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Abstract: This paper focuses on a virtual power plant (VPP) implementation strategy for smart local
energy communities (SECs) with energy service providers. It is difficult to balance energy in the
implementation stage due to uncertainties in demand and resources. Therefore, VPP implementation
was modeled using the risk factor of energy balance. Using this risk factor, it was shown that the
temporal correlation between demand and resources was the dominant factor involved in VPP
implementation. Based on this, two risk-based VPP implementation strategies are proposed: an
optimization-based strategy and a simple strategy that is solved in an iterative way. To minimize
VPP implementation costs, the proposed strategies select the resources that have high correlation
coefficients with demand and low correlation coefficients with other resources. Experimental results
using real data sets show that the proposed strategies based on the risk factor are effective means
of VPP implementation for commercial and residential SECs. The results imply that VPPs for
commercial SECs are possible when PV is used as the main resource and is supplemented by wind,
and it is effective to configure VPPs for residential SECs using wind according to the correlation
between demand and resources.

Keywords: energy management system; implementation; operation; renewable; smart energy
community; smart grid; virtual power plant

1. Introduction

The power sector, responsible for the generation of electricity and heat, produces the
most greenhouse gas emissions at about 30% of total global greenhouse gas emissions [1]
and 40% of energy-related CO2 emissions [2]. To reduce this, the use of renewables as
generation resources is rapidly increasing. Renewables generated 28% of global power
in 2018 with major contributions by wind power, solar power and hydropower [3]. It is
expected that renewable power capacity will expand by more than 50% between 2019
and 2024, and renewables will meet 80% of the growth in global electricity demand until
2030 [4].

However, an increase in renewables with intermittent and uncontrollable charac-
teristics makes grid operation difficult. It is reported that the changing resource mix of
renewables is the highest threat to grid reliability [5]. The uncertainty of renewables not
only reduces their utilization but also acts as a burden on system operation through issues
including increases in reserved margins and operational complexity.

A virtual power plant (VPP) virtually interconnects various resources through a
central control unit, but resources remain physically independent in their ownership and
operation [6]. VPPs help establish stable power systems with integration of various types of
resources [7]. Types of resources can include roof-top photovoltaic (PV), solar farms, wind
farms, combined heat and power units, storage systems and flexible power consumers.
The objective of VPPs is to relieve the load on the grid by smartly distributing the power
generated by individual units.

Many studies have been researched on VPPs, applying technical optimization-based [8–10],
meta-heuristic [11–14], game-theoretic [15–17], and deep-learning-based [18,19] approaches
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as well as systematically considering irrigation systems [9], buildings [20], electric vehi-
cles [21] and power-to-gas [22]. Yi et al. considered VPP scheduling including day-ahead
bidding and real-time operation to maximize economic benefits [8]. It was formulated as
a mixed-integer, nonlinear programming problem and was solved effectively through a
clustering-based load aggregation method and a disaggregation method for deferrable
loads, satisfying consumers’ diversified requirements. Naval et al. proposed an optimal
technical–economic dispatch model of a VPP that combined large- and small-scale dis-
tributed renewable generation [9]. The problem was solved using mixed-integer linear
programming. Elgamal et al. presented a comparative analysis of various scales of virtual
power plant models [10]. They formulated a VPP operation problem considering day-
ahead and balancing markets and solved it by applying mixed-integer linear programming.
Hadayeghparast et al. formulated multi-objective VPP scheduling to maximize profits and
minimize emissions as a non-linear and non-convex problem [11]. The problem was heuris-
tically solved by applying a particle swarm optimization (PSO) algorithm. Zhang et al.
formulated a bi-objective VPP dispatch problem to optimize economic costs and power
quality [12]. A long short-term memory method was applied to increasing the accuracy
of wind prediction, and a multi-objective PSO algorithm was utilized as the solving al-
gorithm. Hannan et al. introduced an optimal schedule controller to manage renewable
energy resources in VPPs [13]. It was also solved using binary PSO. Pal et al. suggested
the optimal scheduling of generation in VPPs for a day-ahead market framework using
the beetle antenna search algorithm under various scenarios [14]. Yin et al. proposed a
two-stage, robust Stackelberg game considering the uncertainties of renewable energy
output and market prices for optimal scheduling in a VPP [15]. Wang et al. conducted
a feasibility study of urban virtual power plants with the goal of energy self-sufficiency
and applied Shapley value-based cooperative game theory, aiming to benefit both the
plant and demand sides [16]. Jafari and Foroud presented a VPP coalition-forming model
based on auctions considering the competition between VPPs in auctions for attracting
distributed energy resources [17]. Sadeghi et al. proposed an optimal bidding strategy for
a VPP for participating in electricity markets [18]. A deep-learning-based approach was
employed to handle the uncertainties. Lin et al. suggested a deep reinforcement learning
algorithm as the optimal online economic dispatch strategy for VPPs and designed an
edge computing framework to handle the stochastic and large-state space characteristics of
VPPs [19]. Moreover, comprehensive reviews of VPP research were conducted in [6,23,24].
Zhang et al. reviewed the research on VPPs by dividing it into internal control and external
market bidding strategies [6]. Internal control involves resource dispatch, and it is divided
into centralized, comprehensive and distributed control by adopting a control agent. The
external market bidding strategy is related to the economic effects of the participation of
VPPs in electricity markets, and it is mainly formulated as a mixed-integer linear problem
solved by optimization or heuristic methods. Naval and Yusta also divided the objectives
of VPP research into energy management to optimize scheduling resources and bidding
strategies [23]. The review concludes that most of the research has been focused on the
development of VPP models to achieve optimal control and coordination among their
components and thus maximize operating profits. Rouzbahani et al. presented a detailed
review of extracted documents regarding optimal scheduling techniques, technical and
economic limitations and different kinds of uncertainties [24]. This paper focuses on the
operation scheduling problem, which plays a significant role in the VPP concept.

However, most of the research focused on VPP operation involves how to dispatch
resources to maximize benefits or minimize costs. VPPs operate using aggregated resources.
This means that in VPP implementation, the resources gathered determine the operation
room of the VPP. For example, if a VPP consists of only PV resources, VPP operation cannot
be performed at night. A few works touch upon VPP implementation [25,26]. Masoud et al.
researched a distributed generation sizing problem considering the price of electricity
sales for increasing grid reliability and suggested a heuristic solution applying PSO [25].
Duan et al. proposed a VPP construction model based on decision area division [26]. They
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introduced a fusion space distance that accounted for geographical information and load
density. However, these studies do not sufficiently consider the characteristics of resources,
especially temporal characteristics. Renewables, the main resources constituting VPPs,
repeat over time. Therefore, it is necessary to consider temporal characteristics when
implementing VPPs.

This paper focuses on VPP implementation for smart energy communities (SECs).
SECs are local energy communities [27,28]. SECs can be divided into residential SECs
centered on households and commercial SECs, consisting of office buildings. SECs have
their own energy service providers, so they can choose to supply power using VPPs and
the utility grid [29]. A VPP serves the demand of an SEC. However, it is difficult to
balance energy in its implementation stage due to uncertainties of demand and resources.
Therefore, at the VPP implementation stage, the energy imbalance between the demand
and the resources is modeled as the risk factor. Through the risk factor, it is shown
that the temporal correlation between demand and resources is the dominant factor in
VPP implementation. Based on that, two risk-based VPP implementation strategies are
proposed: an optimization-based strategy and a simple strategy. The optimization-based
strategy is designed to minimize VPP implementation costs, and the risk factor is relaxed
using the relaxation multiplier. It can be optimally solved using linear programming.
The simple strategy is designed to obtain an iterative approach to reduce computation
complexity. The VPP selects resources in a one-by-one manner according to their correlation
with demand. Experimental results using real data sets show that the proposed strategies
based on the risk factor are effective means of VPP implementation for commercial and
residential SECs.

The rest of this paper is organized as follows: In Section 2, the VPP for the SEC
model is described, and in Section 3, the design method of the proposed risk-based VPP
implementation strategy is discussed. In Section 4, measurement studies applied to the
proposed strategy are presented, and in Section 5, lessons and future research directions
are discussed. In Section 6, the conclusions of the paper are presented.

2. Virtual Power Plants for Smart Energy Communities

A VPP for an SEC consists of three parts: the VPP, the SEC and the utility grid, as
shown in Figure 1. A VPP is configured and operated by a VPP service provider (SP). The
VPP’s SP recruits generation resources for the VPP’s service. Generation resources for the
VPP include individual power generators such as PVs, wind turbines and electric vehicles.
Aggregated resources are utilized to supply power to VPP service participants such as
SECs. An SEC consists of community members and the smart energy service provider
(SESP) [29]. The community members are residential or commercial units. The SESP is
a demand aggregator similar to the VPP SP. The SESP manages the energy transactions
between members and energy producers such as between the VPP SP and the utility
grid. Through the contract between the VPP SP and the SESP, the community members
participate in power service from the VPP. The power generated by the resources in the
VPP is transmitted to the SEC members through the utility grid. For energy balance, the
SEC is also connected to the utility grid.

The main problem in a VPP for an SEC is how to effectively serve the power consump-
tion of the SEC using the resources in the VPP. The VPP serves according to the capacity
limit of resources. The capacity limit is determined according to what kind and size of
resource the VPP has implemented. If the capacity is insufficient, it will not be able to
provide adequate service, and if there is too much capacity, the burden of operating cost is
increased. Therefore, VPP implementation is a prerequisite for effective VPP operation.
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3. Risk-Based VPP Implementation Strategy
3.1. Baseline Problem

In this subsection, a baseline problem in VPP implementation is described. In the
baseline problem, it is assumed that the power consumption of an SEC and the power
generation of resources are known at the VPP implementation stage. The solution of this
problem can be used to verify the feasibility of the proposed VPP implementation strategy.

Let ci and pi be the generation capacity and the unit implementation cost of resource i,
respectively. The VPP implementation cost is measured as

O(c) = ∑
i∈I

pi ci, (1)

where I is a set of resources I = {1, · · · , i, · · · , I}, and c = {c1, · · · , ci, · · · , cI}.
When the VPP service participant of the SEC requires power consumption dt, the VPP

should support demand using the power generation of resources i, gi
t, as follows:

dt = ∑
i∈I

gi
t, ∀t ∈ T . (2)

where T is the VPP service time as T = {1, · · · , t, · · · , T}.
The generated power from resource i is limited within the generation capacity pur-

chased by the VPP:
gi

t ≤ ci ∀ t ∈ T , i ∈ I . (3)

Therefore, the VPP implementation problem regarding the capacity of resources to
purchase to serve the requirements of demand is theoretically formulated as follows:

P0 : min
c

O(c) = ∑
i∈I

pi ci,

subject to dt = ∑
i∈I

gi
t, ∀t ∈ T ,

gi
t ≤ ci ∀t ∈ T , i ∈ I .

(4)

Problem P0 in (4) appears to be a simple linear problem. This is because it is assumed
that the power consumption and generation are known at the VPP implementation stage.
However, the generated power gi

t and the demand dt are not deterministic values. To
optimally solve this problem, information including future-generated and demand values
during service time T is required at the VPP implementation stage, which is not possible.
This is the difficulty in applying the solution of the VPP implementation problem to a
practical system. In this paper, to overcome this difficulty, problem P0 is relaxed based on
the risk factor, and a risk-based VPP implementation strategy is proposed.

3.2. Risk-Based VPP Implementation Strategy

As mentioned above, the generated power from renewables and the demand of the
SEC are uncertain. Therefore, it is impossible to meet the energy balance of the first
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constraint in problem P0 at the VPP implementation stage. To design the VPP implemen-
tation strategy, the energy balance constraint is relaxed, becoming a risk function that
can be measured using the expected demand and generation. Based on these factors,
an optimization-based VPP implementation strategy is proposed. Moreover, to reduce
computational complexity, a simple VPP implementation strategy is suggested to obtain an
iterative way of solving the problem.

3.2.1. Optimization-Based VPP Implementation Strategy

In this study, the energy balance constraint is relaxed as risk function

F(c, d̂, ĝi) =
1
T

√
(d̂−∑

i∈I
λiĝi)

2
, (5)

where d̂ and ĝi are the expected demand and generation of resource i in the form of column

vectors d̂ =
{

d̂1, . . . , d̂t, . . . , d̂T

}T
and ĝi =

{
ĝ1

i, . . . , ĝt
i, . . . , ĝT

i
}T

. The expectation values
can be measured using the historic data for demand and generation. λi is the capacity
factor according to the second constraint in problem P0. The generation supplied from
resource i is proportional to the capacity purchased by the VPP. Therefore, the second
constraint in problem P0 is modified as the capacity factor related to the maximum capacity
of resource i, λi = ci/cmax

i .
The risk function of the energy balance can be rewritten as a vector form:

F(c, d̂, ĝi) = 1
T

√
(d̂

T
d̂− ∑

i∈I
λ2

i ĝiTĝi − 2 ∑
i∈I

λid̂ ĝi + 2 ∑
i∈I

∑
j∈J

λiλj ĝiT ĝj),

= 1
T

√
d̂

T
d̂ + ∑

i∈I
λi(−λi ĝiT ĝi − 2d̂ ĝi + 2 ∑

j∈J
λj ĝiT ĝj).

(6)

In the risk function, the first term, d̂
T

d̂, is only related to the demand of the SEC. There-
fore, the risk function of resource i when implementing a VPP can be defined as follows:

fi(c, d̂, ĝi) = 2 ∑
j∈J

λjĝiTĝj − λi ĝiTĝi − 2d̂ĝi. (7)

The risk function of resource i in (7) consists of two parts: (1) the temporal correlation
between the expected generation of resource i and the expected generation of other re-
sources expressed as the first and second terms of ∑j∈J ĝiTĝj − ĝiTĝi and (2) the temporal
correlation between the expected generation of resource i and the expected demand as the
third term of d̂ĝi. This provides the following guide for VPP implementation to reduce the
energy balance risk:

1. The generated resources in the VPP should have low temporal correlation with
each other;

2. The generation of resources in the VPP should have a high temporal correlation with
the served participant’s demand.

Using the risk function, problem P0 is relaxed as an unconstrained problem:

P1 : min
c

Õ(c, d̂, ĝi) = O(c) + γF(c, d̂, ĝi), (8)

where γ is the relaxation multiplier, which imposes the priority of the risk. Problem
P1 is quadratic and differentiable. Therefore, it can be optimally solved using linear
programming [30].
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3.2.2. Simple VPP Implementation Strategy

Using the guide presented in the risk function design, a simple VPP implementation
strategy can be suggested to solve problem P1. As discussed in the risk function design, the
temporal correlation between generation in the VPP and serving demand is the dominant
factor when determining the risk. The risk factor of each resource expresses the cost of the
risk. Therefore, as the first step of the risk-based VPP implementation strategy, a resource is
selected to minimize the risk factor. The VPP SP purchases a fixed capacity of the selected
resource to implement the VPP in the second step. In the third step, due to the addition
of capacity, the serving demand is updated, excluding the amount served. Using the risk
factor that considers the updated serving demand and generation in the VPP, resources are
repeatedly selected until the objective function converges. A flow chart of the risk-based
VPP implementation strategy is presented in Figure 2.
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4. Results

In this section, to verify the effectiveness of the proposed strategy, the performance of
the VPP implementation is measured, and the effects of the characteristics of the system
parameters are discussed.

To perform simulations, 10 PV and 10 wind generations were considered as resources
that could compose a VPP. The actual generation data used for the resources were recorded
at the Lawrence Berkeley National Laboratory in the US for PV [31] and the National
Renewable Energy Laboratory in the US for wind [32]. The unit implementation costs
of the resources were assumed to be $5.83/kW/month for community-sized PV and
$5.21/kW/month for onshore wind, considering a service period of 20 years [33].

The demand of the SEC was modeled using commercial and residential hourly load
profiles in the US [34]. The average daily demands of commercial SECs and residential
SECs are about 1500 kWh and 600 kWh, respectively. Figure 3 shows the typical demand of
a commercial SEC and a residential SEC for a week. As shown in the figure, the commercial
SEC requires high demand on weekdays and low demand on weekends. On the other
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hand, the demand of the residential SEC shows a similar repetition pattern over a week.
In addition, in the case of the commercial SEC, peak demand appears in the daytime, and
in the residential SEC, it appears in the evening. The demand characteristics affect the
implementation of the VPP.
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Figure 4 shows an example of VPP implementation for a commercial SEC. The black
line, the dashed red line and the blue dash-dot line red represent the required demand of
a commercial SEC, VPP-served PV generation and VPP-served PV and wind generation,
respectively. As shown in the figure, the demand is mainly served by PV generation, and it
is supplemented by wind generation. This is because the demand of a commercial SEC and
PV generation have a high temporal correlation. However, on weekends, more generation
than demand is supplied, and energy mismatching occurs at other times due to uncertainty
of resources. This energy mismatching is resolved through the utility grid.
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4.1. Effectiveness of Risk-Based VPP Implementation

The VPP implementation results are presented in Table 1 for the commercial SEC and
in Table 2 for the residential SEC. P0 and P1 show the solutions to the problems in (4) and
in (8), respectively. P2 expresses the results of the simple VPP implementation strategy
presented in Figure 2.

In Tables 1 and 2, the P0 VPP implementation result has the largest resource capacity.
In P1 and P2, more capacity is constructed as the relaxation multiplier γ increases. With
the highest relaxation multiplier of γ = 1, the implementation results of P0 and P1 suggest
similar solutions. Moreover, the results of P2, as solved by the simple VPP implementation
strategy, configure the VPP by selecting the resource used in P0 and P1.
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Table 1. VPP implementation results for a commercial SEC.

Method
Resource P0 P1

(γ=0.1)
P1

(γ=0.5)
P1

(γ=1)
P2

(γ=0.1)
P2

(γ=0.5)
P2

(γ=1)

PV1 0 0 0 0 0 0 0
PV2 740 757 852 807 410 515 535
PV3 0 0 0 0 0 0 0
PV4 240 0 128 196 45 170 190
PV5 0 0 0 0 0 0 0
PV6 0 0 0 0 0 0 0
PV7 0 0 0 0 0 0 0
PV8 0 0 0 24 0 0 0
PV9 0 0 0 0 0 0 0

PV10 247 0 0 0 0 0 0
Wind1 224 154 207 212 0 0 0
Wind2 28 241 45 45 565 565 565
Wind3 0 0 0 0 0 0 0
Wind4 0 0 0 0 0 0 0
Wind5 0 0 0 0 0 0 0
Wind6 395 281 363 385 35 180 205
Wind7 148 0 155 146 0 0 0
Wind8 0 0 0 0 0 0 0
Wind9 0 0 0 0 0 0 0

Wind10 0 0 0 0 0 0 0

PV total 1227 757 980 1027 455 685 725
Wind
total 795 676 770 788 600 745 770

Table 2. VPP implementation results for a residential SEC.

Method
Resource P0 P1

(γ=0.1)
P1

(γ=0.5)
P1

(γ=1)
P2

(γ=0.1)
P2

(γ=0.5)
P2

(γ=1)

PV1 0 0 0 0 0 0 0
PV2 0 0 0 0 0 0 0
PV3 0 0 0 0 0 0 0
PV4 0 0 0 0 0 0 0
PV5 0 0 0 0 0 0 0
PV6 0 0 0 0 0 0 0
PV7 0 0 0 0 0 0 0
PV8 0 0 0 0 0 0 0
PV9 0 0 0 0 0 0 0

PV10 0 0 0 0 0 0 0
Wind1 205 161 195 204 75 80 80
Wind2 41 145 70 51 250 250 250
Wind3 0 0 0 0 0 0 0
Wind4 0 24 0 0 0 0 0
Wind5 0 0 0 0 0 0 0
Wind6 117 38 103 108 0 20 25
Wind7 89 2 65 81 0 0 0
Wind8 0 0 0 0 0 0 0
Wind9 0 0 0 0 0 0 0

Wind10 0 0 0 0 0 0 0

PV total 0 0 0 0 0 0 0
Wind
total 452 370 433 444 325 350 355

4.2. Effects of Demand

The resources for implementing a VPP change according to the characteristics of
demand. In the VPP implementation servicing the demand of a commercial SEC, PV
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resources were largely utilized, and wind resources were compensated, as shown in Table 1.
To check Pearson’s linear correlation coefficient (PLCC) [35], the demand of the commercial
SEC and the PV resources had a high correlation coefficient, as shown in Table 3. Among
them, the PV2 and PV4 resources with the highest and the second highest correlation
coefficients were used for the VPP implementation serving the demand of the commercial
SEC. For wind resources, Wind2 and Wind7, negatively correlated to the demand of
the commercial SEC, were used in addition to Wind1 and Wind6, which had positive
correlations with the demand of the commercial SEC. In particular, in the results for P2,
Wind2, which had low correlation with the existing constituent resources, was used more
compared to the results for other methods.

Table 3. Pearson’s linear correlation coefficient between demand and resources.

Resource Demand of Commercial SEC Demand of Residential SEC

PV1 0.28 −0.03
PV2 0.66 −0.03
PV3 0.60 −0.33
PV4 0.62 −0.30
PV5 0.60 −0.32
PV6 0.60 −0.32
PV7 0.59 −0.32
PV8 0.39 −0.27
PV9 0.43 −0.26
PV10 0.39 −0.28

Wind1 0.03 0.16
Wind2 −0.16 −0.13
Wind3 −0.42 −0.14
Wind4 −0.08 0.03
Wind5 −0.07 −0.03
Wind6 0.13 −0.02
Wind7 −0.34 −0.24
Wind8 −0.35 −0.16
Wind9 −0.24 −0.13
Wind10 −0.48 −0.18

As shown in Table 3, the PCCC between the demand of the residential SEC and the PV
resources was negative. Therefore, the VPP was implemented only using wind resources
to serve the demand of the residential SEC, as shown in Table 2. Similar to the case of the
commercial SEC, Wind1, which had the highest correlation with demand, was mainly used
to serve the demand of the residential SEC.

4.3. Cost Analysis

Table 4 shows monthly costs according to VPP service. VPPs based on renewable
resources cannot fully service demand due to the uncontrollable nature of renewables.
Therefore, energy balancing is performed through transactions with the utility grid. It
was assumed that the price of electricity purchased from the utility grid was $0.133/kWh,
and the selling price was half that of the purchased electricity. This is the average price of
electricity traded in the US in 2021 [36].

In the results for P0, the cost to the utility grid was lowest. However, as a great deal
of capacity was required to match the energy balance, the VPP cost increased. Therefore,
the overall cost increased in the results of P0 compared to the results of the risk-based
approaches P1 and P2. Moreover, in the results of P1, with a relaxation multiplier of
γ = 0.5, the total cost was minimized.
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Table 4. Monthly costs according to VPP service ($/month).

Cost P0 P1
(γ=0.1)

P1
(γ=0.5)

P1
(γ=1)

P2
(γ=0.1)

P2
(γ=0.5)

P2
(γ=1)

Commercial SEC

VPP 11,304 7934 9723 10,092 5779 7876 8240
Grid 15,736 18,984 16,621 16,257 23,143 19,105 18,624
Total 27,041 26,918 26,344 26,349 28,922 26,981 26,864
Unit
price 0.060 0.060 0.059 0.059 0.064 0.060 0.060

Residential SEC

VPP 2353 1930 2255 2311 1693 1823 1849
Grid 5225 5746 5311 5264 6126 5816 5769
Total 7578 7675 7566 7575 7818 7639 7618
Unit
price 0.043 0.043 0.043 0.043 0.044 0.043 0.043

In all cases, as the VPP was served, the unit price was reduced as compared to the cost
of purchasing power from the utility grid. Particularly, in the case of the residential SEC,
about 70% of the cost was saved compared to about a 55% reduction in the commercial SEC
case. Figure 5 shows the demand purchasing ratios from the VPPs and the utility grid. In
the case of the residential SEC, approximately 80% of the VPP was utilized similarly in all
results, as shown in Figure 5b. However, in the case of the commercial SEC, the utilization
of the VPP varied according to risk priority, as in Figure 5a.
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5. Discussion
5.1. Effectiveness of the Risk-Based VPP Implementation

Based on the VPP implementation results shown in Tables 1 and 2, the effectiveness
of the risk-based VPP implementation can be discussed. From the values of P1 and
P2, it can be seen that a higher capacity was obtained as the relaxation multiplier γ
increased. The energy balance was considered a risk factor in P1 and P2, and the relaxation
multiplier imposed the priority of the risk. This indicates that when the priority of the
risk was increased, more resources were required. It can also be confirmed that of the
VPP implementation results, P0 had the largest resource capacity. This is because the
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energy balance was included as a constraint in the problem of P0. This shows that risk-
based VPP implementation is effective. Moreover, the VPP was configured using the
values of P0, P1 and P2 while selecting the same resources. This shows that a risk factor
considering temporal correlation between the demand and resources acts as a dominant
factor in VPP implementation. This further proves that the proposed, risk-based approach
is well-designed.

5.2. Effects of Demand

To verify the PLCCs between the demand and the resources in Table 3, the resources
with high correlation coefficients were selected for the VPP implementation, but some
resources with negative correlations were also utilized. As an example, in the VPP imple-
mentation results for the commercial SEC in Table 1, PV2 and PV4 were selected as the
resources for the VPP. This is because these resources had the highest and second-highest
correlation coefficients with demand, as shown in Table 3. The high correlation means
that the generation was high at the times of high demand. By utilizing resources with
high correlations to demand, VPPs can provide stable services according to the needs of
participants. However, Wind2, which has a negative correlation coefficient with demand,
was also used for the VPP implementation for the commercial SEC. The negative correlation
means that the generation of resources was counter to the requirements of the demand. It
is inefficient to provide services by utilizing resources with negative correlations. However,
in order to cover the residual demand that could not be served by resources with high
correlations such as PV2 and PV4, a resource that was generated at a different time than
the existing resources was required. This is why VPP implementation is affected by the
correlation between demand and resources as well as the correlations among resources. In
particular, the values of P2 are more significant when compared with other methods. This
is because the risk factor, which is the basis of P2, is constructed based on the correlations
of the resources as well as the correlation between the demand and resources. However,
the results show that the correlation between the demand and a resource is important in
VPP implementation. In particular, in the case of the commercial SEC, the PV-oriented VPP
implementation was possible due to its high correlation with PV resources. In the case of
the residential SEC, the wind resource-based VPP implementation was more suitable for
PV resources.

5.3. Cost Analysis

In all cases, as the VPP was served, the unit price was reduced as compared to the
cost of purchasing power from the utility grid, as shown in Table 4. This is because the
levelized costs of energy of the renewable resources was lower than the electricity cost
of the utility grid. Particularly, the cost savings in the residential SEC were greater than
those of the commercial SEC. This is because the demand of the residential SEC repeated
without fluctuations for a week. The demand of the commercial SEC was high during the
week, but the demand was low on the weekend, as shown in Figure 3. Accordingly, the
energy produced could not be utilized over the weekend. In addition, in the case of the
commercial SEC, the utilization of the VPP varied according to the risk priority shown in
Figure 5. This is due to the characteristics of the demand described above. In the case of the
commercial SEC, the utilization depended on the risk of mismatching that occurred over
the weekend. This indicates that risk factor is an important indicator that determines cost.

5.4. Brief Summary

Through these results, lessons can be suggested for VPP implementation:

• Temporal correlation is an important factor in VPP implementation. There should
be a high correlation coefficient between demand and resources and low correlation
among resources;

• An efficient VPP implementation strategy can be suggested using risk factors based
on correlation;
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• The demand of commercial SECs has a high correlation coefficient with PV. Accord-
ingly, it is possible to implement VPPs in this form, using PV as the main resource,
supplemented by wind;

• In the case of residential SECs, there is a negative correlation coefficient with PV.
Therefore, it is effective to configure the VPP using wind resources.

This paper presents a risk-based VPP implementation strategy. By extending this, the
following future research directions can be suggested:

• This paper focused on the VPP implementation problem. A co-optimization problem
can be formulated considering both the risk of the VPP implementation and the energy
balance during the VPP’s operation;

• Flexible resources such as electric vehicles and energy storage can be considered as
resources. Operations including energy storage charging and discharging should be
considered flexible resources. Therefore, the problem with flexible resources can be
formulated as a co-optimization problem.

6. Conclusions

This paper proposed VPP implementation strategies, considering their risk. It is
difficult to balance energy in the implementation stage due to uncertainties in demand
and resources. To reduce the difficulty, the VPP implementation was designed using a
risk factor that reflected the energy imbalance risk between the demand and a resource.
Using the risk factor, it was discovered that the temporal correlation between demand
and resources was the dominant factor impacting VPP implementation. Particularly, it
was shown that to reduce risk, a resource constituting part of the VPP should have a
high correlation coefficient with the demand and a low correlation coefficient with other
resources. Based on that, an optimization-based strategy was proposed. Moreover, a simple
strategy that could be solved in an iterative way was suggested. Experimental results using
the real data sets show that the proposed strategies based on the risk factor are effective
means of VPP implementation for commercial and residential SECs. According to the
characteristic of demand, PV and wind are suggested to be suitable resources for VPP
implementation for commercial SECs and residential SECs, respectively.

VPP implementation is critical for VPP operation. This is because the resources
constituting the VPP determine the operation room of the VPP. This means that a VPP’s
operation method can influence the design of its implementation. Moreover, in terms of
flexible resources, which increase the operating areas of VPPs, it is difficult to directly apply
the correlation-based risk factor suggested in this study. Therefore, co-optimization that
considers both the implementation and the operation of VPPs as well as the consideration
of flexible resources for VPP implementation are future research directions.
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