
applied  
sciences

Review

Soft Sensor Transferability: A Survey

Francesco Curreri 1,† , Luca Patanè 2,*,† and Maria Gabriella Xibilia 2,†

����������
�������

Citation: Curreri, F.; Patanè, L.;

Xibilia, M.G. Soft Sensor

Transferability: A Survey. Appl. Sci.

2021, 11, 7710. https://doi.org/

10.3390/app11167710

Academic Editor: Jordi Cusido

Received: 4 August 2021

Accepted: 20 August 2021

Published: 21 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy;
fcurreri@unime.it

2 Department of Engineering, University of Messina, 98166 Messina, Italy; mariagabriella.xibilia@unime.it
* Correspondence: lpatane@unime.it
† These authors contributed equally to this work.

Abstract: Soft Sensors (SSs) are inferential dynamical models employed in industries to perform
prediction of process hard-to-measure variables based on their relation with easily accessible ones.
They allow implementation of real-time control and monitoring of the plants and present other
advantages in terms of costs and efforts. Given the complexity of industrial processes, these models
are generally designed with data-driven black-box machine learning (ML) techniques. ML methods
work well only if the data on which the prediction is performed share the same distribution with the
one on which the model was trained. This is not always possible, since plants can often show new
working conditions. Even similar plants show different data distributions, making SSs not scalable
between them. Models should then be created from scratch with highly time-consuming procedures.
Transfer Learning (TL) is a field of ML that re-uses the knowledge from one task to learn a new
different, but related, one. TL techniques are mainly used for classification tasks. Only recently TL
techniques have been adopted in the SS field. The proposed survey reports the state of the art of TL
techniques for nonlinear dynamical SSs design. Methods and applications are discussed and the new
directions of this research field are depicted.

Keywords: soft sensor; inferential model; dynamical model; process system monitoring; system
identification; machine learning; transfer learning.

1. Introduction

The advent of Industry 4.0 improved the automation and monitoring of traditional man-
ufacturing and process industries [1]. Implementing efficient plant monitoring and control
policies is performed through measurement acquisition and data elaboration systems.

Models of real industrial processes, able to perform prediction of process variables by
exploiting their dependence on other ones, are known as Soft Sensors (SSs) [2,3].

Machine Learning (ML) and Deep Learning (DL) have greatly increased the capa-
bilities of such data-driven systems over the last few years in the industrial automation
field [4]. However, the practical implementation of those techniques is hampered by two
characteristics of ML [5,6]. The first is that the training dataset and the actual system vari-
ables have to share the same feature space and the same distribution to perform prediction
properly: collected data must be capable of representing the whole dynamics of the system
since the model cannot provide more information than the that stored in the training data
themselves. This means that training data have to be very large and varied to be able to
represent uncommon occurrences too.

In an industrial environment, data acquisition already poses a limitation, since produc-
tion systems and industrial processes cannot be stopped to perform experiments and gen-
erate suitable learning data. Ad-hoc experiments are indeed difficult, time-consuming and
costly. For this reason, the SS designer refers to data stored in the historical databases which
always contains outliers, multi-rate acquisitions, and suffer from labeled data scarcity [4].

The second ML characteristic refers to model retraining which is needed to cope with
time-varying process and signal drift [7]. This could be sometimes comparable to training
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a new model from scratch, requiring large amounts of computational power and large
datasets. Moreover, either in presence of new working conditions or when new processes
are considered, the number of available data is too low to design a new model [8].

Nowadays, the gaps between domains and distributions of data and changes in
the processes are the main obstacles of ML techniques for SS modelling for complex
industrial processes.

The reported issues can be mitigated by Transfer Learning (TL), a set of approaches,
increasingly popular in the ML field, which take advantage of the knowledge already
acquired by a model on a source task to transfer it to a target task [9]. TL would allow
reduction in the amount and quality of data needed by transferring knowledge among
tasks. TL can also be used to approach model scalability from a process to a similar
one [10,11].

TL has increasingly gained attention since the issue of inconsistency of data distri-
bution is a common barrier in many general ML applications. TL was then been applied
to different fields, as reviewed by different publications, such as in medical imaging [12],
email spam [13] and speech recognition [14]. On the other side, in the industrial automation
field, it still is a new research topic. Most of the studies focus on classification problems,
anomaly detection, fault diagnosis and quality monitoring [15]. Only in the last two years
have applications of TL methods for SSs design appeared in the literature.

This survey covers the recent developments of TL techniques to nonlinear dynamical
SSs design. Methods and applications reported in the recent literature are discussed along
with the description of the future trends in the field.

The remaining of the paper is organized as follows: firstly, a brief description of SSs
and their design procedure is given in Section 2 to explain the need of TL; the main TL
methodologies are then introduced in Section 3; in Section 4 current applications of TL
methods for SSs are examined and classified. Final discussions and future trends are drawn
in Section 5.

2. Soft Sensors

In industrial plants, many variables are monitored through online sensors. There
are cases though in which some of them cannot be measured online due to the lack of
online measurement instruments or hostile environments. This requires frequent sensor
maintenance and/or introduces high delays due to laboratory analysis. SSs can be a
solution to these issues. They are inferential models that make use of the underlying
relations between the accessible process variables to provide an estimation of the required
hard-to-measure physical variables as schematized in Figure 1.

Figure 1. SS working principle.

Depending on the problem complexity an, SS can be realized by using static/dynamic,
linear/nonlinear, time-invariant/variant models [2]. SSs allow for real-time plant control,
measuring system back-up, what-if analysis, sensor validation and fault diagnosis as
well [3,16].
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SSs, also named as virtual sensors, are adopted in different fields such as refiner-
ies [17,18], chemical plants [19], cement kilns [20], power plants [21], pulp and paper
mills [22], food processing [23], polymerization processes [24], and wastewater treatment
systems [25].

SSs can be designed by using first principle models when a priori physical knowledge
of the plant is given [3]. When such knowledge is not available, or the modelling process is
overcomplicated, the design of SSs relies on data-driven black-box techniques [26].

Data-driven SS design is a highly time-consuming task that involves pattern recogni-
tion [27] and system identification [28] steps, as summarized in the following:

• Data collection and filtering;
• Input variables selection;
• Model choice;
• Model identification;
• Model validation.

Data are retrieved from industries’ historical databases and must be selected to repre-
sent the whole dynamics of the system. Historical databases usually suffer from oversam-
pling, outliers, missing data, offsets, seasonal effects and high-frequency noise. An accurate
pre-processing is therefore needed for the successive step of input selection, in which highly
informative inputs concerning the chosen output are selected among the many available
inputs [29].

The model choice should be conducted taking into consideration different charac-
teristics, i.e., linear/nonlinear, static/dynamic, time-variant/invariant. Linear models,
in general, do not show good performances for industrial processes. Nonlinear models are
therefore widely used.

The following model classes for linear systems are usually considered:

y(t) = G(z−1)u(t) + H(z−1)e(t), (1)

where G(·) and H(·) are transfer functions, z−1 is the time delay operator and e(t) a white
noise signal. The identification procedure aims at determining a good estimate of G(·)
and H(·), so the model can produce one-step-ahead predictions with a low variance error.
The one-step-ahead predictor can be written in its regressor form as:

ŷ(t|t− 1, θ) = ϕ(t)θ, (2)

where θ is the parameter vector and ϕ the regression vector that can contain past samples of
system inputs and outputs and/or residuals. The model is then determined by identifying
the parameters of the transfer functions. Models; structures are defined by imposing
the structure of the transfer functions i.e., of the regression vector. The main parametric
structure families are

• FIR, characterized by the following regression vector:

ϕ(t) = [u(t− d) . . . u(t− d−m)]T , (3)

with d and m being the delay of the samples;
• ARX, characterized by the following regression vector:

ϕ(t) = [y(t− 1), . . . , y(t− l), u(t− d), . . . , u(t− d), u(t− d−m)]T ; (4)

where l is the maximum delay needed for the output variables;
• ARMAX, characterized by the following regression vector:

ϕ(t, θ) =[y(t− 1), . . . , y(t− l), u(t− d), . . . , u(t− d−m), u(t− d−m),

, ε(t, θ), . . . , ε(t− k, θ)]T .

where ε is the model residual and k is the associated maximum time delay.
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The linear structures above can be extended to their nonlinear counterparts, respec-
tively NFIR, NARX, NARMAX where a nonlinear function is considered between the
regressor vector and the estimated output. For data-driven designed SSs, these model
structures can be implemented with a wide variety of ML techniques such as Artificial
Neural Networks (ANN) [30], Convolutional Neural Networks (CNN) [31], Generative
Adversarial Networks (GAN) [32], Deep Belief Networks (DBN) [33], Support Vector
Regression (SVR) [34], Gaussian Processes Regression (GPR) [35], just to mention a few.

Finally, the identification step allows empirical estimation of the model unknown
parameters based on the training dataset, whereas the validation step exploits test data
to verify whether the model can adequately represent the system and be generalized to
new samples.

Data-driven ML methods give better performance under the common assumption
that training data and test data share the same distribution [5]. This characteristic should
also be maintained during the future use of the SS.

The problem of data distribution inconsistency between the training and the test
phases can be mitigated by the adoption of TL techniques. TL is a research field in ML
that aims to exploit the knowledge gained while learning a task (source domain) to learn a
different but related one (target domain) more efficiently [9].

This means that such techniques can handle the problem of data distribution inconsis-
tency between the training and the test phases. Nevertheless, even though such techniques
gained success more than ten years ago, little attention has been paid to their application
to the SS field and process systems monitoring.

Few studies have employed TL methods in the fault detection and diagnosis of
industrial systems, as reported in Maschler and Weyrich [15], and in regression problems
for condition monitoring purposes [36]. Only in the last year have new results appeared in
the literature addressing the application of TL techniques to SSs.

3. Transfer Learning

As stated before, TL methodologies are useful when the data distribution of the target
domain is different from the data distribution of the source domain [9].

Figure 2 shows the difference in the learning process in cases of traditional ML and TL.

Figure 2. Difference in the learning process in the case of traditional ML (a) and TL (b).

In the first case, the task is learned from scratch each time, while in the TL case the
knowledge acquired from a previously learned source task is, in some way, transferred
while learning a target task, to overcome scarcity in high-quality target data.

A practical and common example is given by the problem of sentiment classification,
which consists of a classification task on reviews of a specific type of product as a positive
or negative view. To train the classifier, many reviews are first collected and labeled. When
the type of product changes, such a classifier will not maintain good performance, if the
distribution of data differs from the previous product. This means that new data should be
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collected and labeled for each type of product to create a new classifier. Such a procedure
indeed being very expensive, TL techniques allow use of a classification model trained
for some specific products to adapt to others of a different type, saving a great amount of
effort [37].

Many other examples of TL are observable in nature as well, as shown in Figure 3.

Figure 3. Examples of human intuitive transfer learning: music instruments (a), board games (chinese
chess and chess) (b), two-wheeled motor vehicles (c).

Humans themselves can intelligently apply the knowledge previously learned from
one task to solve new ones faster or more efficiently. For instance, the knowledge acquired
by learning a musical instrument would allow one to learn a new instrument faster.

Formal definitions to introduce the TL problem will now be provided.
Given a feature space X , an instance set X defined as X = {x1, . . . , xn} ∈ X and its

marginal probability distribution P(X), a domain D is defined as

D = {X , P(X)}. (5)

This means that two domains differ when either their X or P(X) differ.
Given a domain D, a prediction, or a task, T is defined by a label space Y and a

predictive function f (·) as
T = {Y , f (·)}. (6)

This again implies that two tasks differ when either their Y or f (·) differ. The predic-
tive function f (·) is not known a priori, but learned from the training data, which consist
of the labeled pairs {xi, yi}, where xi ∈ X, yi ∈ Y , with i = 1 . . . , n. Given a new instance
x, then f (·) can be used to predict its corresponding label f (x), that from a probabilistic
point of view can be written as P(y|x).

In the TL problem, distinction is made between a source domain DS and its correspond-
ing source task TS ; a target domain DT and its target task TT .

The source domain DS is usually observed via the instance–label pairs as

DS =
{(

xS1 , yS1

)
. . . ,

(
xSnS

, ySnS

)}
, where xSi ∈ XS and ySi ∈ YS . (7)

Whereas, the target domain data are denoted as
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DT =
{(

xT1 , yT1

)
, . . . ,

(
xTnT

, yTnT

)}
, where xTi ∈ XT and yTi ∈ YT . (8)

In most real applications, an observation of the target domain consists of unlabeled
instances or just a limited number of labeled ones, meaning that usually 0 ≤ nT � nS .

TL aims to improve the learning of the target predictive function fT (·) in DT using
the knowledge in DS and TS , where DS 6= DT , TS 6= TT .

When the target and source domains are the same, DS = DT , and their tasks are the
same, TS = TT , then it becomes an usual ML problem.

As already stated, the condition DS 6= DT implies that

XS 6= XT or P(XS ) 6= P(XT ). (9)

Analogously, T being defined as T = {Y , P(Y|X)}, the condition TS 6= TT means that

YS 6= YT or P(YS |XS ) 6= P(YT |XT ). (10)

Finally, when there exists some kind of relationship between the feature spaces of the
two domains, then the domains are said to be related. In some cases, when the two domains
are not related, a knowledge transfer could be unsuccessful at the point of worsening
the learning in the target domain. When the target learner is indeed hurt by the transfer,
the phenomenon is referred to as negative transfer [38].

The above definitions allow performance a categorization of TL techniques. Ap-
proaches can be grouped on a different basis, in particular under a problem point of view
and an approach point of view. In the first case, the categorization can be performed on
either the presence of labels in the source and target datasets (label setting) or the consistency
of the feature space (space setting); the latter categorizes the types of TL techniques based
on “what” part of the knowledge from the source is actually transferred to the target.
The classification is reported in Table 1 and described in detail as follows.

Table 1. Most commonly adopted categorizations of TL techniques, under a “problem” point of view
and an “approach” point of view.

TL Categories

Categorization Criterion Types

Problem categorization
Label setting

Inductive
Transductive
Unsupervised

Space setting Homogeneous
Heterogeneous

Approach categorization “What” is transferred

Instance-based
Feature-based
Parameter-based
Relational-based

From the label-setting aspect, TL techniques can be categorized into three types, based
on the possible different situations between domains and tasks of the source and the target:
inductive transfer learning, transductive transfer learning, unsupervised transfer learning
(see Figure 4).

• Inductive TL: target and source tasks are different, regardless of the domains, and the
label information of the target domain instances is available. Target-labeled data
induce the learning of the target predictive model, hence the name;

• Transductive TL: target and source domains differ and the label information only
comes from the source domain. In this case, if the domains differ because the feature
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spaces are the same XS = XT , but the marginal probability distributions of the inputs
differ P(XS ) 6= P(XT ), such TL setting is referred to as domain adaptation [39];

• Unsupervised TL: target and source tasks are different and the label information is
unknown for both the source and the target domains. This means that by definition
such setting regards clustering and dimensionality reduction tasks, and not classifica-
tion or regression as in the previous cases. For this reason, given the application of
SSs, unsupervised solutions are not considered.

Figure 4. Transfer learning technique categorization under a label-setting view. Source input (XS),
source output (YS), target input (XT) and target output (YT) are shown.

Another categorization is based on the consistency between the feature and label
spaces from the source and the target.

• Homogeneous TL: if XS = XT and/or YS = YT ;
• Heterogeneous TL: if XS 6= XT and/or YS 6= YT .

Besides the label settings or the consistency of the spaces, TL techniques can be
categorized based on “what” is transferred, leading to four groups: instance-based, feature-
based, parameter-based and relational-based (see Figure 5).

Figure 5. Transfer learning techniques categorization under a “what” is the transferred view.

• Instance-based transfer: these approaches assume that due to the difference in distri-
butions between the source and the target domains, certain parts of the data in the
source domain can be reused, by reweighting them so as to reduce the effect of the
“harmful” source data, while encouraging the “good” data;

• Feature-based transfer: the idea behind this approach is to learn a “good” feature
representation for the target domain, to minimize the marginal and the conditional
distribution differences, preserving the properties or the potential structures of the
data, and classification or regression model error. For instance, a solution is to find
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the common latent features through feature transformation and use them as a bridge
to transfer knowledge: this case is referred to as a symmetric feature-based transfer
since both the source and the target features are transformed into a new feature
representation; in contrast, in the asymmetric case, the source features are transformed
to match the target ones. When performing feature transformation to reduce the
distribution difference, one issue is how to measure such differences or similarities.
This is done through specific ad-hoc metrics, which are described in Section 3.1;

• Parameter-based transfer: this approach performs the transfer at the model/parameter
level by assuming that models for related tasks should share some parameters or prior
distributions of hyperparameters. So, by discovering them, knowledge is transferred
across tasks themselves;

• Relational-based transfer: these approaches deal with transfer learning for relational
domains, where the data are non-independent and identically distributed (i.i.d.) and
can be represented by multiple relations. The assumption is that some relationship
among the data in the source and target domains is similar and that is the knowledge
to be transferred, transferring the logical relationship or rules learned in the source
domain to the target domain.

The references reported in this paper are classified based on the above categories. In
the next section, some metrics generally used in the TL framework are briefly introduced.

3.1. Distribution Distance Metrics

Metrics to evaluate the differences among data distributions are commonly adopted
in feature-based TL to learn a new space that reduces the difference of distribution between
the two domains. How to measure the distribution difference or the similarity between
domains is, therefore, an important task. They are used in instance-based TL methods as
well to produce the weights of the instances by minimizing the adopted metric between
the domains [40]. In Table 2 the most adopted metrics in TL techniques are reported.

Table 2. Metrics commonly adopted in TL to quantify the distribution difference between datasets.

Distribution Difference Measure Algorithm Applications

Maximum Mean Discrepancy (MMD) [41] [42,43]
Kullback–Leibler Divergence (DKL) [44] [45,46]
Jensen–Shannon Divergence (JSD) [47] [48,49]
Bregman Distance (DF) [50] [51,52]
Hilbert–Schmidt Independence Criterion (HSIC) [53] [54,55]
Wasserstein Distance (W) [56] [57,58]
Central Moment Discrepancy (CMD) [59] [60,61]

They are defined in the following.

• Maximum Mean Discrepancy (MMD) [41]
Given two distributions P and Q, MMD is defined as the distance between the means
of them mapped into a Reproducing Kernel Hilbert Space (RKHS):

MMD(P, Q) =‖ µP − µQ ‖H . (11)

where µ represents the mean value of the distribution.
The MMD is one of the most used measures in TL. One known feature representation
method for TL called Transfer Component Analysis (TCA) [42] learns some transfer
components across domains in an RKHS using MMD. Another unsupervised feature
transformation technique called Joint Distribution Adaptation (JDA) jointly adapts
both the marginal and conditional distributions of the domains in a dimensionality
reduction procedure based on Principal Component Analysis (PCA) and the MMD
measure [43].
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• Kullback–Leibler Divergence (DKL) [44]
DKL is an asymmetric measure of how one probability distribution differs from another.
Given two discrete probability distributions, P and Q on the same probability space
X , DKL, or the relative entropy, from Q to P is defined as:

DKL(P ‖ Q) = ∑
x∈X

P(x)log
(

P(x)
Q(x)

)
. (12)

In Zhuang et al. [45] a supervised representation learning method based on deep
autoencoders for TL is introduced so that the distance in distributions of the instances
between the source and the target domains is minimized in terms of DKL. Feature-
based TL realized through autoencoders is proposed in Guo et al. [46], where DKL is
adopted to measure the similarity of new samples concerning historical data samples.

• Jensen–Shannon Divergence (JSD) [47–49]
JSD is a symmetric and smooth version of DKL, defined as:

JSD(P ‖ Q) =
1
2

DKL(P ‖ M) +
1
2

DKL(Q ‖ M), (13)

with M being M = 1
2 (P + Q).

JSD is used in Dey et al. [48] as a distance metric in a clustering technique for domain
adaptation purposes. A classification method for TL proposed in Chen et al. [49]
exploits the JSD measure with a PCA feature mapping technique.

• Bregman Distance (DF) [50]
DF is a difference measure between two points defined in terms of a strictly convex
function called Bregman function F. The points can be interpreted as probability
distributions. Given F : Ω→ R a continuously-differentiable, strictly convex function
defined on a closed convex set Ω, the Bregman distance DF associated with F for
points p, q ∈ Ω is defined as the difference between the value of F at point p and the
value of the first-order Taylor expansion of F around point q evaluated at point p:

DF(p, q) = F(p)− F(q)− 〈OF(q), p− q〉. (14)

A TL method for hyperspectral image classification proposed in Shi et al. [51] em-
ploys a regularization based on DF to find common feature representation for both
the source domain and target domain. A domain adaptation approach introduced
in Sun et al. [52] reduces the discrepancy between the source domain and the tar-
get domain in a latent discriminative subspace by minimizing a DF matrix diver-
gence function.

• Hilbert–Schmidt Independence Criterion (HSIC) [53]
Given separable RKHSs F , G and a joint measure pxy over (X ×Y , Γ×Λ), HSIC is
defined as the squared HS-norm of the associated cross-covariance operator Cxy:

HSIC(pxy,F ,G) := ‖ Cxy ‖2
HS . (15)

A domain adaptation method called Maximum Independence Domain Adaptation (MIDA)
finds a latent feature space in which the samples and their domain features are maxi-
mally independent in the sense of HSIC [54]. Another method to find the structural
similarity between two source and target domains is proposed in Wang and Yang [55].
The algorithm extracts the structural features within each domain and then maps
them into the RKHS. The dependencies estimations across domains are performed
using the HSIC.

• Wasserstein Distance (W) [56]
Given two distributions P and Q, the pth Wasserstein distance metric W is defined as:

W := W(FP, FQ) =

(∫ 1

0
| F−1

P (u)− F−1
Q (u) |p du

) 1
p
, (16)
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where FP and FQ are the corresponding cumulative distribution functions and F−1
P

and F−1
Q the respective quantile functions.

W is employed in Shen et al. [57] for an algorithm that aims to learn domain invariant
feature representation. It utilizes an ANN to estimate the empirical W distance
between the source and target samples and optimizes a feature extractor network
to minimize the estimated W in an adversarial manner. A W-based asymmetric
adversarial domain adaptation is proposed also in Ying et al. [58] for unsupervised
domain adaptation for fault diagnosis.

• Central Moment Discrepancy (CMD) [59]
CMD is a distance function on probability distributions on compact intervals. Given
two bounded random vectors X = (X1, . . . , XN) and Y = (Y1, . . . , YN) i.i.d. and two
probability distributions P and Q on the compact interval [a, b]N , CMD is defined as

CMD(P, Q) =
1

| b− a | ‖ E(X)−E(Y) ‖2 +
∞

∑
k=2

1

| b− a |k
‖ ck(X)− ck(Y) ‖2, (17)

where E(X) is the expectation of X and ck(X) is the central moment vector of order k
defined in Zellinger et al. [59].
In a domain adaptation method for fault detection presented in Li et al. [60], a CNN is
applied to extract features from two differently distributed domains and the distribu-
tion discrepancy is reduced using the CMD criterion. Another CNN- and CMD-based
for fault detection is proposed in Xiong et al. [61].

Since it is often difficult to design metrics that are well-suited to the particular data
and task of interest, an ML field called Distance Metric Learning (DML) aims at automatically
constructing task-specific distance metrics from supervised data [62]. As an ML task, DML
suffers the same problems described so far, requiring a large amount of label information.
For this reason, TL methods have been extended to this sub-field as well, in what is called
Transfer Metric Learning (TML) [62]. These fields fall out of the scope of this paper.

The metrics introduced so far are also adopted in some TL implementations for SS for
both feature- and instance-based TL methods, as described in the next section.

4. Transfer Learning in SS Design

The implementations of TL on SSs from the literature here considered are categorized
in Table 3. Because of a lack of comparability between the different scenarios and cases,
listing and comparing results (in terms of final performance or implementation burden) is
not feasible. In the following sub-sections, the different solutions applied in the field of SS
modelling are illustrated.

To better highlight the motivation behind the application of TL in SSs, works are here
classified based on the use case as proposed in Maschler and Weyrich [15] (see Figure 6).

The cases considered are the following:

• Cross-phase, which is the case in which plants meet new working conditions and
models lose accuracy: this can happen because of signal drift or different operative
stages in multi-grade processes or, in the case of production processes, because of
changes in products, tools, machines or materials;

• Cross-entity, which is the case in which TL is adopted to transfer knowledge between
similar but physically different processes.

The classification is then performed from a problem and solution point of view: the
former considers the TL settings described in Section 3, whereas in the latter the approach
adopted and the chosen ML method are considered.

Finally, works are grouped into four groups based on the type of process, namely:
batch processes, production processes, multi-grade chemical processes and industrial
process systems.
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Figure 6. TL SS use cases: cross-phase (a), when the TL is needed because of dynamical changes in
the operational states of the same process; cross-entity (b), when knowledge is transferred between
different processes of the same type.

Table 3. TL classifications.

Problem Categorization Approach Categorization

Use Case Label Avail. Feature Space TL Approach
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4.1. Batch Processes

Industry processes in which the output appears in quantities of materials or lots and
that present both characteristics of continuous and discrete processes are called batch
processes. The product of a batch process is called a batch. Quality control of this kind
of process is a difficult task due to nonlinearity and time variance. So, designing models
able to capture accurately the process behaviour is a difficult task. One of the problems
affecting batch process modelling is that sufficient data are often unavailable. The number
of new batch data is indeed not sufficient to build a reliable process model. In Wang and
Zhao [63], to solve this issue, a novel transfer and incremental SS is developed with the
support of multiple historical process modes. The proposed algorithm, with the constant
increase in new samples from the cloud of historical modes, can incrementally update
model parameters to flexibly accommodate new process modes. To quantify the progressive
prediction performance, the Root Mean Squared Error (RMSE) of eight different test batches
is adopted. Prediction results of the proposed model are graphically compared with those
of a general phase-based PLS (Partial Least Squares) model. The RMSE curve of the
proposed model fluctuates around 0.05, whereas the one of the general model is high and
unstable, revealing the goodness of the predictions of the real qualities of the product in
the first case and the prediction inability of the general model.

The works [64–67] assess the problem of TL for batch processes for both the same
process and for knowledge-transferring between similar processes as well. Similar batch
processes employ the same or similar raw materials, equipment, and control strategies
and the relationships between the process variables are the same or similar. One difficulty
in applying TL in similar batch processes is that there are always differences between
them, and this leads to a serious plant–model mismatch. The problem of applying TL in
batch processes for quality prediction to solve both the problem of data scarcity and plant–
model mismatch is assessed in these papers. The method proposed is based on the latent
variable model (LVM) [78] and the joint-Y partial least squares (JY-PLS) regression [79].
The transferring of the process knowledge is achieved through a common latent variable
space and the mismatch between variables is addressed through an adaptive control
strategy. Results are evaluated in terms of RMSE between the proposed model and a
Kernel-PLS (KPLS) model. The proposed model showed indeed a reduction in the RMSE
of 56%.

The JY-PLS method is adopted also in Jia et al. [68] and the transferring method is based
on domain-adaption between the source and target domains (DAJY-PLS). In particular,
an index, which is the difference between the variance in source and target domains, is
used to realize the trade-off between minimizing the difference of distributions, quantified
through the MMD measure, of the domains and maximizing the covariance between
the latent and output variables. The efficiency of the proposed approach is verified by
comparing the DAJY-PLS and its JY-PLS counterpart, adopting RMSE and MAE (Mean
Absolute Error) as a measure of performance. The DAJY-PLS showed an average reduction
of 67% of the RMSE and of 68% in the MAE over ten different experiments.

4.2. Production Processes

Quality prediction is tackled in Tercan et al. [36] and Yao et al. [69] for production
processes. Every time a change in production occurs, the process changes behavior, leading
to the need for what is called incremental learning. In such a case, new target data
are incrementally used to extend the source model’s knowledge. In Tercan et al. [36],
an injection molding is considered. To assess the changes in the process behavior, an ANN
is first trained on the source data and when the produced part is changed a new block of
neurons, specially trained for the new part, is added, so that the model does not forget
the knowledge from the previously learned parts. Such incremental learning approach is
graphically compared, in terms of Correlation Coefficient (CC), to a baseline approach that
does not adopt incremental learning but rather jointly trains the ANN on all data available
to that point, when six different parts are produced. Results showed the incremental
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learning approach maintains a value of CC over 0.95 with every part, while the baseline
approach cannot handle the increasing complexity in the data with an incremental drop in
CC for every newly produced part.

In Yao et al. [69], quality prediction on cement clinker is performed through the
prediction of the concentration of free calcium oxide (f-CaO). Incremental learning is
needed because of the process time variance. A data-driven model based on deep dynamic
features extracting and transferring methods is applied to build a SS for cement quality
prediction. A large semi-supervised dataset is used to extract nonlinear dynamic features
through a deep Long Short-Term Memory (LSTM) encoder–decoder network with an
attention mechanism. The features are then transferred to an eXtreme Gradient Boosting
(XGBoost) regression model for output prediction. The method is compared to other
different models, both static and dynamic, for f-CaO content prediction proposed in other
researches, in terms of CC and RMSE. In particular, the proposed method showed an
improvement of the 285% of the CC and a reduction of 74% in the RMSE with respect to a
simple static PLS model, whereas an improvement of 67% in the CC and a reduction of
65% in the RMSE with respect of a dynamic LSTM model.

4.3. Multi-Grade Chemical Processes

Multi-grade processes present multiple operating grades, each of them with an un-
known distribution discrepancy of process data concerning the others. The same pro-
duction line commonly produces different product grades after modifying the operating
conditions and/or the ratio of ingredients in the process feed. Since key product qualities
cannot be measured online and need laboratory analysis, manual operations for grade
changeover are commonly implemented in practice, often leading to inefficient and off-
grade products. The use of TL in such context allows application of the information from
different grades to enlarge the prediction domain to some extent, even in the case of limited
labeled samples.

In Yang et al. [70] and Liu et al. [71] the knowledge transfer between different grades
is performed through an extension of Extreme Learning Machines (ELM), called Domain
Adaptation ELM (DAELM). To implement the transfer, the empirical error from the target
domain is used as a regularization term of the target-labeled instances. The DAELM
method is compared to a regularized ELM (RELM) model over three grades, adopting
each of them alternatively as a source domain in three different experiments. In particular,
the method showed a reduction of 89% in the RMSE with the DAELM model when grade
3 data were used as source and grade 2 data as the target.

The method is further investigated in Liu et al. [72], where the distribution discrepancy
between the grades is firstly reduced through a feature transformation using a GAN,
before applying the DAELM method.

4.4. Industrial Process Systems

Signal drifts often affect process systems. These changes in data distribution over time
lead to a decrease in SS performance.

In such cases, a possible solution for the designer is to fine-tune the model over the
new working points. In Hsiao et al. [73], ANN fine-tuning strategies over small datasets
are explored to adapt the SS of a refinery distillation column over time. To avoid losing
previously learned knowledge the strategy adopted is to freeze the inner layers, updating
only the outer ones. Performances are evaluated in terms of RMSE through graphical
plots with respect to different-sized target data-sets, showing how the fine-tuned ANN
performed better than its simple counterpart.

In Curreri et al. [10], fine-tuning and hyperparameter adaptation strategies are investi-
gated in a cross-entity setting for different-sized target labeled datasets, in the design of a
transferable SS for a Sulfur Recovery Unit (SRU). Experiments are performed using LSTMs
and Recurrent Neural Networks (RNNs) to compare their transferability performance. To
evaluate the performances of the proposed cross-entity method, results were compared
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between an optimized SS whose design procedure took 100 h and a transferred one whose
transferring procedure took 7 min. In particular, RNN-based transferred SS showed an
average degradation of only 8% of the CC on test data, whereas the LSTM-based transferred
SS showed the same CC as the originally optimized one.

Some modelling methods are known to be effective against gradual and abrupt–
recurrent changes in process characteristics, such as Moving Window (MW) and Just-In-
Time-Learning (JITL). These two methods are adopted in Alakent [74,75] where an adaptive
learning frame to develop an SS able to contrast the signal drift phenomenon is proposed.
The proposed method retunes the hyperparameters of the algorithm using a historical
dataset through a weighting user-controlled parameter, which represents the trade-off
between the information extracted from the new target samples and the JITL predictions.
The technique is tested for the SS design of a debutanizer column (DC) and an SRU. The
accuracy of the method is evaluated through the average RMSE for the studied cases. In the
case of the DC, the transferring procedure reduced the RMSE by 66%, whereas in the case of
the SRU, the RMSE was reduced by 31% for the first output and 23% for the second output.

A JITL-based model is used again in Guo et al. [46] where the transfer is performed
through a feature extraction using a Gaussian Mixture Variational Autoencoder (GMVAE).
When a new sample is considered, DKL is adopted to measure its similarity with historical
data samples. Based on the result, weighted input and output historical data are obtained
and used in the final model. Validation of the method is performed through RMSE, MAE
and Mean Relative Error (MRE) between different JITL-based models from the literature
and the proposed one. In particular, results on the adopted dataset showed a reduction
of 48% in the RMSE and of 60% in the MAE and MRE with respect to a distance-based
JITL model.

Feature-based knowledge transfer methods are investigated, in both cross-phase
and cross-entity settings, as shown in Farahani et al. [11,76] for power plant SS design.
A Domain Adversarial training Neural Network (DANN) approach is employed to firstly
perform feature extraction and then the actual regression. In particular, the architecture of
the DANN consists of three parts: a feature extractor, a regression model and a domain
discriminator. The first maps m-dimensional input data into a one-dimensional feature
representation. The second maps the latter into the output space, performing the prediction
regression task. At the same time, the one-dimensional feature representation is introduced
to the domain discriminator as well, which detects whether the input instances come from
the source or target domain. To reduce the difference between the samples, the adversarial
training procedure between the feature extractor and the domain discriminator is per-
formed so that the extracted features become more indistinguishable between source and
target domains. This way, the regression part, trained solely on the source data, can predict
target data more accurately, without even needing their corresponding label. To quantify
the performance of the performance of the TL, an index score here called Trans f er Ratio
(TR) is introduced. TR is the target Mean Squared Error (MSE) when not using TL over
the target MSE when using this TL technique:

Trans f er Ratio =
Target MSE without TL

Target MSE with TL
. (18)

Results showed an average TR of 2.93 between the studied cases in the cross-entity
case and an average TR of 1.81 between the studied cases in the cross-phase case.

Besides signal drifts, one of the problems afflicting SS design is labeled data scarcity,
since process variables are sampled at a higher sample rate than quality variables. Incre-
mental learning techniques to improve the performance of an SS when a low number of
labeled data in the target domain are available is reported in Graziani and Xibilia [77].
The performance of an ANN-based SS for a refinery Sour Water Stripping (SWS) plant is
improved by combining a preliminary PCA phase and a data selection procedure, based on
DUPLEX and SPXY data selection algorithms. Evaluation of the approach is made in terms
of CC and RMSE between the cases of simply applying a random-selection procedure
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without PCA and either DUPLEX and SPXY algorithms with PCA. Results showed an
average improvement of 13% in the CC and a reduction of 14% of the RMSE in the case of
PCA + DUPLEX with respect to the simple random-selection procedure.

5. Conclusions and Future Trends

The functionality of TL methods for SS design in industrial processes is a growing
field of research. The existing literature demonstrates that TL can significantly enhance the
SS performance, designing SSs that can both face cross-phase and cross-entity scenarios.
Many questions are still open and need further research to make TL an efficient solution in
industrial environments.

The first issue consists of a proper strategy to select the best transfer methods based
on the process and dataset characteristics. The second issue refers to the definition of
suitable metrics which allows evaluation of the applicability of each method providing an
estimation of the transfer procedure performance. Another issue is related to determining
the minimum size of the target dataset, both as regards input and output variables that
guarantee the applicability of a given method. This should however depend both on
the process characteristics and the applied method. Moreover, most of the implemented
methods are actually parameter- and feature-based in homogeneous settings. Instance-
based methods and heterogeneous settings, as well as relational-based approaches, still
need further investigations.

The current applications and methods are still limited; further research is therefore
needed also to evaluate the benefits of TL and compare the different strategies on real-
world case studies. Hybrid solutions could be also investigated in the future to merge the
advantages of different methods.
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