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Abstract: The ripeness and sanitary state of olive fruits are key factors in the final quality of the virgin
olive oil (VOO) obtained. Since even a small number of damaged fruits may significantly impact the
final quality of the produced VOO, the olive inspection in the oil mill reception area or in the first
stages of the productive process is of great interest. This paper proposes and validates an automatic
defect detection system that utilizes infrared images, acquired under regular operating conditions
of an olive oil mill, for the detection of defects on individual fruits. First, the image processing
algorithm extracts the fruits based on the iterative application of the active contour technique
assisted with mathematical morphology operations. Second, the defect detection is performed on
the segmented olives using a decision tree based on region descriptors. The final assessment of the
algorithm suggests that it works effectively with a high detection rate, which makes it suitable for
the VOO industry.

Keywords: computer vision; virgin olive oil; quality; segmentation; food industry

1. Introduction

The production of Virgin Olive Oil (VOO) is a food transformation activity that
encompasses the extraction of the oil out of the raw incoming olives using exclusively
mechanical means. The ripeness and sanitary state of these olives is a key factor in the
final quality of the VOO obtained [1,2], as the technological variables of the process have
only limited authority to influence the final features of the produced VOO, and can only
preserve the potential quality offered by the fruit. Therefore, from a practical point of
view, the properties of the incoming olives set an upper bound on the VOO quality, as
the process cannot compensate for poor olive conditions. Under these circumstances, a
proper characterization of the incoming olives emerges as a key step when the objective is
to produce a consistent quality level of the final product. There is well known trade-off
between quality and extraction yield [3,4], so it is important to only employ a high quality
configuration of the process for those olives that could actually provide such quality, since
using that configuration for other types of olives would simply result in a diminished
extraction yield without the desired higher quality.

Separating the olives according to whether they were collected from the tree canopy
or from the ground is a widespread practice in the VOO production industry. When this
classification is carried out, olive growers are typically paid according to this factor, with
olives coming from the tree receiving a higher remuneration. The classification of the
batches between olives coming from the trees or from the ground is usually carried out
by operators of the reception area of the factory. Consequently, these assessments can be
affected by the subjectivity and the fatigue of the operators. Another important drawback
of the manual inspection of the batches is the fact that the operator typically needs to
perform some other actions in the reception area, so the inspection is carried out only on a
subset of the received olives.
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The different remuneration for the olives coming from the tree canopy and coming
from the ground provides an economic motivation for growers to try to present ground
olives as canopy olives, or to mix small amounts of ground olives in a batch of canopy
olives. Sometimes, a preliminary cleaning process is carried out in the orchards in order to
complicate the classification of ground olives as such.

Besides these considerations, canopy olives may have different quality levels, depend-
ing on whether they have suffered plagues or hail. The detection of these olives is of great
interest, since even a small number of these may significantly impact the final quality of
the produced VOO.

Different aspects of the determination of the quality level of olives using computer
vision have been addressed in previous scientific publications. The first contributions
were focused on the detection of bruises on table olives and the classification of these into
different classes according to the presence of these defects [5,6]. These works reported that
the best results were obtained using artificial neural networks (ANN). A posterior work [7]
introduced the use of the Lab and HSV color spaces, and showed their applicability for the
classification of table olives into different classes according to the type of defect present in
them. In turn, [8] proposed using a ANN for the prediction of the ripeness of olives bound
for the production of virgin olive oil (VOO). All of these contributions employ images
that were taken in structured environments that avoided the superposition of olives and
enhanced the difference between the olives and the background.

The first contributions that try to segment olives in unstructured conditions were [9,10].
These works, which are very similar, tackle the segmentation of olives from the olive branch,
using the correlation of the image with an olive prototype and the application of the Chan-
Vese algorithm in the surrounding area of the seeds detected by the correlation algorithm.

The use of cameras with spectra other than the visible band started with [11,12], where
the authors show the ability of infrared cameras to capture defects in the olives that are
not perceptible in the visible band. In these contributions, the layout of the olives in the
images is similar to those found in the conveyor belts of the reception area of a olive oil
mill; however, these contributions do not detail how to perform the olive segmentation
automatically in these conditions.

In turn, in [13], the authors propose the classification of complete olive batches,
assigning the same class to all the olives in the image. This work compares the results
obtained using Fisher Linear Discriminant and ANN, reporting success rates above 90%
in both cases, and slightly better for ANN. The authors continued the batch classification
approach in [14], where the images employed were taken from the conveyor belt in the
reception area of an olive oil mill. In this contribution, the authors employ a methodology
similar to their previous paper and report success rates over 95% in all the cases.

The same batch analysis approach, without individually segmenting olives, can be
found in [15], where olive images were used to predict the quality level of the VOO obtained
from them. In this work, the features used were Haralick descriptors computed from the
whole image removing the background. The prediction models were built using partial
least squares regression and offered good results for different VOO quality parameters.

The individual olive segmentation approach can be found again in [16], where the
authors employ structured images to estimate the size and weight of olives. Ref. [17] is a
continuation of the work, showing less strict requirements regarding the disposition of the
olives in the images, but still avoiding the superposition of olives for the segementation. A
third related article by the same authors is [18], where the objective is to segment olives
directly from the olive branch. For this, the authors employ convolutional neural networks
(CNN) and compare the results obtained using different CNN described in the literature,
reporting sensitivity values around 80% and precision values between 84.4% and 88.8%.

A different approach for the evaluation of the properties of olives in the groves can
be found in [19]. In this work, the authors propose a method consisting of sampling the
olives and presenting them in structured conditions to obtain color, ripeness and detection
of bruises.
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Finally, two works that employ computer vision on olives with objectives other than
the determination of their quality are [20], where the cultivar variety of the olives is
determined based on images from their pit; and [21], where the position of table olives
is detected using ANN for the pit-removal processing. Other interesting applications of
computer vision for quality control in other industries can be found in [22,23].

The main technological challenge that this paper addresses is the use of images of
the olives that are acquired under regular operating conditions of an olive oil mill for
the detection of defects on indiviual olives. This way, this work proposes and validates
an automatic defect detection system based on the extraction of information from olive
images acquired with a infrared camera installed in the reception yard of the mill. The
main contributions of this work are:

• Development of a non-invasive industrial monitorization system that allows us to
capture data without interfering with the regular productive process of the mill.

• Development of an iterative process that employs active contours combined with
mathematical morphology for the detection of individual olives after the washing
process, using images that were acquired during the regular operation of the mill.

• Development of a segmentation algorithm for the detection of defects in olives.

The rest of the paper is organized as follows: Section 2 presents the equipment design,
image acquisition and image processing; while Section 3 introduces and discusses the
obtained results. Finally Section 4 presents the conclusions of the work.

2. Materials and Methods

The next Sections detail the equipment design, the image acquisition and the image
processing and classification steps.

2.1. Equipment Design and Image Acquisition

The first step for using images acquired in industrial conditions for the determination
of defects in olives is to design an acquisition system capable of obtaining good quality
images, coping with the challenges imposed by these conditions. On the one hand, the
speed of the conveyor imposes the use of very short acquisition times, which implies
demanding requirements for the lighting system; on the other, the height of the olives in
the conveyor varies in a sufficiently broad range as to influence the required depth of field
and the focal distance of the lenses.

For this, an image acquisition system was designed for its installation on the con-
veyors typically employed in the olive oil mill yard for the movement of the olives in the
reception, washing and storage processes previous to the milling. The acquisition system
was composed of a lighting system, a camera, electronic components to manage the acqui-
sition of the images and their transference to external servers, and mechanical elements
to protect the different components and fix the system to the conveyor. For this work, an
infrared Dalsa Genie NANO M2590-NIR and a visible spectra Nano C242 with 25 mm
optics, along with a 500 W stroboscopic halogen lighting system, were employed. These
components were protected by chamber designed in collaboration with ISR, a spin-off
company from the University of Jaén. The chamber contained a holder for the camera
that located it at approximately 50 cm from the conveyor and prevented its movement,
providing a spatial resolution of 10 pixel/mm. Figure 1 shows the system installed in the
conveyor of the factory.
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Figure 1. Industrial monitorization system installed on the conveyor belt after the olive cleaning process.

The image acquisition system can be located before or after the fruit cleaning process,
since conveyors are used in both stages. The decision to situate it before or after this
cleaning process is influenced by the conveyor configuration of the factory. Depending
on this configuration, it could be possible to store the fruit in hoppers according to its
quality level. In many factories, the storage hopper is determined by the reception line
employed, without the possibility of changing it afterwards; however, some other factory
configurations do allow to choose the storage hopper independently of the recepction line.
In this case, the information obtained from the images could be used to define which hopper
should store the olives, which would recommend installing the system before the switch
point where the olives are actually routed to one hopper or another. If there is no such
possibility, then the detection of defects can be used to penalize the grower that provides
a batch with a sub-standard quality level, which would leave the question of whether to
install the system before of after the cleaning process open to other considerations.

For this work, the images employed were acquired in the olive oil factory Industria
San Pedro, S.L., located in Jaén, during the season 2020–21. Since the system was not to
be used for deciding which hopper the olives should be routed to, considerations related
with the simplicity of installation motivated the location of the system in the conveyor that
moves the fruit from the washer to the storage hopper. This way, an average of 200 daily
images, taken every 10 s and covering the reception of several batches of olives, were taken
from 11 January until 26 January. Figure 2 shows some examples of the acquired images
using the cameras with different spectra installed on the conveyor. As can be seen in Figure
2a, the infrared camera is a better choice to detect damaged olives. The fruits damaged by
insects show stains with a lower gray level that the rest of the surface of the fruit. These
stains would not be visible in the images of the color camera shown in Figure 2b.
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Figure 2. Images acquired on the conveyor after the cleaning process. (a) Infrared camera (Nano
M2590-NIR). (b) Visible band camera (Nano C242).

2.2. Image Processing

Figure 3 shows the general block diagram designed for processing the infrared images
acquired after the cleaning of the fruit. As can be observed, the process is structured in two
main blocks: olive detection and defect detection. The average computation time of the
complete algorithm was around 100 s for each image.

IR Image 

Preprocessing

Global mask

Step 1. Segmentation

Adaptative mask

Active contour 

(R1)

Morphological 

processing

Step 2. Segmentation

Active contour 

(R2)

Merge & Remove

R = R1 | R2

New mask

Olives detection

Defect detection

Split R

Segmentation: 

global & 

adaptative

Feature 

extraction
Classification

Figure 3. Image processing block diagram.
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The olive detection block is composed of a preprocessing stage and two segmentation
steps. From a global point of view, this block is based on the iterative application of the
active contours technique [24] assisted with mathematical morphology operations. The
type of images to be analysed render classical segmentation techniques inapplicable. This
way, the applied techniques should be robust to the presence of noise and other spurious
elements, and should be able to extract objects even when the boundary between them and
the background is not clear.

The active contour technique allows us to segment objects based on models that use a
priori information about the shape of these objects. If the model is adequate, the presence
of false positives or negatives is expected to be low. These models are the result of the
preprocessing stage, where two type of masks are obtained: global and adaptative. The
active contour segmentation is carried out in two steps, using a global mask for the first,
and an adaptative masks for the latter. The mathematical morphologic operations are a
required step to adjust the models between steps.

The detection of the defects is performed individually, evaluating each of the objects
or olive contours found in the previous stage. The intersection of the results obtained using
the global and adaptative segmentation techniques allows to detect the defects of the olives,
minimizing the false positives produced mainly by glows, changes in the intensity level of
the olive borders or occlusions with other olives. The extracted regions of each olive are
evaluated to decide in the classification stage whether they are considered as defective or
not. The classification is performed using a decision tree that evaluates descriptors of the
regions such as circularity, elongation and area.

2.2.1. Detection of Olives

As a previous step to the iterative application of the active contours technique for the
detection of the olives, it is necessary to have the models that should be adjusted to the
image data for the global contour. These models are obtained in the preprocessing step us-
ing classical segmentation procedures based on global and locally adaptative thresholding.
The obtainment of these models and the olive contours are presented next.

• Obtainment of the models
The global thresholding method applied for obtaining the global model or mask is by
Kapur [25], which employs the entropy of the histogram for the computation of the
optimal threshold. The method considers that the optimal threshold Uopt has been
obtained when the sum of the entropy of the background H f (T) and the entropy of
the object Hobj(T) are maximized, i.e.,

Uopt = arg max[Hobj(T) + H f (T)]. (1)

The entropies are defined as:

Hobj(T) = −
G

∑
g=T+1

pobj(g) · log pobj(g) (2)

H f (T) = −
T

∑
g=0

p f (g) · log p f (g),

where pobj(g) and p f (g) correspond to the mass probability functions for the object
and background pixels, defined, respectively, as:

pobj(g) T + 1 ≤ g ≤ G (3)

p f (g) 0 ≤ g ≤ T,

being g a specific gray level, G the maximum gray level and T the threshold chosen to
segment the image.
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The adaptive umbralization method employed for the obtainment of the adaptive
model or mask is by Bernsen [26]. This method consists of the the selection of a
different segmentation threshold for each pixel of the image, according to some local
feature in a given neighbourhood area that is centered in the pixel. The local feature
employed by this method is the mean between the higher and lower values of the
pixels included in the neighbourhood area (w). This way, the optimal threshold for
each pixel of the image is obtained as:

Uopt(i, j) = 0.5 · {maxw[I(i + m, j + n)] + minw[I(i + m, j + n)]}, (4)

where I(i, j) is the intensity level of the pixel in the original image, while m and n
represent, respectively, the number of rows and columns of w, which defines the neigh-
bourhood area. The results that are obtained with this method are totally dependent
on the size of this neighbourhood. Bernsen established the following correspon-
dence between the appropriate dimension of the neighbourhood area and the contrast
between defects and background:

w = 31 → C = Imax(x, y)− Imin(x, y) ≥ 15 (5)

being Imax and Imin the maximum and minimum gray levels of the original image,
respectively. These values have been used in this article.

• Detection of the contours
As commented above, the detection of the contours of the olives is based on the appli-
cation of the active contours, or snakes, method. This method starts with a contour
that is relatively close to the final solution, which has been called the model above, and
this contour evolves to a local minimum of an energy functional. Mathematically, a
snake is defined as a parametric curve r(s) = (x(s), y(s)), with s ∈ (0, 1). The energy
functional can be represented as

E∗snake(r) =
∫ 1

0
Einternal(r(s))ds +

∫ 1

0
Eexternal(r(s))ds, (6)

where Einternal is the energy of the curve that defines the capacity of the contour to
adapt itself to the frontier of interest and Eexternal is the energy that guides the snake
towards this frontier. The energy of the curve Einternal is composed of the sum of the
elastic energy (Eelastic) and the rigidity energy (Erigidity), being:

Einternal(r(s)) =
ϑ1||r

′
(s)||2 + ϑ2||r

′′
(s)||2

2
, (7)

where, by adjusting the parameters ϑ1 and ϑ2, it is possible to control the relative
weight of Eelastic and Erigidity.
In turn, Eexternal is composed of the sum of the image energy (Eimage) and the restrictive
energy(Erestrictive), being:

Eimage = ϑlin · Elin + ϑbor · Ebor + ϑter · Eter, (8)

where ϑlin, ϑbor and ϑter are the weights related to the line (Elin), border ( Ebor) and
termination (Eter) energies, respectively. Depending on the setting of these parameters,
the behaviour of the snake in the image can be modified according to the following
guidelines:

– Line energy: if the image contains lines, the contour will be attracted to them.

Elin(r(s)) = I(x(s), y(s)), (9)

with I denoting the intensity of the image.
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– Border energy: its purpose is to find borders in the image.

Eborder(r(s)) = −|(∇2hσ(x(s), y(s))) · (I(x(s), y(s)))|2, (10)

where hσ is a Gaussian function with a standard deviation of σ.
– Termination energy: allows to detect line endings and corners.

Eter(r(s)) =
D2

n2(s)
C(x(s), y(s))

Dn1(s)C(x(s), y(s))
, (11)

where C(x(s), y(s)) is the softened version of the image, D2
n2

is the second direc-
tional derivative of the unitary vector n2, and Dn1 is the directional derivative
of the vector n1. The vectors n1 and n2 define the parallel and perpendicular
directions to the gradient, respectively.

The second term of the external energy, i.e., the restrictive energy (Erestrictive), can be
expressed as:

Erestrictive = −k · (p1 − p2)
2 +

k
(p1 − p2)

2 , (12)

where k is a constant and p1 and p2 are points of the snake and the image, respectively.
Figure 4 shows an example of the image processing obtained in each of the main

stages of the method for the detection of the olives, as detailed in Figure 3. Figure 4a
shows the original infrared image, while Figure 4b depicts the result of the preprocessing
stage, which is the mask to be used for the application of active contours in the different
levels. The result of the step 1 segmentation, which employs the global masks, is shown
in magenta in Figure 4c. As can be seen, the contours of the olives are perfectly defined
although three of these olives are very close together. The result of the step 2 segmentation,
which uses the adaptive masks, is shown in green in Figure 4c. In this case, the mask
detects the protrusions of the conveyor and the active contours adapt themselves to these
masks. The final result of the composition of both contours, including the decision whether
each region should be considered valid, is shown in Figure 4d. This decision is based on
the elongation of the contour (elong), obtained from:

elong =
l2
l1

, (13)

where l2 y l1 represent, respectively, the height and the width of the minimum bounding
box of the contour.

2.2.2. Detection of Defects

The detection of defects is based on an iterative process that sequentially applies the
segmentation algorithms previously presented (Kapur and Bernsen) to each of the olive
contours found in the previous step. Figure 5 shows the detection of defects in the image
previously used to illustrate the detection of olives. In order to avoid glows in the olives
and enhance potential defects, a preprocessing step, consisting of the inversion of the pixel
intensity values with respect to the maximum possible gray level (255), is required. This
way, given an image I defined in the interval [0, 255], the inverted image IINV is obtained
with the operation IINV = 255− I. The bottom-left area of Figure 5 shows the image after
this transformation.
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Figure 4. Detection of the contour of the olives. (a) Infrared image. (b) Global mask (magenta) and
adaptive mask (green). (c) Active contours obtained with each mask. (d) Final active contours.

Figure 5. Example of the detection of defects in olives.

The extracted features of the regions obtained after applying the segmentation proce-
dures are area, elongation and circularity (cir), obtained as:

cir =
4 · π · area
perimeter2 (14)

In general, the defects that identify an olive as defective are expected to be small,
circular and with a gray level in the inverted image that is larger than the rest of the pixels
in the olive surface. With these features, and applying the decision tree of Figure 6, it is
possible to discern between acceptable and defective regions. The area, elongation and
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circularity thresholds have been set heuristically after the analysis of the 50% of the images
acquired the first day. The elongation and circularity, since they are rations, are quite
insensitive to small variations in the distance between the camera and the conveyor, which
might affect the spatial resolution of the system. The area, on the other hand, is directly
impacted by these variations. However, the design of the chamber includes a holder for the
camera that prevents its movement. The installation of the system at a different distance
from the conveyor would require a recalibration of the system and the definition of new
thresholds. An olive is considered acceptable if there is no defective area in its contour.
Figure 5 shows the result of the classification where only one defective olive is found.

Thmin<AREA<Thmax 

 OK

Elongation <  Thelong

KO

No Yes

Circularity <  Thcir

Yes

Yes

No

No

Figure 6. Classification algorithm based on a decision tree that evaluates descriptors of the region
such as area, circularity and elongation.

In addition, the percentage of defective olives is also given and it is obtained from:

KO area =
de f ective area

total area
· 100. (15)

3. Results and Discussion

In this section, the details of the image processing algorithm performance, along with
their discussion, are presented in two parts. In the first part, the evaluation procedure
designed for the image processing algorithm is described. In the second part, the results
of the inspections using the former procedure on images acquired during the 2020–2021
harvest period are presented and analysed.

3.1. Evaluation Procedure for the Image Processing Algorithm

The image processing goal is to detect the percentage of defective olives from the
images acquired using the infrared camera (Nano M2590-NIR) placed over the conveyor
belt after the washing stage. For this, olives are segmented and then every segmented
region is independently processed in order to extract defects. Figures 7 and 8 show the
results of the olive segmentation step for two different types of images. As can be seen,
the quantity of olives on the conveyor belt has an influence in the segmentation results.
When the conveyor is not completely full (Figure 7a) olives are successfully extracted even
though they touch each other. The application of the two segmentations steps presented in
the previous Section manages to extract all the fruits, along with part of the conveyor belt
(Figure 7b,c). The regions that belong to the conveyor belt have a significantly different
shape than those from the fruits. These regions can be removed from the final result using
the region elongation as decision feature, (Figure 7d).

When the conveyor belt is completely full, some fruits are included in the same
region (Figure 8d). This issue mainly occurs when the image is not properly lighted (left
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side of the conveyor belt) or when there is too much overlap among fruits. Despite this
drawback, most of the fruits can be analysed, as they are extracted from the background.
Figure 8b shows the preprocessing stage, while Figure 8c depicts the result of the two level
segmentation process.

Figure 7. Example of olives segmentation (conveyor belt not completely full). (a) Image acquisition.
(b) Result of the preprocesing step: global thresholding mask in magenta and adaptative thresholding
mask in green. (c) Level one (magenta) and level two (green) segmentation. (d) Final segmentation result.

Figure 8. Example of olive segmentation (conveyor belt completely full). (a) Image acquisition. (b) Re-
sult of the preprocesing step: global thresholding mask in magenta and adaptative thresholding mask
in green. (c) Level one (magenta) and level two (green) segmentation. (d) Final segmentation result.

The results of the olive inspection procedure for the former examples are shown in
Figure 9. The regions extracted from the segmented olives are labelled as defective or
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non-defective by the classification algorithm detailed in Figure 6. A segmented olive is
labelled as defective when at least one region inside it is detected as defective.

Figure 9. Defect detection. (a) Figure 7 defective olives detection. (b) Figure 8 defective olives detection.

In order to assess the algorithm performance, a set of five images per day were
manually labelled, using a graphic editor, with the oil mill expert assistance. Figure 10
shows an example of these images that were utilized as ground-truth. Then, the same
set of images were analysed by the image processing algorithm, and the results of region
comparisons were categorized and annotated according to the following definitions:

• TP (true positive): olives or set of olives labelled and detected as defective.
• FN (false negative): olives or set of olives labelled as defective but classified as non-

defective.
• FP (false positive): olives or set of olives labelled as non-defective but classified as defective.
• TN (true negative): olives or set of olives labelled and detected as non-defective.

Figure 10. Example of ground-truth (including a zoom view) for the evaluation of the Image
Processing Algorithm.

This way, true positive and false positive rates (TPR, FPR) were computed as:

TPR =
TP

TP + FN
· 100 ; FPR =

FP
FP + TN

· 100. (16)
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Thus, the detection rate is given by TPR, while FPR provides the rate of non-defective
olives wrongly categorized as defective.

3.2. Results of the Image Processing Algorithm

As mentioned previously, the validity of the image processing algorithm was tested
through ground-truth image comparison. The values of the measures proposed to evaluate
the algorithm performance are included in Table 1.

The first data column of the above table shows the harvesting date. An example of
three days within the assessed period (from 11 to 26 January 2021) have been chosen for
the discussion of the results obtained. In addition, data from the whole period is also
presented. The second column classifies images, according the number of olives or set of
olives extracted from the background, into the three following levels: low, medium and
high. Images containing a number of regions below 30 are labelled as low, whereas the
number of regions is between 30 and 100 are considered as medium; finally, if the number
of regions included in an image is more than 100, this image is labelled as high. The last
two columns give the detection rate (TPR) and the olives wrongly classified (FPR). In all
cases, TPR and FPR rates are the average of the set of images analysed by the expert in the
corresponding harvest date (5 images per day).

Table 1. Performance of the image processing algorithm calculated by comparison between the
automated and manual inspections (ground-truth). Results are expressed in terms of True Positive
Rate (TPR) and False Positive Rate (FPR).

Harvesting Date Number of Olives or Set of Olives TPR (%) FPR (%)

11/01/2021

low 85.71 6.67

medium 79.55 11.39

high 88 14.38

15/01/2021

low 93.33 10.81

medium 87.5 13.46

high 76.47 9.46

26/01/2021

low 88.89 10.34

medium 73.08 16.24

high 72.73 9.83

11/01/2021–26/01/2021

low 90.32 9.88

medium 79.07 16.24

high 79.69 9.83

11/01/2021–26/01/2021 global 81.22 11.51

As expected, the quantity of fruits on the conveyor belt has an influence on the
algorithm performance. Detection rate is always higher for images labelled as low, while
there is no significant difference between images designated as medium or high. The TPR
is more reliable if olives are not overlapped, as the whole fruit can be analysed.

Olives can also be wrongly classified if several of them are included in the same region
and disturbances, such as the olive edge or part of the background visible among them,
appear. This issue increases the number of FP, i.e., olives labelled as non-defective but
classified as defective, which has a direct correlation with the FPR. Images labelled as
medium or high are more likely to suffer this effect, but it can also occur in images labelled
as low. An example of this is shown in Table 1. In both harvesting dates, 15 and 26 of
January, the FPR for images considered as low is slightly higher than those labelled as high.
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The conveyor belt can also be a source of mistakes, and images considered as low are
prone to this type of error. Figure 11 shows an example of these two types of false positive
sources: the conveyor belt and the overlap among several olives, both labelled as defects.

Figure 11. Example of false positives in an image with a low number of olives or set of olives regions.
The top shows false positives because of the conveyor belt glows. The bottom shows false positives
originating by the overlap of olives.

The final assessment of the image processing algorithm was done analysing a total
of 80 images. As shown in the last row of the Table 1, the TPR was 81.22% and the FPR
was 11.51%. The detection rate is expected to be higher than what is achieved in a manual
inspection, since the current inspection process is performed by sampling a subset of
olives of each batch, with the frequency of inspection and the number of olives to be
inspected based on the oil-mill expert indications. The capacity to analyse the whole batch
of incoming olives is already a substantial improvement on the current practice. Although
TPR and FPR rates are not yet established for this industrial sector, the results achieved
during the assessment are quite close to what it is normally demanded for industrial
applications in the automotive sector (TPR > 85% FPR < 10%) [27].

Finally, Figure 12 shows the results of the inspection of several images acquired at
different dates during the period of evaluation. The general condition of the olives did not
worsen as the time passed in this period, as evidenced by the fact that the “ko area” data
did not follow a clear upwards trend. A plausible explanation for this is that the temporal
period covered by the analysis is relatively small compared to the timescale required to
appreciate an general evolution in the overall state of the olives.

Figure 12. Example of defect detection for images labelled as low acquired during the period of evaluation.
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4. Conclusions

This paper was concerned with the automated detection of defects on olive fruits for
the production of VOO. The early detection of fruits affected by plagues or hail is of great
interest, since even a small amount of them may significantly impact the final quality of the
produced VOO. As most of these defects are not perceptible in the visible band, this work
has proposed a non-invasive industrial monitorization system based on an infrared camera.
The image acquisition system was placed over the conveyor belt after the cleaning process
and without interfering the regular productive process of the mill. Although images were
acquired under controlled conditions, they were not free from glows or shadows due to
fruits overlap.

To extract information from these type of images, a two stages image processing
algorithm was designed. First, olives were segmented from the conveyor belt by an itera-
tive application of the active contour technique assisted with mathematical morphology
operations. Second, the detection of defect was performed individually evaluating each of
the segmented regions extracted from the previous stage.

The proposal was validated by comparison between the automated and manual
inspections, considered as ground-truth. In the course of more than a fortnight of January
2021, a total of 5 images per day were manually inspected and then compared with the
automated inspections. Two rates were computed for this comparison: the detection rate,
obtained from the True Positive Rate (TPR), and the olives wrongly classified estimated by
the False Positive Rate (FPR). The results underscore the robustness and accuracy of the
algorithm as they are in line with what it is demanded in industry.

Because of this, the presented solution comprises a promising starting point to inspect
most of the incoming fruits without interfering with the normal daily oil mill functioning.
It represents a considerable improvement to the current inspection process, which is based
on a sampling scheme carried out by the oil mill expert.

The image acquistion time of 10 s was chosen to reduce the number of files and allow
to have a more representative sample of olives for the same number of images. However,
both the camera and the stroboscopic halogen used allow to significantly increase the
capture rate, allowing to practically constantly capture images of the olives being processed
on the factory. On the other hand, the average image processing time of 100 s per image
is currently too high for making decisions in real time. This computation time, however,
allows to perform a quality assurance process on the olive batches, enabling the detection
of faulty batches and carrying out the subsquent actions regarding the remuneration of
the farmer.

Further research effort will be devoted to optimizing the implementation of the differ-
ent steps in order to reduce this computation time, as well as exploring the enhancement
of the olive segmentation step with the application of deep learning methods instead of
traditional image processing algorithms. In addition, it is expected to increase the number
of image acquisitions as the industrial monitorization system will be installed during the
whole next season.
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