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Abstract: The contamination of potentially toxic elements (PTEs) in agricultural soils is a serious
concern around the globe, and modelling approaches is imperative in order to determine the possible
hazards linked with PTEs. These techniques accurately assess the PTEs in soil, which play a pivotal
role in eliminating the weaknesses in determining PTEs in soils. This paper aims to predict the
concentration of Cu, Co and Pb using neural networks (NNs) based on multilayer perceptron (MLP)
and boosted regression trees (BT). Statistical performance estimation factors were rummage-sale to
measure the performance of developed models. Comparison of the coefficient of correlation and root
mean squared error suggest that MLP-established models perform better than BT-based models for
predicting the concentration of Cu and Pb, whereas BT models perform better than MLP established
models at predicting the concentration of Co.

Keywords: boosted regression trees (BT); ecological risk assessment; heavy metals; lead; multilayer
perceptron (MLP); neural networks (NNs); soil carbon; phosphorus

1. Introduction

Contamination by potentially toxic elements (PTEs) is one of the key worldwide
environmental concerns due to their implications on all kinds of environments, the food
chain, soil organisms, and humans through direct or indirect exposure [1–4]. The increasing
urbanization, historical and recent industrial/mining activities, military activities, and
agricultural practices owing to the usage of organic or inorganic fertilizers and agrichemi-
cals are some of the most important sources of soil contamination by PTEs (e.g., [4–10]).
However, contamination by PTEs is not confined to the localized point where it occurs,
since there is a diffuse and generally poorly studied contamination that affects all ecosys-
tems, including groundwater systems. In this sense, information about the ability of PTEs
to affect other nearby ecosystems, and thus to be more available to terrestrial organisms,
is controlled by soil properties, such as pH, organic matter, exchange cations, Fe/Mn
oxides, etc. [7–11]. Furthermore, to manage and regulate the metal contamination in soils is
to be needed to assess the origin of contamination [12,13]. The diverse distribution of PTEs
in soils, the widespread causes of contamination, and inappropriate monitoring knowledge
are the key concerns for scientists in assessing the multi-source of PTEs in soils at a regional
level; exploring suitable strategies to handle this problem is necessary imperative. There-
fore, understanding all these aspects, modelling techniques are an imperative approach to
assess the PTEs’ origin and their interface with soil properties [14,15].
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Different modelling techniques have emerged to help assess the origin of PTEs and
their possible interaction with soil properties quickly and cost-effectively. Traditionally,
geostatistical and mapping/GIS techniques have been used (e.g., [12,13]); however, linear
regression techniques, comprising principal component analysis–multiple linear regres-
sion (PCA–MLR), and neural networks have been successfully applied in recent years
for soil mapping and contamination prediction, since there are simple methods to source
identification of soil contaminants that require relatively few samples and reduced work-
load [15–20]. Various researchers used these techniques to predict the concentration of
PTEs; for example, Deng et al. [21] predicted the As, Pb, Cr, Cd and Hg content, with total
Cd content and pH as covariates and R2 varies from 0.109 to 0.456. Gholami et al. [22] also
projected the content of Fe and Ni. Different researchers all over the globe have studied
further, numerous explorations using machine learning techniques in diverse areas of
environmental engineering [23–29]. Machine learning techniques such as neural networks
(NNs), dependent on multilayer perceptron (MLP) and boosted regression trees (BT) and
stepwise regression, can predict non-linear associations amid diverse parameters. These
techniques give information about the significance of variables in the method that may
assist in controlling the PTEs contamination in soil environs and diminishes the health
perils of PTE revelation [30,31].

In India, extensive fertilizers, pesticides, and rapid growth of industrial and urban
growth development have a great impact on soil contamination, but there is no suitable
dataset regarding agricultural roadside soils and standard methodologies about modelling
strategies [2,32,33]. To achieve this goal, we have applied different modeling approaches
such as neural networks (NNs) based on multilayer perceptron (MLP) and boosted regres-
sion trees (BT) to predict the concentration of Pb, Co and Cu in roadside agricultural soils
in Punjab (India). The outcomes of this study will help in controlling and regulating the
pollution of PTEs in soil.

2. Materials and Methods
2.1. Study Area

The current area of assessment was District Jalandhar, Punjab. This District is located
between two rivers; Beas and Sutlej. Loamy soil is mainly found in this area, which is
due to the cool to warm climate based on sub-moist environments [34]. The geological
substrate consists of alluvial deposits from the Quaternary age associated with 81 Indus
allivial plains [35]. It makes up approximately 5.35% of the area of Punjab, and is one of
the most highly populated areas of Punjab. The land consists of 90% agriculture, 7.4%
non-agriculture and 2.1% forests. It has an extensive setup of roads and is a significant
location for agriculture as well as textile and automobile spare part factories [32]. The
climate of the study area is normally very hot during the summer season and very cold
during the winter season, with rice and wheat as the main crops in the study area. The
annual rainfall is about 600 mm year−1. When samples were collected, the humidity was
77% and the temperature was 18 ◦C.

2.2. Soil Sampling and Analysis of Chemical Properties of Soil

Samples were collected at a depth of 0–15 cm from 70 locations in triplicates from
Jalandhar (India) (Figure 1). Soil samples were air-dried and analyzed for various chemical
parameters (pH, phosphorus (P), Ca, Mg, and organic carbon (C)) and PTEs (Co, Pb
and Cu). Soil pH was measured by employing micro pH Analytical pH-meter in 1:2
soil/water extracts [36]. The Olsen method was applied to determine phosphorus [37],
while calcium and magnesium were determined through EDTA titrations [38]. Walkley-
Black wet oxidation method was used to determine C content [39]. The pseudototal Co, Cu
and Pb contents were determined by acid digestion using aqua regia (HNO3: HCl, 1:3 v/v).
One gram of each oven-dried soil sample was digested with 12 mL of aqua regia and the
solution was heated on the hot plate for 1–2 h. The digested samples were filtered and
diluted with 50 mL of steam distillation water and used for analysis. Element analysis in
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the extracts was resolute by atomic absorption spectrophotometer (AAS) (Model Agilent
Technologies 200-Series AA). The limits of detection of the instrument are as follows:
5 µg L−1 for Co, 1.2 µg L−1 for Cu and 14 µg L−1 for Pb. More details are given in
Kumar et al. [33].
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2.3. Stepwise Regression for Input Selection

The set of factors used for input vectors were pH, P, Ca, Mg and C. The corresponding
outputs were Co, Cu and Pb. We accepted that the input vectors encompassed features that
are expedient for influencing the output of PTEs. Afterwards, the variable selection method,
i.e., the stepwise regression analysis, in which various combinations of input variables
were tested together for input selection and pH and P were selected based on higher R2

and lower residual mean square in Analysis of Variance (ANOVA) regression. Before
analysis, data pre-processing was implemented using Sigma Plot (v. 12.0) and outliers were
separated and then data dropped to 67 for further modeling processes. Subsequently, the
data points were divided by the randomization technique. Data points were randomized
and spited by Microsoft Excel software, and 70% of the data was selected to train the models
and remaining 30% was used to test (15%) and validation (15%) of the developed models.

2.4. Modeling Techniques

Modeling approaches such as neural networks (NNs) based upon multilayer percep-
tron (MLP) and boosted regression trees (BT) are used in this paper for modeling of PTEs.
The boosted regression trees (BT) are a group of two techniques; boosted and decision
tree. Boosted was implemented with traditional techniques such as decision tree, M5P,
support vector machine, etc. to improve performance. The basic principle of artificial
neural network is human brain. The principally used design of NNs is serened of input,
output and hidden layers known as MLP [38–41]. The details vis à vis modeling approaches
were given in Shiri et al. [42,43] and Sihag et al. [15].
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2.5. Model Performance Assessing Parameters:

For appraising the guessing aptitude of diverse approaches, the coefficient of correla-
tion (CC) and root mean square error (RMSE) values were enumerated by using training
and testing statistics. Elaborations are provided in earlier research by Sihag et al. [15].

Coefficient of correlation =
n ∑ EobsEpred–(∑ Eobs)(∑ Epred)√

n(∑ Eobs
2)− (∑ Eobs)

2
√

n(∑ Epred
2)− (∑ Epred)

2
(1)

Root mean square error =

√
1
n
(

n

∑
i=1

(
Eobs − Epred

)2
(2)

where: Eobs and Epred are experiential and prophesied values, and n is number of observa-
tions. Figure 2 represents the overview of this paper.
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3. Results and Discussion

The aim of the study was to evaluate the effectiveness of MLP- and BT-based models
to predict the Co, Cu and Pb in the soil. Data used in this study were gathered from
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field data. Figure 3 shows the correlation matrix of the dataset. Phosphorus and pH are
positively correlated with Cu, Co and Pb, while Ca negatively correlates with these metals.
Mg showed a moderate correlation with Cu, Co and Pb. Organic carbon also exhibits
a moderate negative relationship with these elements. Figure 4 indicates the 3D plot of
pH and P versus Co, Cu and Pb, respectively, dependent upon a set of three-dimensional
points. These plots depict the relationship of phosphorus and pH with concentrations of
Cu, Co and Pb. The effect of absolute variable can be examined using distinct plotting
colours for the individual value of each variable. With the increasing concentration of
phosphorus, the Co content increases, while the relationship of pH with Co shows that the
concentration enhances with increasing values of pH, and maximum increase takes place
at a pH value of 7.0. The maximum increase in Cu concentration occurs at phosphorus
content 0.10 (mg kg−1) and pH value of 7.3, while in Pb, maximum enhancement occurs at
0.20 (mg kg−1) value of phosphorus and 7.0 value pH. Correlation coefficient and RMSE
were used to assess the performance of developed models. The dataset consisted of
67 observations of studied variables where we can observe high levels of available P, and
low levels of studied PTEs (Table 1).

Table 1. Descriptive statistics of studied variables (n = 67).

Variables Units Mean Minimum Median Maximum SD CV Skewness

pH 7.76 6.70 7.88 8.80 0.41 0.05 −0.21
C % 3.66 1.78 3.51 6.70 0.99 0.27 0.80
P mg kg−1 128.97 7.00 132.85 355.20 74.94 0.58 0.44

Ca meq 100g−1 0.19 0.05 0.14 0.93 0.15 0.79 3.68
Mg meq 100g−1 0.17 0.02 0.15 0.90 0.13 0.74 3.37
Co mg kg−1 0.10 0.01 0.11 0.36 0.09 0.91 0.37
Cu mg kg−1 0.51 0.01 0.19 12.79 1.99 3.89 5.77
Pb mg kg−1 0.23 0.01 0.15 5.83 0.70 2.98 7.68

SD, Standard Deviation; C, Organic carbon; P, Available Phosphorus.
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3.1. Results of MLP-Based Models

The neural network models based upon MLP were executed by employing MATLAB
software. The selection of input variables is the initial step in soft computing-based models’
development. In this study, models were developed using pH, P, Ca, Mg and C variables.
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Model development is a trial-and-error process. A larger dataset was used for model
preparation, and other (smaller) datasets were used for model testing and validation.
Different input combinations were used to be developed for predicting the Co, Cu and
Pb. After analyzing Pearson’s correlation matrix, five different models were developed.
The different models are developed using a number of neurons in the hidden layer, and
number of runs for output variables are Co, Cu and Pb. Figure 4 indicates the scatter plot of
target and predicted values of Co using various MLP models. MLP-2-8-1 lies significantly
closer to the line of perfect agreement (1:1) with lesser deviation. The model MLP-2-8-1 is
best for predicting Co content, and the 2 signifies the number of input combinations (pH
and phosphorus), while the 8 represents the number of neurons in a single hidden layer.

Table 2 indicates the values of coefficient of correlation and RMSE for all developed
models for Co. Table 2 and Figure 5 suggest that that Model 4 that has the structure 2-8-1 is
the best performing of all the developed models for all stages of model development with
CC values in training (0.8547), testing (0.7186) and validation (0.5119), compared to the
RMSE values obtained in training (0.0474), testing (0.0193) and validation (0.0060).

Table 2. Correlation coefficients and RMSE for different MLP topologies in all stages for Co.

Models
Training Testing Validation

Run CC RMSE CC RMSE CC RMSE

MLP 2-8-1 10 0.8676 0.0453 0.7226 0.0416 0.4026 0.0082
MLP 2-5-1 10 0.8574 0.0469 0.7107 0.0162 0.4582 0.0070
MLP 2-5-1 25 0.9075 0.0383 0.7645 0.0148 0.3138 0.0125
MLP 2-8-1 25 0.8547 0.0474 0.7186 0.0193 0.5119 0.0060
MLP 2-6-1 25 0.8511 0.0479 0.6662 0.0144 0.4769 0.0070
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MLP in validation stage.

Figure 6 shows the scatter plot of target vs. output Cu using various models for the
validation stage. MLP-2-10-1 lies closer to the line of perfect agreement (1:1), while devia-
tion is much less. Table 3 indicates the values of coefficient of correlation and RMSE for all
developed models for Cu. This table suggests that Model 2, which has the structure 2-10-1
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is the best performing of all the developed models for training and validation stages and
shows comparable results in the testing stage with CC values in training (0.9488), testing
(0.7366) and validation (0.8626), compared to the RMSE values obtained in training (0.0519),
testing (0.0891) and validation (0.0943). The model MLP-2-10-1 is best for predicting the Cu
concentration, and the 2 indicates the number of input variables used to build the model
(pH and P) and the 10 indicated the number of neurons in a single hidden layer.
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Table 3. Correlation coefficient and RMSE values for different MLP topologies in all stages for Cu.

Models
Training Testing Validation

Run CC RMSE CC RMSE CC RMSE

MLP 2-4-1 25 0.9407 0.0557 0.7420 0.0878 0.6635 0.1440
MLP 2-10-1 25 0.9488 0.0519 0.7366 0.0891 0.8626 0.0943
MLP 2-7-1 25 0.9331 0.0591 0.7554 0.0874 0.7883 0.0564
MLP 2-5-1 25 0.9372 0.0573 0.7264 0.0901 0.6828 0.0903
MLP 2-9-1 25 0.9463 0.0531 0.7393 0.0886 0.5610 0.0686

Figure 7 shows the scatter plot of target vs. output Pb using various models for the
validation stage, and the MLP-2-10-1 model lies closer to the line of perfect agreement (1:1),
while deviation is much less. Table 4 indicates the values of coefficient of correlation and
RMSE for all the developed models for Pb, and this table suggests that that Model 4 with
the structure 2-10-1 is the best performing of all the developed models for the training and
validation stages, and shows comparable results in the testing stage with CC values in train-
ing (0.8562), testing (0.3706) and validation (0.7114), compared to RMSE values obtained in
training (0.0231), testing (0.1071) and validation (0.0126). The model MLP-2-10-1 is the best
for predicting Pb content, and the 2 signifies the number of input combinations (pH and
phosphorus) and 10 is the number of neurons in a single hidden layer. From the inferences
obtained using MLP models, we can say that metals concentration may nearly be appraised
with these neural network models and it is comparatively easy to assess variables; it can
be promising to identify metals that are detrimental to the feasibility of soils, both rapidly
and economically [44]. Scatter plots revealed that inferences obtained through MLP-based
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models of neural networks are acceptable for Cu, Co and Pb. Indeed, the determined mod-
els do not guarantee very high conformity amid assessments and amounts. However, this
provides a useful method for assessing the eminence of soils [45]. El Badaoui [46], in their
studies, applied a neural network approach based on MLP and multiple linear regression
for predicting the concentration of Cu, Pb and Cr and inferred that NN models based on
MLP are best predictors of the content of these metals with coefficients of determinations
were 0.98 for Cu and 0.99 for Cr and Pb, respectively. Falamaki et al. [47] used various
machine learning techniques in estimating the content of PTEs, for example, nickel, and
concluded that our MLP-based NNs models better predict the content of PTEs in contrast
with other models. Sihag et al. [15], while working on potentially toxic elements (Fe, Mn,
Cu and Zn) in Neyshabur plain, Iran, applied different models such as NN-based MLP, M5
model tree (M5) and bagging approach (BM5P). They concluded that MLP models are the
best predictors of Fe and Cu, while BM5P and M5P are appropriate models for predicting
the Zn and Mn.
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Table 4. Correlation coefficients and RMSE values for different MLP topologies in all stages for Pb.

Models
Training Testing Validation

Run CC RMSE CC RMSE CC RMSE

MLP 2-3-1 25 0.8561 0.0938 0.3529 0.1078 0.7132 0.0128
MLP 2-5-1 25 0.8465 0.0104 0.3490 0.1084 0.7113 0.0142
MLP 2-5-1 10 0.8378 0.0243 0.3602 0.1052 0.7119 0.0129

MLP 2-10-1 25 0.8562 0.0231 0.3706 0.1071 0.7114 0.0126
MLP 2-10-1 10 0.8518 0.0066 0.3563 0.1079 0.7095 0.0137

3.2. Results of BT-Based Models

Excerpt of input variables is the initial step in developing BT-based models. In the
present paper, the model was established using pH, P, Ca, Mg, and C. Model development is
a similar process as that followed by the MLP-based model development. Figure 8 indicates
the BT model-based tree graphs for Co, Cu and Pb, respectively. The BT regression trees
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were obtained for Co, Cu and Pb using soil properties as forecasters. The root nodes of
the regression tree in Co, spilt on phosphorus and pH, were also splitting variables into
trees. It is assumed that lower phosphorus content is allied with greater Co retention, and
pH is also an imperative variable in the retention of Co [48]. In the BT regression model
of Cu and Pb, the root nodes of the regression tree also spilt on phosphorus and pH, and
both these variables are imperative in maintaining Cu and Pb [49]. The agreement plots for
target values and predicted values of Co, Cu and Pb are shown in Figure 9, respectively,
using a validation dataset. CC and RMSE values of Co, Cu and Pb using BT-based models
are listed in Table 5.
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Table 5. Correlation coefficients and RMSE values of Co, Cu and Pb using boosted regression tree
method for all stages.

Output
Training Testing Validation

CC RMSE CC RMSE CC RMSE

Co 0.9159 0.0376 0.7092 0.0455 0.9062 0.0343
Cu 0.9600 0.0478 0.8646 0.0755 0.8539 0.0854
Pb 0.8000 0.1175 0.6450 0.0791 0.7064 0.1000

Among the predicted level of metals, the highest CC values were found for Cu in
training (0.960) and testing (0.8646), while in the validation of models, the highest CC
values were found for Co (0.9062). The RMSE values were recorded as the highest for Pb
in training (0.1175), testing (0.0791) and validation (0.1000). Wei et al. [50] used boosted
regression, random forest and support vector machine techniques for predicting the PTE
concentration, mainly arsenic, and found that among all applied models, boosted regression
is the best model for predicting the arsenic concentration with RMSE (0.6007). Hu et al. [51],
in their studies for predicting the PTEs (Zn, Cu, Cr, Ni, Hg, Cd, As, and Pb) concentrations,
applied numerous modelling techniques such as boosted regression, random forest and
generalized linear models. Among the applied models, random forest is the best, followed
by boosted regression and generalized linear models for predicting the concentration of
these PTEs with RMSE values Zn (0.067), Cu (0.059), Cr (0.033), Ni (0.044), Hg (0.021),
Cd (0.229), As (0.103) and Pb (0.004).

3.3. Intercomparison of Applied Models

To better elucidate the model prophecy impact further, we applied the Taylor dia-
gram [52]. The nearer the pentagram was to this line, the nearer the prophecy was to
determine the Cu, Co and Pb concentration prediction [53]. The Taylor diagram is a polar
graph in which the cosine of the angle amid the X-axis is the CC in Cu, Co and Pb of the
model. The radial direction is the ratio of model to metals standard deviation. The grey
arcs signify the RMSE normalized by the standard deviation for the apiece model [54].
Figure 10 shows the Taylor diagram for the comparison coefficient of correlation and RMSE
in the validation stage for predicting Co, Cu and Pb using applied models. This suggests
that MLP-established models perform better than BT-built models for predicting the Cu
and Pb, whereas BT models perform better than MLP-based models in predicting the Co.
Overall, the neural network models based on MLP are closer to the line and fit well, in
contrast with other models for predicting the concentration of Cu, Co and Pb.
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4. Conclusions

The contamination by PTEs is a severe concern for soils worldwide, and proper
attention should be paid to overcoming this problem. Proper mitigation approaches are
needed, and this study concludes that the concentration of Cu, Co and Pb in roadside soils
was found less in contrast with Indian soil limits. We tried to predict the level of these
elements using modelling techniques. We found that amid all the applied techniques, we
can conclude that MLP-based models perform better than BT-based models for predicting
the Cu level with RMSE (0.0519 to 0.0943) and CC (0.5619 to 0.9488) and Pb level with
RMSE (0.0066 to 0.1084) and CC (0.3490 to 0.8562), while BT models perform better than
MLP-established models in predicting the Co levels with RMSE (0.0343 to 0.0455) and
CC (0.7092 to 0.9159), respectively. Further BT-based regression models indicate that pH
and phosphorus are the imperative variables in the retention of Cu, Co and Pb in the
soil. These findings were supported by Pearson’s correlation analysis. Out of applied
input soil variables in this study for model building, only phosphorus and pH exhibit a
positive correlation with Cu, Co and Pb, and this may be why both these variables are
imperative for the retention of Cu, Co and Co Pb in the soil of the studied region. The
findings of the modelling techniques in the prophecy of Co, Cu and Pb helps ecological
researchers to estimate the sites of effluence, causes and guidelines where the PTEs are
disseminating. Planning appropriate environmental supremacy methods requires the
mitigation of PTEs pollution in the environment. The present work provides significant
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information about the predicting power of machine learning techniques for Co, Cu and Pb
concentration prediction and the models in which all datasets are grouped into a single
learning framework. With the greater recitals and valuable characteristics of the generalized
models, the projected scheme was effectively established for a set of Cu, Co and Pb; it
should be executed further to a bigger dataset to form a widespread model.
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