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Featured Application: The study presents an improved and easily obtainable method in terms of
automatic smoking classification from unstructured bilingual electronic health records.

Abstract: Smoking is an important variable for clinical research, but there are few studies regarding
automatic obtainment of smoking classification from unstructured bilingual electronic health records
(EHR). We aim to develop an algorithm to classify smoking status based on unstructured EHRs using
natural language processing (NLP). With acronym replacement and Python package Soynlp, we
normalize 4711 bilingual clinical notes. Each EHR notes was classified into 4 categories: current
smokers, past smokers, never smokers, and unknown. Subsequently, SPPMI (Shifted Positive Point
Mutual Information) is used to vectorize words in the notes. By calculating cosine similarity between
these word vectors, keywords denoting the same smoking status are identified. Compared to other
keyword extraction methods (word co-occurrence-, PMI-, and NPMI-based methods), our proposed
approach improves keyword extraction precision by as much as 20.0%. These extracted keywords are
used in classifying 4 smoking statuses from our bilingual EHRs. Given an identical SVM classifier,
the F1 score is improved by as much as 1.8% compared to those of the unigram and bigram Bag
of Words. Our study shows the potential of SPPMI in classifying smoking status from bilingual,
unstructured EHRs. Our current findings show how smoking information can be easily acquired for
clinical practice and research.

Keywords: smoking; natural language processing; electronic health records; document classification;
lifestyle modification

1. Introduction

Smoking is a major risk factor in developing coronary artery disease, chronic kidney
disease, cancer, and cardiovascular disease (CVD) [1,2]. It is also considered as a modifiable
risk factor for CVDs and other conditions associated with premature death worldwide [3–6].
Consequently, smoking status can be used to assess the risk of certain diseases and to
suggest first-line interventions based on clinical guidelines.

Despite the effectiveness and importance of smoking cessation for disease prevention,
smoking information is under-utilized and not easily measured. It is often buried in a nar-
rative text rather than in a consistent coded form. The rapid adoption of electronic health

Appl. Sci. 2021, 11, 8812. https://doi.org/10.3390/app11198812 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0763-5458
https://orcid.org/0000-0002-4854-7211
https://orcid.org/0000-0002-0123-8227
https://orcid.org/0000-0002-6442-8220
https://orcid.org/0000-0002-9521-4102
https://doi.org/10.3390/app11198812
https://doi.org/10.3390/app11198812
https://doi.org/10.3390/app11198812
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11198812
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11198812?type=check_update&version=2


Appl. Sci. 2021, 11, 8812 2 of 12

records (EHRs) has also scattered patient information across various systems as both struc-
tured and unstructured data [7]. However, most information stored in EHRs takes the form
of free text in clinical narratives. Therefore, applying natural language processing (NLP)
methods is essential in automatically transforming the clinical free text into structured
clinical data, which can be further utilized by machine learning algorithms [8–10].

Several previous studies successfully extracted smoking information using NLP in
English. Jonnagaddala et al. [7] extracted smoking information and converted it into a
structured format. Shoenbill et al. [11] retrieved assessments and advice about lifestyle
modifications using an open-source NLP tool, cTAKES. However, unlike languages such as
English, in which whitespaces define the boundaries between words, word tokenization
is not a trivial task in Korean that has no clear word delimiting rules. Furthermore, in
most non-English speaking countries, their medical records are often bilingual, containing
terms expressed in both English and their native languages. Therefore, extracting smoking
information from Korean EHR requires a different set of NLP methods to overcome this
issue of bilingual free text.

This paper presents a novel smoking-related keyword extraction algorithm from un-
structured bilingual EHRs. Medical records often contain diverse information about the
patient’s medical and health status. However, our NLP-based keyword extraction algo-
rithm filters out and identifies keywords solely relevant to smoking status. Furthermore,
the identified smoking-related keywords can also be utilized to improve the accuracy of
the existing NLP-based smoking status classification algorithms. Our proposed method
is purely unsupervised and does not require a huge training dataset, which is especially
critical in the medical domain. Therefore, it serves as a practical solution to any medical
institutions, including those in non-English speaking countries, planning to transform their
free text EHR into a structured keyword format.

2. Materials and Methods
2.1. Data

We applied our keyword extraction method to 4711 clinical notes collected from Seoul
National University Hospital (SNUH) from 1 January to 31 December 2017, through the
clinical data warehouse (CDW) of SNUH, SUPREME (Seoul National University Hospital
Patients Research EnvironMEnt). Of those, 3512 notes were collected from the department
of family medicine (including the. Patients with diabetes), and the rest were from the
department of pulmonary and critical care medicine (including the patients. with chronic
obstructive pulmonary disorders). Each clinical note contains a patient’s overall medical
history as recorded by the doctors from each department. Furthermore, each note contains,
on average, 157.04 tokens. However, the range of the token length varies between 1 and 589.

As the notes are written as free text, different doctors express identical terms or
concepts differently. The notes contain both English and Korean words, which is very
common practice in Korea and further complicates the keyword extraction. Although
several researchers have worked with bilingual or multilingual EHRs [12–14], our paper is
the first to focus on extracting bilingual keywords from EHRs. Based on patient smoking
status, each of the notes were manually labeled into one of these four categories: current
smokers, past smokers, never smokers, and unknown. Clinical notes were manually
labeled by 3 medical students and 1 nurse, and errors were reviewed by 1 physician.
Despite these class labels, sentences or words that suggest a patient’s smoking status
were not annotated. Consequently, the labels are not used in the keyword extraction
process. However, including all notes regardless of their class labels introduces additional
difficulty in extracting meaningful smoking-related keywords that can test the robustness
of the proposed algorithm. Table 1 shows the overall statistics for our data. This study
was approved by the Institutional Review Board of Seoul National University Hospital
(Institutional Review Board number: N-1906-076-1040).
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Table 1. Overall summary of SNUH clinical notes data.

Family Medicine Pulmonary and Critical
Care Medicine Total

Current smokers 1046 84 1130
Past smokers 547 431 978

Never smokers 399 144 543
Unknown 1520 540 2060

Total 3512 1199 4711

2.2. SPPMI-Based Keyword Extraction

In this work, we introduce SPPMI (Shifted Positive Point Mutual Information) [15]-
based keyword expansion to extract smoking status-related keywords from bilingual EHRs.
It is an end-to-end unsupervised method, thus not requiring any annotated data or model
training. Therefore, it is easily applicable in biomedical practice as manual annotation is
both time-consuming and especially costly in the medical field. SPPMI-based keyword
extraction uses three main steps: text preprocessing, seed word preparation, and keyword
extraction (Figure 1).
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During the text preprocessing step, we identified 170 commonly used medical acronyms
and replaced them with their full expressions. Unlike in English, not all words in Ko-
rean are delimited by spaces. As an agglutinating language, these words are often
delimited by a set of special words or particles [16]. To tokenize Korean phrases (eo-
jeol) into the most semantically relevant words, we applied the Python package soynlp
(https://github.com/lovit/soynlp, accessed on 8 September 2021) to the texts written in
Korean. Without relying on any predefined dictionaries, soynlp finds the boundaries be-
tween Korean words by estimating the probability of those boundaries at the character level.

After text preprocessing, we prepared a list of known smoking status-related seed
keywords. They served as a basis for finding other keywords that describe a patient’s smok-
ing status. Two medical professionals analyzed frequently occurring words in our data
and generated 50 smoking status-related keywords: 11 never-smoker-related keywords,
16 past-smoker-related keywords, and 13 current-smoker-related keywords. We limited

https://github.com/lovit/soynlp
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our seed words to unigrams or bigrams for clarity and computational efficiency. For Korean
keywords, their unigrams and bigrams are defined in terms of words identified by soynlp.
A few examples of seed keywords from each smoking status are provided in Table 2.

Table 2. Examples of our seed keywords. Both English and Korean words were selected as seed
words. The two Korean keywords superscripted 1 and 2 translate to “non-smoking” and “stopped
smoking”, respectively.

Never Smoker Past Smoker Current Smoker

smk never smk ex current smoker
smk negative smoker ya smk yr
비흡연 1

금연중
2 smoking

During the keyword extraction step, we identified semantically similar words to each
of our seed words. To calculate the semantic similarity, we applied SPPMI to represent both
our seed words and all the words in our EHR data as numerical vectors. We then calculated
and ranked the pairwise cosine similarity between each seed word vector and other word
vectors. Words with the highest cosine similarity to the seed words are identified as the
extracted keywords.

In SPPMI, each word is initially represented as a vector of its pointwise mutual
information (PMI) scores [17] with every other word in the dataset. As described in
equation 1, PMI provides a probabilistic measure of association between two words by
comparing their jointly occurring probability with their individual probabilities. Because
they can effectively capture word similarity, PMI and its variants, such as normalized PMI
(NPMI) [18], are frequently used in NLP [19–21].

PMI(word1, word2) = ln
(

p(word1, word2)

p(word1)× p(word2)

)
(1)

Equation (1). Pointwise mutual information (PMI).
As shown in Equation (2), SPPMI shifts the PMI values of each word vector by a

global constant (log k). If lower-dimensional word vectors are desired, matrix factorization,
such as singular value decomposition (SVD), is additionally applied. Depending on the
value of k or the number of singular values used in the SVD, SPPMI can capture word
similarity better than other neural-network-inspired word representation methods [22].
For example, Levy et al. [15,22] showed that word2vec is implicitly factorizing a word
co-occurrence matrix, in which each co-occurrence is calculated as PMI. As the underlying
mechanism of word2vec [23] and SPPMI is identical, they experimentally showed that
SPPMI could achieve a similar level of performance as word2vec. In this work, we chose
the same values of k (1, 5, 15) and the number of singular values (100, 500, 1000) as used in
the original paper.

SPPMI(word1, word2) = max(PMI(word1, word2)− log k, 0) (2)

Equation (2). Shifted Positive Point Mutual Information (SPPMI).

3. Results
3.1. Experiment Setting

To objectively measure the performance of SPPMI-based keyword expansion, we
compare its extracted keywords with those from six other models. Although they share
identical text preprocessing and seed word preparation steps, they all use different keyword
extraction steps. The word co-occurrence, PMI vector, and NPMI vector models represent
each word as a vector of its co-occurrence counts, PMI scores, and NPMI scores, respectively,
with every other word in the dataset. Based on those vector representations, the baseline
models rank pairwise cosine similarity to extract keywords that belong to the same smoking
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status as their seed words. For the PMI and NPMI score-based keyword extraction models,
we did not create any word vectors. Instead, we calculated the pairwise PMI and NPMI
scores, respectively, between each seed word and all other words in the dataset. By ranking
the scores, these two models similarly extract relevant keywords for each seed word. In
word2vec models, each word vector is represented by the weights of a neural network that
is trained to predict a word given its neighboring words. As one of the most basic word
embedding methods, it is widely applied in solving various word-level NLP tasks [24–27].
In our experiment, we trained nine word2vec models with different hyperparameters. For
the dimension of the word vectors, we set it to be 100, 200, or 300. For the context size, we
designated it to be 2, 4, or 6. To extract relevant keywords with word2vec, we once again
used a pairwise cosine similarity measure.

3.2. Keyword Extraction Precision

We extracted the top 1, 5, 10, and 20 keywords from each of these unsupervised
keyword extraction models for each of our 50 initial seed words. As the complete set of
smoking-related keywords are not available in the dataset, we used precision to measure
the performance of the keyword extraction. To compare the precision of the models,
two human annotators independently assessed the extracted keywords. Each extracted
keyword was deemed correct only when both annotators agreed that it described the same
smoking status as its input seed word.

As shown in Table 3, our SPPMI-based keyword expansion method showed superior
performance in extracting smoking status-related keywords from bilingual EHRs. It is
interesting to note that the basic SPPMI model does not significantly improve keyword
extraction precision. Instead, it was the lower-dimensional word vectors created from
the SVD that exhibited superior and robust performance. As the number of generated
keywords increased, the precision inevitably decreased because the number of words
related to smoking status in our dataset is limited.

Table 3. Comparison of precision between SPPMI-based keyword expansion and five baseline
models (word co-occurrence, PMI vector, NPMI vector, PMI score, and NPMI score). The values
of d represent the number of singular values used in the SVD or the dimension of word vectors in
word2vec. The values of c indicate the context size used in training word2vec.

Methods
# of Keywords

Top 1 Top 5 Top 10 Top 20

Word co-occurrence 38.00% 35.60% 30.40% 29.50%
PMI vector 42.00% 36.40% 31.20% 27.40%

NPMI vector 40.00% 35.60% 32.00% 27.70%
PMI score 38.00% 36.80% 37.00% 34.50%

NPMI score 36.00% 38.40% 37.40% 34.20%
SPPMI (k = 1) 42.00% 36.40% 31.20% 27.40%
SPPMI (k = 5) 38.00% 34.80% 31.80% 27.40%
SPPMI (k = 15) 36.00% 30.40% 27.00% 27.20%

SPPMI-SVD (k = 1, d = 100) 46.00% 40.80% 38.40% 31.50%
SPPMI-SVD (k = 1, d = 500) 46.00% 41.20% 35.40% 29.80%
SPPMI SVD (k = 1, d = 1000) 50.00% 38.80% 31.20% 29.50%
SPPMI-SVD (k = 5, d = 100) 56.00% 37.60% 32.00% 29.30%
SPPMI-SVD (k = 5, d = 500) 42.00% 36.00% 32.80% 30.00%

SPPMI- SVD (k = 5, d = 1000) 42.00% 34.40% 32.80% 30.10%
SPPMI SVD (k = 15, d = 100) 56.00% 40.40% 33.40% 30.60%
SPPMI- SVD (k = 15, d = 500) 44.00% 32.40% 29.80% 29.30%
SPPMI-SVD (k = 15, d = 1000) 44.00% 33.20% 31.00% 28.50%
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Table 3. Cont.

Methods
# of Keywords

Top 1 Top 5 Top 10 Top 20

word2vec (c = 2, d = 100) 10.00% 6.80% 7.60% 7.20%
word2vec (c = 4, d = 100) 11.11% 8.00% 6.20% 5.20%
word2vec (c = 6, d = 100) 8.82% 5.20% 4.60% 4.00%
word2vec (c = 2, d = 200) 10.00% 9.60% 8.40% 7.20%
word2vec (c = 4, d = 200) 9.09% 7.20% 6.40% 4.90%
word2vec (c = 6, d = 200) 8.00% 4.80% 4.60% 4.20%
word2vec (c = 2, d = 300) 16.00% 9.60% 7.40% 5.90%
word2vec (c = 4, d = 300) 8.00% 6.80% 5.20% 3.80%
word2vec (c = 6, d = 300) 8.00% 5.20% 4.60% 4.60%

It is also interesting to note that word2vec shows poor precision. There are several
reasons why word embedding methods generally do not work effectively in our data. One
of the most critical issues is the huge number of unique words relative to the size of the data.
When doctors are writing clinical notes, they are often simultaneously interacting with
their patients. Due to this real-time nature, the expressions in the notes are often short and
abbreviated. Consequently, they do not strictly adhere to standardized expressions, and
their expression styles often differ between doctors. Due to this issue, semantically similar
yet structurally different terms are prevalent in our dataset. Without normalizing these
terms, word embedding methods fail to generalize. However, bilingual term normalization
itself is another critical future research topic that is beyond the scope of this paper. The
detailed precision for each of the three smoking classes (never smoker, past smoker, and
current smoker) is included in Tables S1–S3 in Supplementary Materials. Additionally,
Table 4 includes a few examples of extracted keywords from each smoking status. As a
reference, all 50 of our seed keywords, the extracted keywords, and their statistics are
publicly available at https://github.com/hank110/smoking_status_keywords (accessed
on 8 September 2021).

Table 4. Examples of extracted keywords. Both English and Korean keywords were simultaneously
extracted for each of our seed keyword. The two bilingual keywords superscripted 1 and 2 translate
to “smoking negative” and “years ago ppd (packs per day)”, respectively. The two Korean keywords
superscripted 3 and 4 translate to “still cigarette” and “haven’t quit”, respectively.

Never Smoker Past Smoker Current Smoker

흡연 negative 1
년전 ppd 2 아직담배 3

s negative smoking ya 못끊었어요 4

never smoker quit since still smoking

3.3. Smoking Status Classification

Our SPPMI-based keyword extraction method can also be applied to training a smok-
ing status classifier from EHR data. Several previous works have applied machine learning
algorithms or statistical analysis to classify smoking status from EHR [28–33]. Among
these works, a linear support vector machine (SVM) trained from unigram and bigram bag
of words has consistently shown the highest classification accuracy [7,34–36].

However, this smoking status classification accuracy can be further improved by
preprocessing unigram and bigram bag of words by the keywords extracted from SPPMI.
Instead of representing each EHR record by the frequencies of every word in the dataset,
we represent it as a bag of keywords. For all non-keywords within the record, we simply
treat them as an identical word. For example, if we decide to represent each record with
five keywords extracted from SPPMI, each record becomes a vector with six dimensions
(five for keywords and one for other non-keywords).

To test the impact of our SPPMI-based extracted keywords on the smoking status
classification, we have fixed the classifier to be a linear SVM. Subsequently, we compare

https://github.com/hank110/smoking_status_keywords
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the classification accuracy resulting from different clinical note vector representations.
For all classification methods, we have trained the classifiers from 80% of our SNUH
clinical notes data and used the rest as test data. As the entire EHR records were initially
annotated with each patient’s actual smoking status, accuracy can be measured in terms
of F1 score to compare the impact of different vector representations on the classifier’s
performance (Table 5).

Table 5. Comparison of overall smoking status classification accuracy. All accuracies are reported in
F1 scores.

Methods

# of Extracted
Keyword 1 5 10 20

Bag of Words 90.35%
LSA 49.63% 55.04% 57.79% 61.93%
LDA 43.69% 43.69% 43.69% 43.69%

SPPMI (k = 1) 90.67% 90.99% 91.30% 91.30%
SPPMI (k = 5) 91.20% 89.93% 91.52% 91.83%

SPPMI (k = 15) 90.67% 91.20% 90.99% 91.41%
SPPMI-SVD (k = 1, d = 100) 90.88% 90.35% 90.56% 91.09%
SPPMI-SVD (k = 1, d = 500) 90.88% 90.88% 91.09% 91.94%
SPPMI SVD (k = 1, d = 1000) 90.46% 91.09% 92.15% 92.79%
SPPMI-SVD (k = 5, d = 100) 90.56% 91.41% 90.46% 91.41%
SPPMI-SVD (k = 5, d = 500) 90.56% 91.30% 91.41% 91.83%

SPPMI- SVD (k = 5, d = 1000) 90.56% 90.88% 91.94% 91.52%
SPPMI SVD (k = 15, d = 100) 91.09% 90.56% 90.35% 91.73%
SPPMI- SVD (k = 15, d = 500) 90.24% 90.56% 91.30% 91.09%

SPPMI-SVD
(k = 15, d = 1000) 90.77% 90.77% 91.30% 91.30%

Compared to the unigram and bigram-based Bag of Words approach used in [7,34–36],
classifying smoking status solely with the keywords extracted with our SPPMI-based
approach improves the overall accuracy up to 1.8% (Table 4). This improvement in accuracy
becomes more evident when we observe the classification accuracy of each smoking
status (Tables S4–S7 in Supplementary Materials). For classifying smokers, our approach
improves the F1 score by as much as 9.04%. Furthermore, the improved classification result
also signifies that our method is capable of expanding meaningful keywords from our
seed word.

In terms of machine learning, preprocessing clinical note vectors by our keywords
serves as a form of dimension reduction or feature engineering. However, our approach
outperforms other conventional dimension reduction techniques in document vectors, such
as Latent Semantic Analysis (LSA) [37,38] and Latent Dirichlet Allocation (LDA) [39]. This
superior smoking status classification result once again emphasizes the capability of our
approach to expand keywords that are truly relevant to each smoking status.

3.4. Frequency Distribution of the Expanded Keywords

As our method solely relies on vector similarity, it is capable of extracting even infre-
quently occurring keywords. As shown in Figure 2, approximately 60% of our extracted
keywords occur less than five times in the entire data. Keyword extractions that utilize
statistical measures [40] or the feature importance of classifiers [41] will not be as effective
as our method in capturing these infrequent keywords. As they have less impact on the
overall classification accuracy, they will simply be disregarded or be replaced by more
frequent features or keywords. However, these infrequent keywords provide equally mean-
ingful insight into EHR records, especially when the amount of data or standardization
is limited. They capture different ways of expressing smoking status and might even
represent typos in the expressions.
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4. Discussion
4.1. Limitations of Pre-Trained Language Models

In this paper, we have excluded pre-trained language models such as BERT [42] and
GPT [43] based methods from our experiment due to our data’s domain difference and
bilingual property. These pre-trained models are trained to learn effective language models
from general-purpose datasets such as English Wikipedia and Bookscorpus. However, the
word generating distribution in the medical domain cannot be simply assumed to be similar
to those of Wikipedia or Bookscorpus. As medical notes are simultaneously generated while
doctors are interviewing or examining their patients, the notes are often succinct, largely
containing abbreviations, domain-specific jargon, and incomplete sentences. Therefore,
without the fine-tuning pre-trained model, it cannot effectively capture the domain-specific
word generating distribution present in our medical notes. Although domain-specific
models such as BioBERT [44] offer fine-tuned language models for biomedical applications,
the terms expressed in the clinical notes significantly differ from the normalized and pre-
processed terms used in training these models. Due to the small number of notes relative
to the huge number of unique words, the benefits of additional fine-tuning these existing
models with our data are also limited.

Most importantly, there are no bilingual or multilingual language models in the
biomedical domain at the moment. Without models that are simultaneously trained from
multilingual medical text data, aligning embedding space of different language models
in the medical domain is an ongoing research topic that we hope to address in the future.
Furthermore, the biggest bottleneck in this multilingual language model approach is
the limited medical corpus available in Korean. Consequently, to the best of the authors’
knowledge, there is no large-scale pre-trained language model trained from Korean medical
text data. This paper’s experiment with word2vec emphasizes not only the need but also
the difficulty in creating a large-scale language model for Korean medical data. Despite
various hyperparameter settings, the low precision from our word2vec models indicates
that they have failed to capture the semantic similarity between terms. A longer and larger
set of medical notes will provide additional contextual cues to improve the performance of
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word2vec and other neural network-based language models. However, creating a large
medical corpus is extremely costly as it is not an easily available data source and requires
medical professionals’ input in processing the data. We hope that this paper will serve as a
starting point for this expensive yet necessary process.

Only with sufficient medical data, language models, or deep learning algorithms are
effective in the medical domain. For example. Arnaud et al. [45] uses 260,000 Emergency
Department records to train its CNN text classifier, while Yao et al. [46] fine-tunes its BERT
model from a Chinese clinical corpus that contains over 18 million tokens. As more Korean
medical notes are currently being collected in a structural format, we also plan to improve
our bilingual keyword extraction in the future. Once a large-scale Korean medical corpus
is ready, training a more sophisticated language model or aligning word embedding space
based on transfer learning will be interesting research topics to pursue.

4.2. Implications to Bilingual EHRs

The main purpose of EHR is to support patient care and administrative tasks related
to treatment as a repository of clinical data. Therefore, EHR is not optimized for accurate
retrieval of many data. Eventually, in the process of using EHR for research purposes,
problems such as low accessibility, poor performance, and lack of data analysis functions
arise. In particular, clinicians often use free text when recording clinical findings in EHR.
Natural language processing is a representative method of extracting meaningful data
from documents recorded as free statements. Attempts are being made to extract drug pre-
scriptions, problem lists, and comprehensive clinical information from clinical documents
recorded in the form of free statements using natural language processing or to use them
for document classification and retrieval [47–49]. However, although current research on
medical images or bio-signals has progressed considerably, research on analyzing textual
medical data is insignificant. In particular, studies composed of multiple languages are
not common [50]. Korean medical institutes face additional difficulties in natural language
processing, as EHR contains both Korean and English. This study provides a meaningful
basis for extracting insights from the clinical data warehouse, mapping documents to a
standardized terminology system, and classifying bilingual EHR documents.

4.3. Strengths and Limitations

In the previous studies, smoking data were mainly collected through two sources: a
structured questionnaire or a manual review of the clinical notes by researchers. Using a
structured questionnaire may require a lot of effort to increase the response rate. Similarly,
manual review needs significant amount of time and human resources with the possibility
of human error. Our proposed method allows researchers and practitioners to easily obtain
smoking information from EHR. It is also the first work to extract smoking information from
the clinical free text that contains two different languages, Korean and English. Previous
works on smoking status classification focused on binary classification. Their algorithms
classified either smokers and non-smokers or past smokers and non-smokers. However,
our classification algorithm based on keyword extraction uses multilabel classification that
distinguishes between the current, past, non-smokers, and unknowns. Various treatment
guidelines for noncommunicable diseases [51,52] recommend examining smoking history
during every outpatient visit and educating lifestyle modification. If there is no smoking-
related information in the patient’s previous EHR, the medical staff can perceive it as a cue
to collect new information. Moreover, it was confirmed that smoking-related keywords
were expressed in various ways even if the previous chart contents were copied and pasted.
Our proposed algorithm will have a practical application in automatically mapping and
preprocessing unstructured clinical notes composed of various keywords that occur under
the copy and paste practice.

One limitation of this study is the possibility that some clinicians did receive patients’
smoking history but failed to enter it into EHR. Therefore, simply labeling patients with
unknown smoking status as the unknowns may be insufficient. Second, our study was
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conducted only with free-text clinical notes obtained from two departments in one tertiary
hospital. The clinical notes of diabetes patients in the family medicine and COPD patients
in the respiratory medicine often include the patients’ smoking history, allowing us to
build and validate our approach. Further validation study using data from other centers is
required to test our proposed method’s robustness and applicability.

5. Conclusions

Our study showed the great potential in classify smoking status from bilingual un-
structured EHRs. To the best of our knowledge, this paper is one of the first works that
confirmed the possibility of extracting meaningful keywords from bilingual unstructured
EHRs. Instead of medical staff manually perusing through the notes, our proposed algo-
rithm explored the possibility of replacing this time-consuming and expensive approach
with an automated methodology leveraged by NLP. Due to the limitations on the amount of
data available and the relatively small portion of EHRs dedicated to patients’ smoking his-
tory, we could not train or apply sophisticated bilingual language models for our keyword
extraction task from scratch. However, as the size of EHR would continue to increase, we
plan to apply recent advancements in NLP to improve the accuracy of keyword extraction
in the near future. Smoking information can be easy to acquire and use for clinical practice
or research with our current findings.

Supplementary Materials: Python implementation of the study is available online at: https://
www.mdpi.com/article/10.3390/app11198812/s1 or https://github.com/hank110/smoking_status_
keywords, Table S1: Comparison of precision between SPPMI-based keyword expansion and five
other baseline models on extracting never smoker-related keywords (Word co-occurrence, PMI
vector, NPMI vector, PMI score, and NPMI score models). The values of d represent a number of
singular values used in SVD, Table S2: Comparison of precision between SPPMI-based keyword
expansion and five other baseline models on extracting past smoker-related keywords (Word co-
occurrence, PMI vector, NPMI vector, PMI score, and NPMI score models). The values of d represent
a number of singular values used in SVD, Table S3: Comparison of precision between SPPMI-based
keyword expansion and five other baseline models on extracting current smoker-related keywords
(Word co-occurrence, PMI vector, NPMI vector, PMI score, and NPMI score models). The values
of d represent a number of singular values used in SVD, Table S4: Comparison of never smoker
classification accuracy. All accuracies are reported in F1 scores, Table S5: Comparison of past smoker
classification accuracy. All accuracies are reported in F1 scores, Table S6: Comparison of current
smoker classification accuracy. All accuracies are reported in F1 scores, Table S7: Comparison of
unknown smoking status classification accuracy. All accuracies are reported in F1 scores.
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