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Abstract: In this paper, a shallow–deep feature fusion (SDFF) method is developed for pedestrian de-
tection. Firstly, we propose a shallow feature-based method under the ACF framework of pedestrian
detection. More precisely, improved Haar-like templates with Local FDA learning are used to filter
the channel maps of ACF such that these Haar-like features are able to improve the discriminative
power and therefore enhance the detection performance. The proposed shallow feature is also
referred to as weighted subset-haar-like feature. It is efficient in pedestrian detection with a high
recall rate and precise localization. Secondly, the proposed shallow feature-based detection method
operates as a region proposal. A classifier equipped with ResNet is then used to refine the region
proposals to judge whether each region contains a pedestrian or not. The extensive experiments
evaluated on INRIA, Caltech, and TUD-Brussel datasets show that SDFF is an effective and efficient
method for pedestrian detection.

Keywords: feature extraction; ACF; Haar-like feature; Local FDA; ResNet; pedestrian detection

1. Introduction

Pedestrian detection is a crucial research topic in pattern recognition and computer
vision since it can be widely applied in video surveillance, action analysis, and advanced
driver assistance systems (ADAS) [1,2]. The performance of pedestrian detection is still
vulnerable to massive challenges in real-world applications due to illumination variances,
pose changes, occlusion, and human deformation.

Pedestrian detection is usually viewed as a particular object-detection problem, i.e.,
rigid or half-rigid object detection [3–5]. It is significantly different from human detection
with respect to the image resolution, shooting angle, and posture deformation, where
complicated models are usually used, such as multi-view modeling and explicit geometric
modeling [6], for example. In general, the pedestrians with similar aspect ratio and shape
appearance are prone to several challenges in terms of size, occlusion and illumination that
are usually caused by the camera shooting angle and the specific constraints of the scene.
For instance, pedestrians distant from the camera contain weak appearance information
and thus are often incorrectly recognized as the surrounding long-thin objects due to the
self-occlusion in body profile and crowd.

In this paper, a shallow–deep feature fusion method (SDFF) for pedestrian detection
is proposed. In the latter, a shallow feature method is used to rapidly produce pedestrian
proposals with high recall rate followed by a deep feature method aiming to efficiently
remove the false positives. Firstly, SDFF generates precise pedestrian proposals with high
recall rate using a shallow feature method, such asthe previously proposed method in [7].
SDFF then efficiently removes the false positives using the ResNet deep feature-based
method [8].

The contributions of this paper can be summarized as follows:
(1) Under ACF framework, a shallow feature-representation-based pedestrian detector

is proposed. Firstly, Haar-like templates are utilized to filter the channel maps in order
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to improve the feature discrimination. The local FDA learning is then used to distill the
discrimination. The shallow feature representation-based pedestrian detection works not
only independently but also on region proposals.

In Figure 1, Ω is a multi-channel feature extraction operation, Σ is a max pooling
operation, and (:) is a vectorize operation.

Figure 1. The flowchart of ACF. (a) Original color image (b) Extended image channels (c) Aggregate
channels (d) Feature vector (e) Soft cascade.

(2) Under region proposal and refinement framework, ResNet is used to refine the
region proposals generated from the shallow feature-representation-based pedestrian
detection. Thus, a shallow feature and deep feature fusion (SDFF) for pedestrian detection
is built.

The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 details the proposed method. Section 4 presents the extensive experimental
evaluations used to validate the performance of the proposed method. Finally, conclusions
are drawn in Section 5.

2. Related Work

In the past decades, massive efforts were devoted to promoting pedestrian detection.
Existing methods can be grouped into two categories: (1) pedestrian detection via sliding
window; (2) pedestrian detection via region proposal.

2.1. Pedestrian Detection via Sliding Window

Before deep learning, pedestrian detection could be viewed as a binary classification
task that identifies whether the given image window is a pedestrian. The earlier work
scans the whole image with a sliding window and classifies the candidate window. More
precisely, pedestrian detection based on a sliding window includes two steps: feature
extraction and classification.

Firstly, Wavelet [9], HOG [5], Haar wavelet [10], and contour [11] are the classical hand-
crafted descriptors for object detection. The first order differential of the image based on
HOG is very robust to the illumination changes. However, HOG performs poorly when the
occlusion and complex background are present. Haar wavelet is computationally efficient
since it can be calculated through integral images. However, it contains some discriminative
information because of its simple structure. Afterwards, several improved studies [12,13]
are developed under the Adaboost framework [10]. On the other hand, pedestrian detection
based on modeling the relationship of the human parts using HOG [6,14] achieves great
success under the conditions of pose changes and occlusion. In order to detect generic
objects with large deformation, the mixture strategies of different detection methods are
often employed [15]. For instance, Piotr et al. [16] combined HOG and LUV color features
to build integral channel features (ICF) for object detection. ICF can efficiently represent
the pedestrian in the color image and can be utilized to detect pedestrian with 30+ FPS for
640 × 480 images. Following ICF, Piotr et al. further proposed a more efficient aggregated
channel features (ACF) framework for pedestrian detection, shown in Figure 1. ACF
inherits the ten channel maps from ICF. Firstly, the probe image I is smoothed, and then
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the ten channel maps are calculated as shown in Figure 1b. Afterwards, each channel is
down-sampled to one-quarter size as shown in Figure 1c and concatenated into column
feature vectors as shown in Figure 1d. Finally, Adaboost with decision trees is trained as
the classifier over these features in order to distinguish the object from the others as shown
in Figure 1e.

Furthermore, the progress made in pedestrian detection demonstrates that filtering
on the channel maps of ACF can further enhance the discriminative power of the feature
and therefore improve the pedestrian detection performance [17–20]. In addition, several
auxiliary visual clues exemplified by context information [21], semantic information [22,23],
ad optical flow information [24] can be used as supplementary contents to further enhance
the detection performance.

2.2. Region Proposal via Pedestrian Detection

On the contrary, region proposal-based pedestrian detection methods can generate
a small number of candidate windows. A large number of region proposal methods
were developed, e.g., BING [25], EdgeBox [26], Selective Search [27], Objectness [28],
and CPMC [29]. More complex feature representation methods [30,31] were also used to
enhance the detection performance without affecting the detection efficiency. However,
the region proposal methods usually produce inaccurate bounding boxes, and thus the
bounding box regression is usually performed subsequently for refinement.

Deep convolutional neural networks (DCNN) [32–34] demonstrated a high efficiency
in image classification [33] and object detection [35,36]. They integrate the object classifica-
tion and the object bounding box regression into a unified framework using an end-to-end
learning strategy, e.g., Faster RCNN [35], SSD [37], and YOLO [38]. Object detection using
DCNN is usually divided into two classes: two-stage methods and one-stage methods.
As a representative method of the former class, Faster RCNN utilizes Region Proposal
Network (RPN) as region proposal generation module and adopts Fast RCNN to accu-
rately classify objects and refine the bounding box. On the contrary, SSD and YOLO are
one-stage object detection methods. SSD utilizes multiple extra convolutional layers to
output the class labels and the bounding box of the object in order to improve the per-
formance. YOLO utilizes the last convolutional layer to generate the class label and the
bounding box of the object, resulting in the fast deep feature-based generic object detection
method. Cheng et al. [39] analyzed the failure cases of the region-based object detectors
and explored their potentials in accuracy improvement. More recently, Zhang et al. [40]
used RPN in order to to perform region proposal and re-scoring using a adaboost with
decision trees to eliminate false positives. Cai et al. [41] proposed to detect pedestrian with
multiple sizes using different levels of deep feature maps such that it is easy to find the
small-size pedestrians. Liu et al. [42] proposed RFBNet for object detection, in which the
later convolutional layers of SSD are simply replaced with a Receptive Field Block (RFB) in
order to to improve the features discriminability, and robustness. These methods usually
depend on GPU and therefore they have a high computational cost.

3. The Proposed Work
3.1. The Proposed Pedestrian Detection Framework

This section presents the proposed shallow–deep feature fusion method (SDFF) for
pedestrian detection. The method consists of a two-stage cascade structure that involves a
region proposal generation module and a pedestrian refining module. In the first stage,
shallow feature-based pedestrian proposals are generated. The Haar template is then used
to filter the channel maps of ACF in order to to build a Subset-Haar-Like feature such that
the column vector can be built to improve the discriminative information. Afterwards, the
local Fisher discriminant analysis (LFDA) [43] is used to further improve the discrimination
of the column vectors. In the second stage, a classifier is built with ResNet as a backbone in
order to classify whether the pedestrian candidates are true pedestrians or not.
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In Figure 2, filter is a filtering operation with multiple Haar-like templates. LFDA is a
local feature extraction method.

Figure 2. The flowchart of SDFF for pedestrian detection.

3.2. Shallow Feature-Region Proposal Generation

For subset-Haar-like features, pedestrians with different standing postures usually
share very similar structures, e.g., aspect ratio, contour, and edge. They usually contain two
characteristics: the strong edge and the significant structure. Herein, seven types of Haar-
like templates are utilized to filter the channel maps of ACF and build the intermediate
feature maps, referred to as Subset-Haar-like features, as illustrated in Figure 3, where
T1, ..., T7 are seven templates.

Figure 3. Seven Haar-like templates.

The algorithm of Subset-Haar-like feature generation performs as follows:
Firstly, all the training samples are cropped and resized to 128 × 64.
The ten channel maps of all the training samples that are similar to ACF are then

calculated and down-sampled with the shrink parameter, yielding each channel map of
32 × 16.

Afterwards, the ten channels maps are filtered with the seven Haar-Like templates in
order to build Subset-Haar-like feature maps.

Finally, all the Subset-Haar-like feature maps are concatenated to generate the final
feature vectors.

Seven Haar-like templates are used to filter the ten channels maps with a resolution of
32 × 16. The dimensions of the seven Subset-Haar-like feature maps are shown in Table 1.
Thus, the total dimension of the ten Subset-Haar-like feature maps of ACF is 3348 × 10,
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while the dimensions of ten channel maps of ACF is 32 × 16 × 10. Although it significantly
increases the feature dimension of ACF, Subset-Haar-Like feature maps can be efficiently
calculated. More specifically, the pedestrian proposal method with ACF and subset-Haar-
like features can reach 35 and 32 FPS, which is very efficient to calculate.

Table 1. The dimensions of the seven Subset-Haar-like features.

Template# Feature Map Size Feature Dimension

T1 32 × 16 512
T2 32 × 15 480
T3 31 × 16 496
T4 31 × 15 465
T5 31 × 15 465
T6 31 × 15 465
T7 31 × 15 465

Total / 3348

For LFDA-based feature learning, the subset-Haar-like feature is generated by filtering
the Haar-like template on the channel maps of ACF. Since the structure of the Haar-like
templates is simple and computationally efficient in terms of implementation, the discrim-
inating power can be further improved by subspace learning, e.g., Fisher discriminant
analysis (FDA) [44] and Local FDA (LFDA). Herein, we rebuild the subset-Haar-like feature
by learning the combining coefficients using LFDA.

Given the training samples xi(i = 1, 2, ..., n) with the corresponding class label yi,
the number of the lth class samples is nl . LFDA aims to seek the projection matrix by
maximizing the ratio between the local between-class scatter and the local within-class
scatter. The local between-class scatter matrix Slb and the local within-class scatter matrix
Slw are expressed as:

Slb =
1
2

n

∑
i,j=1

Wb
ij(xi − xj)(xi − xj)

T (1)

Slw =
1
2

n

∑
i,j=1

Ww
ij (xi − xj)(xi − xj)

T (2)

Wb
ij =

{
Aij(

1
n −

1
nj
), yi = yj

1
n , else

(3)

Ww
ij =

{
Aij

1
nl

, yi = yj

0, else
(4)

Aij = exp
( ||xi − xj||2

σiσj

)
(5)

where Wb
ij and Ww

ij are respectively the affine weights in between-class samples and in
within-class samples, Aij is the affinity between xi and xj and σi is the local scaling of the
nearest neighbors of xi.

Finally, the projection matrix P is calculated as:

P = arg max
tr(PTSlbP)
tr(PTSlwP)

(6)

Given the Subset-Haar-like feature, n features are randomly selected from each channel
map and fused into a new feature with the weight from LFDA. Thus, 33,480 features can
be generated in all the ten channel maps with 3348 new features in each channel map.
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The procedure of FLDA-based feature learning on the Subset-Haar-like feature is
summarized as follows. Firstly, both positive and negative samples are collected. The ten
channel maps of all the samples are then built. Afterwards, the subset-Haar-like features of
all the samples are obtained by filtering on the ten channel maps. Finally, the weighted
Subset-Haar-like feature of all the samples is built using LFDA.

3.3. Deep Feature Based Pedestrian Refining

The latest research [45,46] shows that the depth of the network has a crucial influence
on the detection performance. Generally, a deeper network leads to a degraded perfor-
mance and saturated accuracy. For instance, He et al. [8] proposed the Deep Residual
Network. It is the most important characteristic of ResNet to solve the problem of DCNN
degradation by introducing residual learning and fast identity connection. The theoretical
analysis and experimental evaluations demonstrated that ResNet has higher classification
accuracy than other similar DCNN on PASCAL VOC 2007, 2012, and COCO datasets.

The current mainstream learning framework for pedestrian detection based on DCNN
comprises two steps: region proposal generation module and classification module. In-
spired by the approach of [17], which combines traditional machine learning and DCNN
for pedestrian detection, we further utilize ResNet to refine the region proposals from the
weighted Subset-Haar-like feature module and remove the false positives. The algorithm
of pedestrian refining based on ResNet performs as follows.

Firstly, the set of positive and negative samples are built. More precisely, the weighted
subset-Haar-like feature-based region proposal module is used to detect training the
positive samples and crop out the ground truth region and detection-bounding boxes with
IoU > 0.7, producing the images used as the training positive samples. Similarly, detected
bounding boxes with IoU < 0.3 are used as the training negative samples.

The ResNet152 deep model is then trained. The training samples are used to fine-tune
the ResNet152 pre-trained on the PASCAL VOC 2007 database.

Afterwards, the pedestrian proposals are refined. Finally the region proposals derived
from the weighted subset-Haar-like feature based region proposal module are delivered
into the final fine-tuned ResNet152 model for classification.

4. Experiments
4.1. The Dataset and Setup

The experiments were conducted on the INRIA, Caltech, and TUD-Brussel datasets to
evaluate the different methods.

INRIA [47]: The training set includes 2416 pedestrians with annotations assem-
bled from 614 positive images and 1218 non-pedestrian images.The testing set includes
1132 pedestrian with annotations from 288 images and 453 non-pedestrian images.

Caltech [48]: The training set includes 6325 pedestrians with annotations assem-
bled from 4250 images (set00-set05), while the testing set includes 5051 pedestrians with
annotations collected from 4024 images (set06-set10).

TUD-Brussel [49]: The training set contains 1092 image pairs with 1776 annotated
pedestrians and 192 image pairs in the negative set. It also contains 26 additional image
pairs with 183 pedestrians used for hard data mining, and 508 image pairs with 1326 anno-
tated pedestrians are used for testing.

The positive samples were cropped and resized to 128 × 64. For the INRIA dataset,
the number of the positive samples was extended to 2474. Since the pedestrian heights
on INRIA database vary from 60 to 780 pixels, we do not need to upsample the test
images in the testing phase. On the Caltech dataset, the number of the positive samples
is extended to 3262. In ACF, the shrinking parameter is s = 4. The Adaboost classifier
with depth-2 decision tree trained in four rounds (32, 128, 512, 2048) is used. Since the
pedestrian heights in Caltech dataset vary between 25 and 360 pixels, we should upscale
by one octave to detect the pedestrians with fewer than 50 pixels. Since the pedestrian
heights in TUD-Brussel dataset vary from 25 to 360 pixels, only the images that contain the
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pedestrians of heights larger than 50 pixels are upscaled by one octave for evaluation. In
the implementation, the Piotr toolbox [50] is used to compute the channel feature maps and
evaluate the detection methods, while the ResNet152 model is used as the refining network.
The miss rate–FPPI curve is used to evaluate the performance of different methods. Note
that the proposed methods based on Subset − Haar LFDA and ResNet are denoted by
ACF + Subset − Haar, ACF + Subset − Haar + LFDA, and ACF + Subset − Haar + LFDA +
ResNet, respectively.

Firstly, the threshold for IoU (Thr_pos and Thr_neg) is discussed. When ResNet is re-
fined, the training samples are selected according to IoU. The samples with IoU > Thr_pos
are selected as the positive samples, while those with IoU < Thr_neg are chosen as the
negative samples. Thus, the two thresholds affect the quantity and quality of the training
samples in ResNet training. If Thr_pos is larger and Thr_neg is smaller, the number of
cropped images from region proposals will be smaller with higher confidence of training
samples, and vice versa.

Afterwards, the influence of the padding operations on the obtained results is ana-
lyzed. Since some region proposals with IoU > Thr_pos only contain partial areas of the
pedestrian resulting in the lossy description and degrading the ResNet model performence,
the padding operation is imposed on the region proposals with IoU > Thr_pos such that
the whole pedestrian can be cropped. However, if padding size is too large, the cropped
proposals tend to contain more background areas, which also adversely affect the ResNet
performance. In this section, ResNet152 is used in the implementation.

The ablation studies performed on the INRIA dataset are shown in Table 2. The
obtained results can be summarized as follows. (1) With much tighter IOU between Gt
and proposals, the best performance can be achieved at a setting of IOU-0.7-0.3. This
indicates that a more accurate bounding box can eliminate false positives. In addition, the
performance drops at the IOU-0.8-0.2 setting, which can also lead to false negatives due to
the very strict IOU threshold. (2) The proper padding helps to improve the performance
due to the context information involved in the cropped images. The larger padding size
cannot further improve the performance in the higher IOU scenarios due to the relatively
high resolution of training samples in the INRIA dataset. (3) The consistent results are
found with padding size of 16 pixels along the images width and height, which can better
improve the performance compared to the case where no padding exists.

Table 2. Ablation studies on the INRIA dataset.

Method MR [10−2, 100]

IOU-0.5-0.5 11.82
IOU-0.5-0.5-16px 10.45
IOU-0.5-0.5-32px 10.09

IOU-0.6-0.4 10.29
IOU-0.6-0.4-16px 9.22
IOU-0.6-0.4-32px 10.05

IOU-0.7-0.3 9.62
IOU-0.7-0.3-16px 8.6
IOU-0.7-0.3-32px 9.18

IOU-0.8-0.2 12.95
IOU-0.8-0.2-16px 11.31
IOU-0.8-0.2-32px 12.05

4.2. Discussion on Pedestrian Proposals

Table 3 presents a quantitative comparison of the pedestrian proposal approaches
generated by ACF [51], HF, and WHF on the three benchmarks. It can be seen from Table 3
that HF and WHF outperform ACF in terms of the total number of proposals and recall rate
on the INRIA, Caltech, and TUDBrussel datasets, where HF is short for Ours (subset-haar)
and WHF is short for Ours (LFDA). In particular, WHF outperforms ACF by 2–4% in the
recall score with 5–8 times lower proposal numbers, on average. Note that the recall is
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calculated with the height of the ground truth pedestrians having more than 50 pixels. In
this paper, WHF is used as the shallow feature-based pedestrian proposal method.

Table 3. Pedestrian Proposals on Different Datasets.

Datasets Images
Proposals Recall Average

ACF HF WHF ACF HF WHF ACF HF WHF

INRIA 288 60,243 6221 5138 95.59% 96.18% 96.72% 209.17 21.62 17.84
Caltech 4024 625,037 91,317 87,251 95.40% 96.54% 97.38% 155.32 22.69 21.68

Tud-Brussels 508 16,818 5133 3816 86.38% 87.82% 88.32% 33.11 10.12 7.51

4.3. Experimental Results
4.3.1. Results on INRIA Dataset

Figure 4 shows the detection performance of the proposed methods, Ours(ResNet152),
Ours(Subset-Haar), purs(LFDA), and other classic algorithms from the literature (15 algo-
rithms), on the INRIA dataset. It can be observed that the proposed methods outperform
the other methods. More precisely, the miss rate of the Ours(ResNet152) method is the low-
est (8.47%) among the 15 algorithms, and the FPPI is 0.1. Each stage of SDFF could further
improve the performance. In addition, the average MR obtained by Ours(ResNet152) is
lower by 5.96%, 5.32%, 5.23%, 5.06%, 4.85%, and 2.75% than that of InformedHaar [52],
LDCF [18], Franken [53], Roerei [53], SketchToken [54], and Spatial Pooling [55], respec-
tively. It can also be seen that Ours(ResNet152) has a higher performance than Ours(LFDA)
method [7] with a 4.61% lower miss rate. This is due to the fact that the ResNet152 model
performs secondary feature extraction and classification based on the Ours(LFDA) output.
Therefore it enhances the performance of the classification.

Figure 4. Comparison of different methods on the INRIA dataset.

4.3.2. Results on Caltech Dataset

The experiments on the Caltech dataset with the original annotations were con-
ducted to evaluate the proposed methods. Similar to the results on the INRIA dataset,
Ours(RestNet152) achieves the best results compared with the other methods, as shown
in Figure 5. The corresponding performance advantages reach 12.1%, 7.31%, 7.05%, and
1.73% on average MR against Spatial Pooing [55], Checkerboards+ [17], MRFC + Seman-
tic, and UDN+ [56], respectively. In addition, it can be seen that Ours(LFDA) is almost
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5.13% higher than ours(RestNet152) in terms of average MR, which is consistent with the
results achieved on the INRIA dataset. Moreover, the proposed method outperforms the
deep models, e.g., CCF + CF [57] and TA-CNN [58]. Based on the observation, we can
deduce that Ours(ResNet152) can efficiently prune the hard false positives.

The experiments on Caltech dataset with the new annotations [17] were also con-
ducted for evaluation. As shown in Figure 5, the proposed method reduced the average
miss rate 3.43% compared to the original annotations, which indicates the precision of
the ground truth has a positive impact on the performance. More precisely, the pro-
posed method is about 9.79%, 8.01%, and 7.52% lower in the miss rate than TA-CNN [58],
MRFC + Semantic [22], and Checkerboards+ [17], respectively. In addition, the experimen-
tal results indicate that Ours(ResNet152) can effectively eliminate the false positives from
the first cascade with high precision.

Figure 5. The performance comparison of different methods on the Caltech dataset. Uppper: original
annotation, Down: new annotations.

4.3.3. Results on the TUD-Brussel dataset

The proposed methods were also compared with the classical methods on the TUD-
Brussels dataset. These methods were trained on the INRIA dataset and tested using
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508 images with 1326 annotated pedestrians. Due to the pedestrians’ heights in the TUD-
Brussel dataset within [25, 360] pixels, only the pedestrians whose heights are larger
than 50 pixels were evaluated, and the corresponding images are upscaled by 1 octave
in the testing stage. As shown in Figure 6, the proposed methods outperform ACF [16],
LDCF [18], and MF + Motion + 2Ped [59] and result in comparable results with the Spatial
Pooling [55] method. Figure 6 clearly shows that Ours(Restnet152) outperforms the Spatial
Pooling method with approximately 0.92% lower average MR. Furthermore, the model
trained on the INRIA dataset can be transferred to the TUD-Brussels dataset due to the
complex variations included in this dataset.

Figure 6. The performance comparison of different methods on the TUD-Brussel dataset.

4.3.4. Comparison with FRCNN, YOLOV4 and SSD

More experimental comparisons with the state-of-the-art methods are shown in
Table 4. It can be seen that the proposed method outperforms the state-of-the-art methods
on the INRIA, Caltech, and Tud-Brussel datasets.

Table 4. Comparison with state-of-the-art methods on Different Datasets.

FRCNN + FPN YOLOV4 SSD512 Ours

INRIA 11.82% 12.77% 19.25% 8.47%
Caltech 10.74% 11.61% 29.72% 6.36%

Tud-Brussel 48.70% 50.83% 54.44% 40.89%

Table 5 shows the speed on a GPU (Nvidia 1080 TI) of the above methods. It is clear to
see that yolov4 is the fastest method, but our method is comparable to SSD512 and faster
than the FRCNN + FPN method.

Table 5. Running speed Comparison of 640× 480 images (P is short for proposal, R is short for refining).

Method FRCNN + FPN YOLOV4 SSD512 Ours(P) Ours(P + R)

Speed (FPS) 15 46 22 32 21

5. Conclusions

Inspired by the combination of traditional pattern recognition and DCNN for im-
age classification and object detection, a shallow–deep feature fusion method (SDFF) for
pedestrian detection is proposed. The shallow feature, also referred to as the weighted
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subset-Gaar-like feature, is obtained by filtering the channel maps of ACF using Haar-like
templates followed by Local FDA feature learning. Weighted subset-Haar-like features
with ACF framework could be leveraged for efficient pedestrian detection. Furthermore,
the shallow feature-based pedestrian detection method can be used as region proposal in
object detection. ResNet is then used to refine the weighted subset-Haar-like features as a
deep feature pedestrian detection method. Experiments were conducted on INRIA, Caltech,
and TUD-Brussel datasets in order to to evaluate the proposed method. The experimental
results show that each step could further enhance the performance of SDFF.
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