0.2, 0.5, 0.8 and 0.9.
Table 4 shows the detail of data set and the number in parentheses represents the quantity
of images with damage. By enlarging the value of BDDR, the percentage of damage images
is becoming larger and larger.

Table 4. The proportion of data set for segmentation.

Value of BDDR Training Validation Testing

0 34,626 (1968) 5027 (409)

4218 (261)
0.2 28,094 (1968) 4103 (409)
0.5 18,297 (1968) 2718 (409)
0.8 8499 (1968) 1332 (409)
0.9 5233 (1968) 870 (409)
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The MDR of data set for Damage Segmentation is shown in Table 5. From the table,
it can be found that with the increasing of BDDR, MDR also increases a lot, from 0.7% to
4.6% for training data set and from 1.6% to 9.1% for validation data set.

Table 5. MDR of data set after dropping background data.

Value of BDDR All Training Validation Testing

0 0.008 (0.130) 0.007 (0.123) 0.016 (0.194)

0.005 (0.081)
0.2 0.009 (0.130) 0.009 (0.123) 0.019 (0.194)
0.5 0.014 (0.130) 0.013 (0.123) 0.029 (0.194)
0.8 0.024 (0.130) 0.028 (0.123) 0.059 (0.194)
0.9 0.033 (0.130) 0.046 (0.123) 0.091 (0.194)

6.2. Results

All accuracy outcomes of different data set under different BDDR by different eval-
uation methods are shown in Table 6. In the Table, it can be found that with increasing
of BDDR, MPA and MIoU increase a lot while PA and FWIoU don’t change obviously,
because MPA and MIoU enlarge the weight of damage pixels as same as the weight of
non-damage pixels. This proves that more reasonable BDDR could improve the capability
of predicting damages from images of rubber bearings and evaluation method to increase
the weight of objects is necessary especially the objects occupy few pixels of whole data set,
such as MPA and MIoU. The results of all images are better than which exclude images
without damages. This is because of the lower percentage of pixels of damage after taking
images without damages into account. Since most of rubber bearings are intact while
inspection in real life, the results would be much higher than those in Table 6.

While setting x is equal to 0.1, RWIoU0.1 shows similar result as MIoU. And results
FWIoU and RWIoU0.1 under BDDR of 0.8 are all higher than these under BDDR of 0.9,
while FWIoU is a little lower. This is because the VGG-Unet model trained from Cropping
Segmentation under BDDR of 0.9 is too sensitive to damages that it sometimes misjudges
pixels near damages as damage pixels, even though it may have a better performance of
predicting background. And enlarging weight of damages cause the pervious evaluation
results. As comparing MIoU results of all images and images with damages, when about
half of images including damages, MIoU result has 18% difference while RWIoU0.1 has
13.5% difference. This difference would be lower if x is larger. Since using RWIoU could
decrease the difference, under condition of different damage image proportion, it could be
taken for accuracy evaluation for segmentation especially in real life.

Figure 12 shows some typical examples for rubber bearing inspection. (a) is ground
truth, which means manually labeled images, and from (c) to (g) are results of Cropping
Segmentation under different BDDR. Image A is the image of seriously damaged rubber
bearing, and it is taken almost from a positive angle to the surface of rubber bearing and
very similar to the images in the traditional data set for segmenting damages. Without too
many interferences of background, image A could show the capability of damage prediction.
Image B simulates the angle of view while inspect structures in the narrow space, since the
filming angle is very small from the object’s surface and the distances of rubber surface
to camera lens are different. Image C is the rubber bearing photo taken in a long distance
and in it the rubber bearing only occupy a small area. And Image D shows one wide
crack on the rubber bearing, and it is taken with the condition that half of pixels are from
background, such as trees and buildings. This condition would interfere the results of
object recognition and generate some noise.

These images prove that with BDDR increases, the capability of damage prediction
becomes stronger and stronger, with nearly most pixels of damages could be predicted
and labeled. However, in the training data set, the VGG-Unet models are also a little more
sensitive to background, especially pixels on the boundaries, in darker colors or under
lower illuminance. Thus, from Figure 12 it proves that segmentation results are exact while
BDDR is 0.8.
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Table 6. All results of evaluation method.

Data Set BDDR
PA
(%)

MPA
(%)

MIoU
(%)

FWIoU
(%)

RWIoU0.1
(%)

All images (50)

0 99.439 73.755 73.382 98.907 79.905
0.2 99.493 75.715 75.318 99.016 81.412
0.5 99.451 78.761 77.104 99.014 82.753
0.8 99.048 85.457 78.515 98.655 83.745
0.9 99.374 82.013 78.433 98.974 83.747

Damage images only (27)

0 98.969 51.405 50.715 97.983 62.795
0.2 99.079 55.046 54.311 98.196 65.595
0.5 99.023 60.707 57.639 98.214 68.101
0.8 98.596 73.428 60.571 97.868 70.256
0.9 98.986 66.835 60.206 98.244 70.047

 12 

 Image A Image B Image C Image D 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 

    

(f) 

    

Fig.11 Examples of prediction results: (a) ground truth, (b) no data drop results, 

 (c) BDDR of 0.2, (d) BDDR of 0.5, (e) BDDR of 0.8, (f) BDDR of 0.9 

6.  Conclusion 
This paper uses Segmentation method to detect corrosions from steel bridges and cracks from rubber bearings, based 
on VGG-Unet. The model to detect corrosions have a good performance while the capability of model for rubber 
bearing damage detection needs to be improved. Then, by evaluating the prediction results, a possibility is proposed 
that the proportion of pixels of each category in the data set will reduce the accuracy of damage recognition. To 
verify the idea and improve the model’s capability of detecting rubber bearing damages, Background Data Drop Rate 
(BDDR) is defined to control the proportion of damage pixels from each data set. Different traditional method to 
improve accuracy of models by adding more images to the data set, the data-dropping method improves the damage 
recognition ability of VGG-Unet models by reducing the amount of other pixels. Here summarize the conclusions as 
follows: 
1. Squashing Segmentation is conducive to detection of the overall position of the damage. However, compared with 

Cropping Segmentation, this method doesn’t have a good performance on detecting damages’ precise location, 
due to some feature information are lost during the compressing process before training. 

Figure 12. Examples of prediction results: (a) ground truth, (b) no data drop results, (c) BDDR of 0.2, (d) BDDR of 0.5,
(e) BDDR of 0.8, (f) BDDR of 0.9.
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7. Conclusions

This paper uses segmentation method to detect corrosions from steel bridges and
cracks from rubber bearings, based on VGG-Unet. The model to detect corrosions have
a good performance while the capability of model for rubber bearing damage detection
needs to be improved. Then, by evaluating the prediction results, a possibility is proposed
that the proportion of pixels of each category in the data set will reduce the accuracy of
damage recognition. To verify the idea and improve the model’s capability of detecting
rubber bearing damages, Background Data Drop Rate (BDDR) is defined to control the
proportion of damage pixels from each data set. Different from traditional method to
improve accuracy of models by adding more images to the data set, the data-dropping
method improves the damage recognition ability of VGG-Unet models by reducing the
amount of other pixels. Here summarize the conclusions as follows:

• Squashing Segmentation is conducive to detection of the overall position of the
damage. However, compared with Cropping Segmentation, this method doesn’t have
a good performance on detecting damages’ precise location, due to some feature
information are lost during the compressing process before training.

• The damage detection capability of Cropping Segmentation is largely affected by the
concentration of valid data in the data set. If the percentage of damage is very low,
the VGG-Unet model may be too sensitive to the background pixels, which leads to
the low accuracy.

• If the data sets are with low MDR, there is a large gap between different evaluation
methods that enhance the weight of damages or not. In this case, FWIoU can be used
to make a balance between these different evaluation methods and reduce the gap
while expending the weight of minor damage.

• BDDR is an effective parameter to control the proportion of damage pixels in the data
set and improve VGG-Unet model’s capability on detecting minor damages. In this
research, BDDR of 0.8 has the highest accuracy, slightly stronger than BDDR of 0.9.
It shows that a data set with an appropriate concentration of damage pixels is more
helpful to train a higher-precision VGG-Unet model.

In the future, more values of BDDR need to be tested to find the best proportion of
damage pixels on training for Cropping Segmentation. Besides, due to the models trained
in this research is only for single category of Damage Segmentation, models for multiple
categories of damage detection also needs to be trained and the method of dropping data
to make a balance between all categories of damage pixels is necessary to be researched.
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FWIoU Frequency Weighted Intersection over Union
IPT Image Processing Technique
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MPA Mean Pixel Accuracy
PA Pixel Accuracy
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RWIoU Relative Weighted Intersection over Union
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