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Abstract: This paper proposes an accurate and stable gearbox fault diagnosis scheme that combines
a localized adaptive denoising technique with a wavelet-based vibration imaging approach and
a deep convolution neural network model. Vibration signatures of a gearbox contain important
fault-related information. However, this useful fault-related information is often overwhelmed
by random interference noises. Furthermore, the varying speed of gearboxes makes it difficult to
distinguish the fault-related frequencies from the interference noises. To obtain a noise-free signal for
extraction of fault-related information under variable speed conditions, first, a new localized adaptive
denoising technique (LADT) is applied to the vibration signal. The new localized adaptive denoising
technique results in optimized vibration sub-bands with negligible background noise. To obtain
fault-related information, the wavelet-based vibration imaging approach (WVI) is applied to the
denoised vibration signal. The wavelet-based vibration imaging approach decomposes the vibration
signal into different time–frequency scales, these scales are reflected by a two-dimensional image
called a scalogram. The scalograms obtained from the wavelet-based vibration imaging approach are
provided as an input to the deep convolutional neural network architecture (DCNA) for extraction
of discriminant features and classification of multi-degree tooth faults (MDTFs) in a gearbox under
variable speed conditions. The proposed scheme outperforms the already existing state-of-the-art
gearbox fault diagnosis methods with the highest classification accuracy of 100%.

Keywords: deep convolutional network; gearbox fault diagnosis; localized adaptive denoising

1. Introduction

Gearboxes play an important role in numerous industrial machines, vehicles, and
wind turbines [1–3]. Due to the operation of gearboxes in harsh conditions, gear defects
are found to be the most common defects in gearboxes [4]. A fault in the gearbox can
result in catastrophic failures, economic losses, and danger to the operating staff. For
this reason, early fault detection of the gearbox is of primary importance. The condition-
based monitoring approach suggests maintenance action based on the data collected from
the gearbox. This strategy allows the gearbox to function for a long time with minimal
maintenance costs [5,6].

Gear fault signatures are sensed and acquired by two types of sensors: accelerometers
and acoustic emission sensors [7]. Vibration signatures collected by the accelerometer from
a gearbox carry enough fault-related information and can be used for efficient gear fault
diagnosis [8]. Vibration signals obtained from a gearbox consist of meshing frequency
harmonics, blended sideband frequencies, and other free oscillation frequencies. Therein,
the meshing frequency harmonics and blended sideband frequencies are the fundamental
defect-related frequencies that help in the process of identifying gear defects [9,10]. The
vibration signals obtained from a gearbox under variable speeds are complex and non-
stationary; furthermore, the gear fault-related elements are often overwhelmed by the
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noise. To identify the fault symptoms in this complex vibration signal, the fault diagnosis
technique tries to reduce the noise in the raw vibration signal [11]. In its raw form, the
gearbox vibration signal contains various types of interference noises. The main sources
for these interference noises are the interconnected systems, such as the electrical-electronic
control and measuring systems, the mechanical systems (the influence of the mechanical
resonances such as shaft, bearings, gears, etc.), and background noise [12,13]. The random
behavior of these noises (i.e., random magnitudes, random appearances anywhere in the
observed ranges of vibration signals) makes the noisy components dominant over the
fault-related components in the vibration signal, and thus these noises overwhelm the
fault-related components. To address this issue, a signal-processing technique, which
can reduce the noise in the raw vibration signal, to highlight the fault-related meshing
frequency harmonics and sidebands (fault-affiliated elements) for gearbox fault diagnosis
in early stages is urgently needed.

In the past, numerous signal processing techniques, such as Fourier transform (FT),
envelope spectral analysis, Hilbert transform (HT), spectrogram or spectral analysis of a
fixed timing-window Fourier transform (STHT), empirical mode decomposition (EMD),
and wavelet-based spectral analysis (WA), have been developed for the processing of
stationary and non-stationary complex signals [14–19]. To enhance the performance of
the basic signal processing techniques, hybrid signal processing techniques such as EMD
and HT and EMD and WA have also been introduced [20,21]. The vibration signatures
obtained from a gearbox under faulty conditions are non-stationary. To obtain fault-related
information from the non-stationary vibration signal, time–frequency domain techniques
are applied. These techniques commonly use window-based filtering, digital filtering,
threshold estimation, decomposition modes in the form of intrinsic mode functions, and
wavelet-based transformation. Their fault identification efficiencies have been confirmed
by classifying fault states (e.g., a fault-free state and a defective state) and denoising in
some cases. In the case of a gearbox, the fault-related information is distorted by the hefty
noise present in the raw signal. Therefore, noise reduction techniques before applying the
time–frequency domain signal processing technique will be helpful for the identification of
MDTF in gearboxes. Nguyen et al. [22,23] proposed an adaptive noise reduction model,
which effectively reduced the noise in the impaired signal. The resultant impaired signal
is then used for the classification of gearbox multi-level tooth cut faults under variable
speed conditions. The effectiveness of the adaptive noise reduction model lies in adaptively
adjusting optimal parameters of the Gaussian function, which are connected to the optimal
weights of the adaptive filter, along the whole frequency range of a vibration signal.
Nevertheless, the frequency spectrum of a vibration signal obtained from a gearbox is
composed of meshing frequency harmonics, sideband components, and random noises,
with different probability distributions. It should be noted that the influence of random
noises and the change in stiffness of the gear under defect makes the vibration signal non-
stationary and complex. Therefore, a single optimal parameter set of the Gaussian reference
signal along the entire frequency range is less effective for noise reduction. To address
this issue, a localized adaptive denoising technique (LADT) is proposed in this paper. The
proposed LADT is a modified version of the adaptive noise reduction model proposed
in [22]. The LADT adaptively transforms the raw vibration signals to the optimized sub-
bands, which accounts for the majority of the defect-related information. The proposed
method can reduce noise more effectively than the previous adaptive denoising models,
while maintaining original fault-related information. The resultant impaired signal from
LADT is then used for feature engineering and fault classification in the proposed scheme
of gearbox fault diagnosis.

After signal preprocessing, feature preprocessing and fault classification are the most
important steps in the fault identification system. Conventional methods for the fault
diagnosis of gearboxes used handcrafted features. After extracting a limited number of
features from the signal in the conventional methods, domain knowledge was used for dis-
criminant feature selection. These discriminant features were then classified using machine
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learning algorithms, such as support vector machines (SVMs), k-nearest neighbors (KNNs),
decision tree algorithms (DTAs), and artificial neural networks (ANNs) [24–29]. However,
the handcrafted features need domain knowledge and expertise for the identification of
discriminant features. Furthermore, feature engineering techniques, such as dimensionality
reduction for discriminant feature selection, result in fault-related information loss. Thus,
the conventional methods might not be appropriate for the classification and identification
of MDTF defects in the gearbox. In addition, classification algorithms, such as KNNs,
SVMs, DTAs, and ANNs, is strongly dependent on the quality of the provided features. To
address the above-discussed problems, this paper proposes a scheme of self-generating
feature space. The proposed scheme first transforms a low-noise vibration signal into
a two-dimensional (2D) image using wavelet transform and obtains WVI’s. The WVI’s
reflect the 2D distributed power spectra of the optimized vibration sub-bands. To obtain
fault-related information from the WVI and classify them into their representative classes,
the proposed method used DCNA. Deep learning models (DLMs) have been used widely
in the areas of finance, natural language processing, and image processing [30–33]. For con-
dition monitoring of a rotating machine, there exist a variety of DLMs based fault diagnosis
frameworks, such as stacked denoising autoencoder [34], recurrent neural network [35],
long short term memory (LSTM) networks [36], gated recurrent unit network [37], and
convolutional neural network (CNN) [37,38]. One of the deep learning models, CNN, is
a famous model because of its visual understanding [39]. Deep convolutional network
architecture (DCNA) has been created for image processing and recognition, and then
developed for fault diagnosis of rotation types of machinery by self-regulation and deep
exploration of the latent fault-reflected features of vibration signals [40–43].

The contributions of this study are briefly explained as follows:

(1) A new signal preprocessing approach LADT is developed. The LADT is an adap-
tive algorithm that considers each principal frequency segment along the frequency
spectrum of a vibration signal to fetch the optimized Gaussian parameters, called lo-
calized optimal parameters. The outputs of the LADT, which are optimized vibration
sub-bands, contain fault-related information with very low interference noise.

(2) To discriminate and highlight the fault-related information in the vibration signals of
MDTF defect types in the time–frequency domain, the WVI technique is applied.

(3) Potential features are extracted from the WVI’s and classified using DCNA. The
latent features of DCNA contain discriminant fault-related features. To classify the
fault-related features into their respective classes, DCNA then uses the fine-tuning
process based on the backpropagation algorithm.

The remaining sections of this work are arranged as follows: the vibration char-
acteristics of the gearbox are explained in Section 2; Section 3 describes the technical
background. The experimental setup and proposed diagnosis scheme are explained in
Section 4. Section 5 presents the discussion and evaluation of the experimental results
obtained from the proposed scheme, and finally, the conclusion of this study is presented
in Section 6.

2. The Specification of a Gearbox Vibration Signal

A fault in the gear results in a change in the stiffness. This stiffness can be observed in
the vibration spectrum at specific characteristic frequencies. These characteristic frequen-
cies represent the tooth meshing stiffness. The meshing frequency in the vibration spectrum
of the gearbox represents the symptoms of a defect in the gearbox, as the meshing frequency
changes whenever an MDTF occurs in the gearbox [44]. Considering a gearbox operating
under normal conditions, the vibration signature obtained from the gearbox is a stationary
signal with tooth meshing frequency; this signal can be formulated as follows [45]:

xg(t) = ∑P
p=i Xp cos

(
2πp fmt + εp

)
, (1)
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where xg(t) represents the vibration signal of a gear operating under normal conditions, Xp
and εp stand for amplitude and phase of p-th harmonic of a meshing frequency, P denotes
harmonics of the meshing frequency, and fm denotes meshing frequency, which can be
computed using the parameter of pinion wheel ( fm = number of pinion teeth × rotational
frequency of a pinion wheel) or using a gear wheel ( fm = number of gear teeth × rotational
frequency of a gear wheel). The meshing frequency and its harmonics are considered useful
components for the fault diagnosis process. Figure 1a shows an example of the frequency
spectrum of a vibration signal in the perfect condition.
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Figure 1. The frequency spectrum of a gearbox (a) under normal conditions and (b) under defective conditions.

A fault in the gearbox makes the vibration signal non-stationary, resulting in a complex
frequency spectrum. During the gearbox operation, transmission occurs between the
motion source (e.g., three-phase motor and a drive shaft) and a load (a non-drive-shaft
and a load) through a pair of gears (pinion wheel and gear wheel). The non-stationary
impulses start appearing in the vibration signal when there is an impulsive change in
the angular velocity. The angular velocity changes impulsively when the two wheels
rotate across a faulty tooth (e.g., missing tooth, cracked tooth, chipped tooth, or worn
tooth) [46]. Therefore, the vibration signals obtained from a faulty gearbox exhibit non-
stationary behavior, for which the frequency spectrum contains harmonics of tooth meshing
frequency, sidebands (the frequency tones are distributed in the two sides of harmonics
of a meshing frequency), and other oscillation components. The vibration signal can be
presented as a combination of phase and amplitude modulation signal [47], as follows:

xm(t) =
P

∑
p=0

Xp
(
1 + βp(t)

)
cos

(
2πp fmt + ϕp + φp(t)

)
. (2)

Here, βp(t) = ∑Q
q=0 Bpq cos

(
2πq fbt + γpq

)
and φp(t) = ∑Q

q=0 Φpq cos
(
2πq fbt + εpq

)
represent the amplitude and phase modulation functions of the defective vibration signal.
fb is the sideband frequency, Q stands for the total number of sideband tones around the
p-th harmonics, Bpq, Φpq represents the amplitudes, and γpq and εpq denote phases of the
q-th sideband in the amplitude and phase modulation functions, respectively. Figure 1b
shows the frequency spectrum of the vibration signal obtained from the gearbox under
defective conditions; the fault signatures or fault-related components are the harmonics of
meshing frequency and sideband frequencies.

3. The Preliminaries

This section provides insight into the methods used in the proposed gearbox fault
diagnosis scheme.
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3.1. The Proposed Localized Adaptive Denoising Technique

Generally, a vibration signal obtained from a gearbox contains fault-related vibration
signatures and noise. Denoising of the signal is required for the extraction of fault-related
vibration signatures. Suppose the observed signal is s and the informative signal is x; then
s = x + ∂, where ∂ represents the noise. The denoising technique tries to filter out noise for
obtaining the estimation signal x̂ in a tendency to approximate the useful signal x as much
as possible. The adaptive denoising technique uses the concept of destructive interference
for denoising of an impaired signal. This technique utilizes the noise-simulated reference
signal to access frequency segments in a frequency domain of the observed impaired
signal in order to remove noise. The adaptive noise-reducer-based Gaussian reference
signal (ANR-GRS), which has been proposed and verified in [22,23], has achieved great
performance in reducing noise and avoiding distortion of the fault-related ingredients.
In this method, the noise ∂ in a gearbox vibration signal is analyzed and divided into
two types of noise: white noise (α) and band noise (β), ∂ = α + β. Then, the reference
signal is created by combining two noise-simulated signals, which are analogous with two
existing sources of noise in the observed signal, a white noise signal and a Gaussian signal.
Moreover, the parameters of the reference signal are adjustable by adaptive algorithm
regarding the varying input values of rotation shaft speeds.

The Gaussian signal is responsible for building the simulated noise reference signal.
The parameters of the Gaussian signal (a mean value and a standard deviation value) are
adaptively adjusted so as to reduce the noise between two consecutive sideband frequencies
(the sideband frequency is the gear frequency in this study). The process for generating a
reference signal is depicted in Figure 2, and the Gaussian signal is formulated as follows:

Gns(k) =
K

∑
k=1

e−
(k−Fm)2

2σ2 (3)

where K is the number of sideband segments, and the mean value Fm and the standard
deviation value σ are the function of the shaft rotation frequency. Those parameters are
adjusted by an optimization process to select the optimized vibration sub-band as an
output of the ANR-GRS module [22].

From each parameter set (Fm, σ), which is randomly selected from the specific required
range defined in [22], a noise-simulated signal is generated. This reference signal is
provided as an input to the adaptive filter along with the impaired observed signal. The
adaptive noise filter contains a digital filter, which employs an L-tap FIR type digital filter
and weight vector as w(n) ≡ [w0, w1, . . . , wL−1]T, and a least mean square adaptive
algorithm. The adaptive filter works as follows: The noise-simulated signal is provided as
an input to the digital filter, then the filtered output signal is summed with the vibration
signal (impaired observed signal) to compute the error signal. This output error signal
is provided as a feedback input to the adaptive algorithm to measure its mean square
value. Next, the adaptive algorithm tunes the weights of the digital filter according to
the converging criterion of least mean square (LMS) error to obtain the optimal weight
vector (w0) and then expose the optimal vibration sub-band corresponding to the particular
parameter set. The schematic diagram of the ANR-GRS is provided in Figure 2.

From Figure 2, it can be observed that the ANR-GRS method tries to look for the
general optimal parameters of the Gaussian reference signal applied to the whole frequency
range of input vibration signals (0–10 kHz).
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According to the vibration characteristic of the fault signal presented in Section 2,
the frequency domain of the phase–amplitude modulation signals is visualized as a set of
many similar frequency segments, each of which contains a meshing frequency harmonic
as a center frequency and the sideband gear frequency tones are distributed around the
center frequency in the ideal condition. The principal frequency segment (PFS) is defined
as a frequency segment with a meshing frequency harmonic as a center frequency and
frequency wide equally to a meshing frequency (i.e., the frequency range of PFS is from
(p − 0.5) ∗ fm to (p + 0.5) ∗ fm with p ∗ fm, a p-th harmonic of a meshing frequency, is a
center value). However, in the real world, the amplitudes of frequency tones in each PFS
(PFS power distribution) of the gearbox vibration signals are uncorrelated to each other
because of the influence of random noise (white noise and band noise) on the non-linear
and phase–amplitude modulation signal [48].

Due to the differences of power distributions of PFSs, the general optimal parameter
set of Gaussian reference signals cannot be used. Therefore, this paper proposes a new
denoising technique called the localized adaptive denoising technique (LADT). The local-
ized adaptive denoising technique adopts the ANR-GRS module from [22]. To improve the
denoising capability of ANR-GRS, the LADT applies ANR-GRS to each PFS. By localized
adaptive optimization, the new denoising methodology tries to find the localized optimal
parameter set of a noise-simulated reference signal, which is appropriate to each specific
PFS. The function block diagram of LADT is demonstrated in Figure 3. To implement the
ANR-GRS method on each PFS, the band-pass Chebyshev Type-I IIR filter of order 30 [49]
is used to segment the frequency spectrums of a vibration signal to M sub-signals whose
frequency spectrum is as a PFS. The band-pass filter had a bandwidth similar to meshing
frequency, where M is computed as the quotient of the division of the frequency range
and the meshing frequency. The localized optimizing process of LADT improves the noise-
reducing capability in comparison with that of the ANR-GRS method; therefore, in this
study it is used for denoising the vibration signal before the feature engineering process.
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3.2. Wavelet-Based Vibration Imaging (WVI)

To obtain discriminant features from the preprocessed vibration signal, intrinsic
information of the vibration signal should be utilized, such that it can provide enough
information about MDTF types of defects. For this reason, a proper method that can
highlight the key representative elements of MDTF-type defects in gearbox vibration signal
is needed. Accordingly, the optimized output sub-bands from the LADT, which contains
condensed defect-related useful information, are converted into two-dimensional time–
frequency representation images by employing the CWT method; these images are called
WVIs. These WVIs, which carry enough fault-related information, are referred to as the
enriched feature pool in this paper. The enriched feature pool of the WVIs can be utilized
for identifying each defect type of MDTF states (i.e., PC, DT1, DT2, DT3, DT4, DT5, DT6)
of the gearbox under variable speed conditions. The process of WVI formation can be
explained in detail as follows:

To overcome the limitation of Fourier transform in processing non-linear and non-
stationary signals, and the limitation of STFT with fixed timing-window transforming
observation, a wavelet approach has been developed. The wavelet transform uses a mother
wavelet for decomposing a signal into the spatiotemporal domain. The mother wavelet
can be adjusted by expanding or compressing during the transforming process [30]. We
denote the wavelet function as ϕ(t), with φ(ω) as Fourier transform. To apply the wavelet
approach in terms of reversible transform, the admissibility condition must be satisfied:

Cφ =
∫ ∞

−∞

|φ(ω)|2

|ω| dω < ∞, (4)

where Cφ is the admissibility constant. This (inequality 4) approximates φ(ω) = 0, which
can be presented as: ∫ ∞

−∞
ϕ(t)dt = 0, (5)

and this requirement also makes clear that the mother function is a band-pass filter. The
term “wavelet” implies a small oscillation wave with the finite length of the window
function, and “mother function” can be understood as a prototype function, such as Morlet
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wavelet or Daubechies wavelet, whose variants are the wavelet window functions. The
actual wavelets are generated from a mother wavelet by the following equation:

ϕs,τ(t) = |s|−
1
2 ϕ

(
t− τ

s

)
, (6)

where τ is the translation parameter and s represents dilation in Equation (6). The trans-
lation parameter represents time in the wavelet domain. The dilation is the inversion of
frequency. This scale of wavelet technique is analogous to the scale of map architecture. A
large scale in mapping indicates the globalized scenery, and a smaller scale indicates more
detail. Similar principles can be applied to the wavelet approach; the high scale (i.e., s� 1,
low frequency) is used for observing the global features of a signal because the wavelets
are expanded for extracting the low-frequency components, such as the large time window
of STFT. In contrast, the low scale (i.e., high frequencies, s� 1) is used for observing more
details of a signal, called local features. Consider the vibration sub-band x(t) and the given
wavelet family ϕs,τ(t), the continuous wavelet transform of x(t) ∈ L2(R) is calculated [31]
by following inner products equation:

CWTϕ
x (s, τ) =< x, ϕs,τ >= |s|−

1
2

∫ ∞

−∞
x(t)ϕ∗

(
t− τ

s

)
dt. (7)

Equation (7) represents the coefficients of CWT. CWT coefficients are the combination
of translation series (time series) and scale (1/frequency) series, which can be utilized for
constructing the vibration imaging feature spaces (scalograms). Through the use of the
effective denoising technique from the previous process, the vibration image feature pools
are filled by condensed fault-related information that qualifies for the next identification
step. The combination of the novel denoising technique and the CWT scalogram for the
WVI are demonstrated in Figure 4 as the steps involved in the formation of WVI’s.
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3.3. The Deep Convolutional Neural Network Architecture

DCNA comprises hidden layers (called convolutional layers), pooling layers, and
fully connected layers [40,41]. The convolutional layer performs feature extraction from
the input image data through a kernel-filter-based convolutional process; then, the pooling
layer implements the down-sampling process. The pooling layer helps to reduce computa-
tional complexity and to recognize the learned extracted features. In addition, a variety of
constraint-optimizing layers, such as rectified linear units (ReLU), dropout, and normaliza-
tion, are integrated into the DCNA for classification improvement [50]. Afterward, the fully
connected layer uses weighted-base wiring to connect the output of the final convolutional
or pooling layer for transferring information to the classification layer, which outputs the
likelihood decision for classifying the fault types, normally using a SoftMax function [51].
Figure 5 demonstrates the general structure of the DCNA.
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size, using w training weights for adjustment. Then, each result, which corresponds to a
single kernel, is added in scale computation with bias b, and functionalized by activation
functions of nodes in the (j + 1)th layer, these are normally non-linear functions, such as the
rectified linear unit function (ReLU), used to perform non-linear feature mapping through
layers. Assuming that the parameter used in the convolutional calculation is a unity, then
feature space with a dimension of (m− D + 1) × (n− R + 1) is formed corresponding to
each filter. In general, the i-th feature mapping space ( f ms) of the convolutional layer k can
be formulated as follows:

f msk
i = RL

(
∑r∈Ak−1 f msk−1

r ~ wk
i + bk

i

)
, (8)

with RL as the ReLU function: RL(x) = max(0, x).
Where, wk

i and bk
i are the sets of weights and bias for the ith filter in layer k,
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indicates
the convolution operator, Ak−1 denotes all feature mapping spaces in the (k − 1)th layer.
The feature spaces become more separable as it goes from lower convolutional layer to
bottleneck layer network.

Typically, the pooling layer (Pm) is used next to each convolutional layer for the
down-sampling process. It scans the whole range of a feature mapping space sequentially,
and then applies the pooling operation on a defined pooling region by a non-overlapping
searching method. The pooling operation that is most commonly used is the mean average,
or maximum value in the defined pooling area [41].
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Usually, many incorporated pairs of convolutional and pooling layers are employed
in DCNA. After the final convolutional layer or pooling layer, several fully connected
layers (Fc) are used to expand deep representation feature mapping spaces, as well as the
concatenation of feature mapping spaces into a feature vector. Finally, the represented
feature vectors are provided as an input to non-linear nodes for classifying the features
into their corresponding categories (the fault states of a gearbox). The SoftMax function is
typically used as the final activation function in the classification layer for classifying the
input data into their corresponding categories.

The learning process of the DCNA is based on the optimization of the loss function
of the reconstruction error. The loss function is the function of the training error, which is
the difference between predicted output (ŷq) and actual output (yq). It can be presented
as follows:
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Here, K signifies the number of neurons, and n is the order of repetitive steps. The
major purpose of the training process in building the DCNA is to fine-tune its parameters,
converging to reduce ℮(n) through a back-propagation process based on the stochastic
gradient descent method [52].

4. The Accurate and Stable MDTF Fault Identification Framework and Its
Experimental Evaluation

The key aim of this study was to identify defect types of MDTF gearbox systems under
variable speed conditions. As mentioned in Section 1, it has been observed that the existing
models might not be able to differentiate those fault types due to the similar behavior of
different degrees of tooth fault reflected in the vibration spectrum. To address this issue, in
this paper, a new gearbox fault diagnosis scheme has been proposed. Figure 6 provides a
block diagram of the proposed framework. From Figure 6, it can be seen that the proposed
method consists of four main steps: (1) sensors and data acquisition (DAQ), (2) LADT,
(3) WVI, and (4) DCNA. The preliminary section covered the main steps of the proposed
method. This section will provide the experimental validation of the proposed method.

4.1. The Gearbox Testbed and Data Acquisition

A gearbox testbed, self-developed at the Ulsan Industrial Artificial Intelligence lab-
oratory, for acquiring vibration data is shown in Figure 7. The testbed can be explained
as follows: an AC motor is directly connected to the pinion wheel through the drive shaft
(DS), whereas the gear wheel is fixed with a non-drive shaft (NDS) and the adjustable
blades (the load). The pinion wheel with 25 teeth, whose length is 9 mm, and the gear
wheel (38 teeth) are engaged with each other and housed in the gearbox, creating a gear
reduction ratio of 1:1.52. The rotation movement (torque) of the load is provided by the
motion of the AC motor through the gearbox. Therefore, the rotational speed of the pinion
wheel is equal to the rotational speed of AC motors, and the gear frequency is calculated
by the pinion frequency and the gear ratio. The vibration sensor (the accelerometer) is
placed at the end of the NDS, 72.5 mm from the gear wheel. The rotational speed of the
DS (a pinion frequency) is measured by the displacement transducer, which is mounted
for tracking the hole in DS once per revolution. The data acquisition system, which is the
PCI-2 data acquisition board, is connected to the accelerometer (622B01) to measure and
digitize vibration signals, and to store digital vibration samples. The specifications of the
accelerometer, speed sensor, and data acquisition system are given in Table 1.
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Figure 7. Gearbox experimental testbed.

The MDTF gearbox was created by cutting one tooth, mounted on the gear wheel,
to different degrees. Figure 8 shows the degrees of cut teeth and the vibration signals
obtained under each condition for all observed defect types in this study, including a
normal or perfect condition gear (PC), 6.6% degree of tooth defect (DT1), 10% degree of
tooth defect (DT2), 20% degree of tooth defect (DT3), 30% degree of tooth defect (DT4),
40% degree of tooth defect (DT5), and 50% degree of tooth defect (DT6). These multiple
degree tooth faults were seeded for simulation of the same behavior of the gear defects
caused by long-term operation of a gearbox system (e.g., tooth spalling, tooth cracking,
worn tooth, etc.). The vibration characteristic for fault states of a gearbox was analyzed in
detail in Section 2.
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Table 1. Specifications of the sensors and data acquisition system.

Devices Specification

Vibration sensor
(Accelerometer 622B01)

Sensitivity (V/g): 10.2 mV/(m/s2)

Operational frequency range: 0.42 to 10 kHz

Resonant frequency: 30 kHz

Measurement range: ±490 m/s2

4-Channel DAQ
PCI Board

18-bit 40 MHz AD conversion, a sampling frequency of
65.536 kHz is used for each of two channels simultaneously

Displacement
transducer

Distance from the head of a transducer to a hole: 1.0 mm

Diameter of a hole: 12.80 mm

Sensitivity: 0 to −3 dB

Frequency response: 0–10 kHz
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Table 2 demonstrates the configuration of the dataset used in this paper. The data
acquisition system converts the analog vibration signal to a digital vibration signal with
a sampling frequency of 65,536 Hz. Each sample is one second long, termed a one-sec
sample. A total of 200 samples were collected under each defect condition with variable
rotating speed (four shaft rotational speeds are evaluated in this study). Therefore, there
are 800 samples for each defect condition, and a total of 5600 samples are extracted from
this testbed.

4.2. LADT Performance for Effective Noise Removal of Vibration Signals of a MDTF Gearbox
under Variable Speed Conditions

The raw vibration signals were digitized at a high sampling frequency of 65,536 Hz
in order to gather rich discrete vibration samples, and to capture the extent of feasible
defect-related components in each one-sec vibration signal. The vibration data collected
from the gearbox contain fault-related information and interference noise. By sampling
the vibration signal at a frequency of 65,536 Hz, the frequency spectrum of a discrete
vibration sample is from 0 Hz to 32,768 Hz (according to the Nyquist–Shannon sampling
theorem). However, the accelerometer is capable of sensing the vibration oscillations in
the frequency range of 0.42–10,000 Hz (Table 1). Thus, the fault-related information is in
the frequency range of 0.42–10,000 Hz. Therefore, rather than providing the raw vibration
signal to LADT, the vibration signal is pre-processed by performing down-sampling using
a low-pass filter to avoid aliasing [22]. After performing down-sampling, the vibration
sub-bands are obtained, which have the time length of one second, the sampling frequency
of 21,845 Hz (65,536/3), and frequency range from 0–10,922 Hz.
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Table 2. The configuration of the MDTF gearbox dataset.

Gearbox Defect Type Description
Number of One-Second Samples for

Specific Rotation Speed (RPM) Sampling
Frequency (Hz)

300 600 900 1200

Perfect Condition
(PC) Normal or perfect gearbox 200 200 200 200 65,536

Defect Type 1 (DT1) 6.6% degree of tooth defect
(0.6 mm/9 mm) 200 200 200 200 65,536

Defect Type 2 (DT2) 10% degree of tooth defect
(0.9 mm/9 mm) 200 200 200 200 65,536

Defect Type 3 (DT3) 20% degree of tooth defect
(1.8 mm/9 mm) 200 200 200 200 65,536

Defect Type 4 (DT4) 30% degree of tooth defect
(2.7 mm/9 mm) 200 200 200 200 65,536

Defect Type 5 (DT5) 40% degree of tooth defect
(3.6 mm/9 mm) 200 200 200 200 65,536

Defect Type 6 (DT6) 50% degree of tooth defect
(4.5 mm/9 mm) 200 200 200 200 65,536

The vibration sub-bands are provided as an input to LADT for reducing the noise and
enhancing the useful fault-related information, which represents multi-degree tooth fault
behaviors. LADT applies ANR-GRS to each PFS. Through localized adaptive optimization,
the new denoising methodology tries to find the localized optimal parameter set of the
noise-simulated reference signal, which is appropriate to each specific PFS. The outputs of
LADT are the optimized vibration sub-bands, which maintain the original defect-related
frequency tones (meshing frequency harmonics and sideband frequencies) and reduced
background noise. Those defect representative ingredients are key factors for identifying
the defect types of an MDTF gearbox under the condition of the variable speed. Those fault
types proceed as analogous behaviors reflecting the vibration characteristic, the differences
between them might be degrees of amplitudes of informative tones, their proportions, or
occurrence events in the tiny range of separation. Thus, the image-based enriching feature
pool configuration methods are needed to sort them out for condensation.

4.3. Wealthy Feature Pool Configuration Based on VWI

In this step, a continuous wavelet transform is applied to the noise-free optimized
sub-bands obtained from the LADT. The wavelet-based transforming method is used to
convert time-domain optimized sub-bands to the scalograms for the enriched visualized
features pool. The CWT method in this paper employs the Morlet wavelet, which is the
most effective technique in the fault diagnosis approach of the rotation machines [53], as a
mother wavelet function. The signal is decomposed up to 16 octaves. Based on experiments,
the optimal value of voices per octave parameter was chosen as 16. The wavelet coefficients
for each input sub-band, which are derived from applying the wavelet family functions
in Formula (5), are used to obtain a scalogram, which is an energy distribution map of
the input sub-band on a time–frequency scale. Those scalogram images of the vibration
sub-bands are reshaped by the size of 224 × 224 × 3 for compatibility with the input layer
of DCNA in the next classification step and packed to configure the enriched visual image
feature pool.
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4.4. DCNA Construction

In this study, the contents of the enriched visualized feature pool, which are called
WVIs are obtained from the CWT of low-noise optimized vibration sub-bands, are provided
as an input to DCNA. The WVI contains fault-related information in the form of edges,
lines, curves, spots, or pixels with various intensities (which are represented by the R, G,
and B channels of the RGB image). The DCNA is used primarily to recognize images.
Figure 9 demonstrates the architecture of the proposed DCNA used in this study. The
proposed DCNA has fifteen layers, including five convolutional layers (Cv), three pooling
layers (Pm), two drop-out layers (Do), three fully connected layers (Fc), one input layer,
and one terminal output layer (Os). The DCNA makes a start with an input layer of size
224× 224× 3, according to the size of RGB images (224× 224 indicates the values of length
and width, and 3 denotes three R, G, B channels of the input image). Next, the features
are extracted from fault-related images by the first convolutional layer with 96 kernels of
size 11 × 11 × 3 and the stride of 4. The results of the first convolutional calculation are
feature spaces of size 54 × 54 × 96. After the first convolution layer (Cv1), the max-pooling
layer (Pm1) is applied for down-sampling. Moreover, the drop-out layer (Do1) is located in
series to extenuate the over-fitting issue [50]. The second convolutional layer has 256 filters
of size 5 × 5 × 48, and it is followed by pooling and dropout processing layers. The Cv3
and Cv4 layers consist of 384 filters with a size of 3 × 3 × 256 and 384 kernels with a size
of 3 × 3 × 384, respectively. Next, Cv5 is down-sampled by the third max-pooling layer
(Pm3), composed of 256 of 3 × 3 × 384 kernels. All of the max-pooling layers employ
3 × 3 filters with a stride of 2. The output of the third max-pooling is used as an input
to the fully connected layers (Fc1, Fc2, Fc3). Fc1 tries to implement a flattening process
to convert all feature matrices (6 × 6 × 256) from the output of layer Pm3 to the feature
vectors (1 × 1 × 4096) through its operation as a weighted sum with bias terms. These
output feature vectors then are passed through the activation function ReLU and input
to the next layer (Fc2). The second fully connected layer, which is the penultimate layer,
includes 1000 neurons and functions, similarly to Fc1, to output feature vectors of size
1 × 1 × 1000. The last flattened layer, Fc3, including 7 neurons, which are the SoftMax
activation functions, is the classification layer. It operates at a terminal spot of the DCNA
for estimation of the probabilities of the categories.

In this paper, the fifteen-layer DCNA has been conducted based on the original
AlexNet architecture [54], with some modifications for this specific application. The
AlexNet model has already achieved better feasibility than other models for recognizing
images. This model has implemented training for 1.2 million high-resolution pictures
of ImageNet for classification of up to 1000 differential species targets in the contest of
LSVRC-2010 by training of 650 thousand neurons and 60 million parameters, with many
optimizing processes in the network architecture. In our research, we have replaced two
normalization layers with two drop-out layers in order to improve the capability of over-
fitting avoidance [50,55]. Moreover, the last fully connected layers (Fc3), which include
1000 neurons from the original AlexNet, are replaced by the same fully connected layers
with a reduced number of neurons (7), for suitable application in our research with seven
classifying categories. The detailed description of the proposed DCNA is shown in Table 3.
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Table 3. The structural elements of the proposed DCNA.

Layers Operating
Parameters

Number of
Kernels Kernel Size Stride Padding

Input layer 224 × 224 × 3

1st Convolutional (Cv1) 55 × 55 × 96 96 11 × 11 4 0

1st Max Pooling (Pm1) 27 × 27 × 96 96 3 × 3 2 0

1st Dropout (Do1) 27 × 27 × 96

2nd Convolutional (Cv2) 27 × 27 × 256 256 5 × 5 1 2

2nd Max Pooling (Pm2) 13 × 13 × 256 256 3 × 3 2 0

2nd Dropout (Do2) 13 × 13 × 256

3rd Convolutional (Cv3) 13 × 13 × 384 384 3 × 3 1 1

4th Convolutional (Cv4) 13 × 13 × 384 384 3 × 3 1 1

5th Convolutional (Cv5) 13 × 13 × 256 256 3 × 3 1 1

3rd Max Pooling (Pm3) 6 × 6 × 256 256 3 × 3 2

1st Fully Connected (Fc1) 1 × 1 × 4096

2nd Fully Connected (Fc2) 1 × 1 × 4096

3rd Fully Connected (Fc3) 1 × 1 × 7

Output SoftMax Nodes

4.5. The Experimental Classification for an MDTF Gearbox under Variable Speed Conditions

The DCNA performs a fault-classifying process based on the input WVI imaging data
for the MDTF gearbox under varying speed conditions. To verify the performance of the
proposed DCNA for identifying seven MDTF fault types under varying speed conditions,
we conducted an experimental setup of two scenarios, as shown in Table 4. In Scenario 1,
all vibration data for four speeds were observed for classification. While in Scenario 2, four
experiments were performed based on varying speed-related data. The configuration of
the testing and training datasets for both of the scenarios is given in Table 4.
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Table 4. Description of the dataset for training and testing with RPM in the experiment setup.

Scenarios The Experiment Number of Samples The RPM of Data Samples

Scenario 1 Experiment 0
Training samples: 3360 60% of All four speeds dataset

Testing samples: 2240 40% of All four speeds dataset

Scenario 2

Experiment 1
Training samples: 2800 The shaft speeds: 300 RPM, 600 RPM

Testing samples: 1400 The shaft speed: 900 RPM

Experiment 2
Training samples: 2800 The shaft speeds: 600 RPM, 900 RPM

Testing samples: 1400 The shaft speed: 1200 RPM

Experiment 3
Training samples: 2800 The shaft speeds: 900 RPM, 1200 RPM

Testing samples: 1400 The shaft speed: 300 RPM

Experiment 4
Training sample: 2800 The shaft speeds: 1200 RPM, 300 RPM

Testing samples: 1400 The shaft speed: 600 RPM

For each speed (a total of four speeds: 300 RPM, 600 RPM, 900 RPM, and 1200 RPM),
there were a total of 1400 one-second samples for all gear fault types (there were seven
defect types or seven categories, PC, DT1, DT2, DT3, DT4, DT5, DT6, and each of them was
acquired by sampling for one second, repeated 200 times, to achieve 200 one-second sam-
ples). All these samples were first preprocessed using LADT. Next, the output optimized
sub-bands obtained from LADT were converted by the CWT method to attain the enriched
feature scalogram images. That speed-related image subset was used as input data for the
DCNA. For each experiment, we used two speed-related datasets (2800 samples) to train
the proposed DCNA several times with multitudinous epochs, targeted to optimize the
network parameters based on minimizing orientation of the loss function (Equation (9)),
and the dataset of another speed (1400 samples) was used as the testing dataset of the
constructed model. These processes were circularly acted based on four speed-related
datasets to conduct all four experiments.

5. Results and Discussion

This section principally validates the proposed fault identification framework con-
structed in Section 4 for an MDTF gearbox under inconsistent rotational speeds based
on the data collected from a real-world testing platform. The effectiveness of this model
is entirely evaluated based on the following operations: LADT, visual enriching feature
configuration (WVI’s), and fault identification based on DCNA.

5.1. Experimental Verification of the Effective Performance of LADT and Wealthy Feature Pool
Configuration Created by WVI

As explained in the introduction section, the real-world gearbox vibration signals
originally contain informative components and random background noise. The disturbance
noises appear randomly, and they can affect the informative components. Thus, in the
raw form of the vibration signal, it is very difficult to separate the original informative
components from the background noise. Furthermore, the operation behaviors of MDTF
gear faults reflected in the vibration signal are too similar. In other words, to discriminate
these kinds of faults, the use of enhanced techniques is required. The LADT approach
is the key technique of this study for effective noise cancellation and for separating the
original fault-related components from the high noise vibration signals. Before being fed to
LADT, the raw vibration signals, gathered from the experimental gearbox testbed, were
processed by down-sampling and low-pass filtering to attain vibration signals with the
frequency range of 0–10,922 Hz, according to the real frequency working range of the
acceleration sensor for removing the redundancy fractions. These output signals are named
raw-filtered vibration signals. LADT tries to divide each raw-filtered vibration signal into
many sub-signals, so that their frequency spectrums are principal frequency segments, by
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applying the series of the non-overlapped band-pass filters along the frequency spectrum
of the vibrations signal (0–10,922 Hz). Next, the ANR-GRS technique [22] is applied on
each principle frequency segment to achieve a locally optimized sub-band from each input
sub-signal based on the localized optimal parameters. The final optimized output of the
LADT module is a summation of all locally optimized sub-bands corresponding to each
input vibration signal.

The visual analysis of frequency spectrums of three vibration signals (a raw-filtered
vibration signal, the output signals of the ANR-GRS module, and optimized sub-bands
from the LADT module) are illustrated in Figure 10.
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As shown in Figure 10, the superiority of the localized adaptive process of the LADT
module for denoising is proven. Here, the noise disturbance areas, which were circled by
red dotted lines in the spectrum of a raw-filtered vibration signal that inputs to ANR-GRS
and LADT modules, were mostly removed in the output of the ANR-GRS module and
LADT module (the spaces with red narrows in the output spectra of ANR-GRS and LADT
modules). However, the output signal of LADT indicated outstanding efficiency in reduc-
ing noise relative to the ANR-GRS module; the noise areas of the second and fifth principal
frequency segments (the segment contains the second and fifth harmonics of the meshing
frequency) in the output sub-band of the LADT module were much lower than those in
the output signal of ANR-GRS. This verifies the effectiveness of the localized adaptive
optimization process of the LADT scheme. In addition, the fault-related components,
which were marked by blue-dotted circles in the input and output of LADT, were exactly
the same. In other words, the LADT approach reduces noise in the largest amount possible
by obeying the principal rule of a condition-monitoring fault diagnosis system to preserve
the original fault-informative elements, such as sideband frequency tones and meshing
frequency harmonics inside of the raw vibration signals.

The output optimized sub-bands from LADT were then converted to visualized
feature spaces, for better expression of defect-related components induced by vibration
characteristic of MDTF defect types in the time–frequency domain, using the proposed
WVI method. Similarly to the example signal in Figure 4 (Section 3.2), the wavelet-based
vibration images carried the defect-correlated factorials and exposed the attributes through
color images. Figure 11 demonstrates the scalograms of the seven defect types of a gearbox
under four rotational speeds. Through visualization, the scalograms of the same defect
type under four rotational speeds showed the proximate parallel zones with the different
energy levels. In addition, the energy of the useful components (pixel illuminations) has
grown according to the uptrend of rotational speeds. Those discriminate notifications were
quantized in the massive process of feature extraction and optimization achieved from
DCNA performance.

5.2. DCNA-Based Identification Performance Analysis

By applying the LADT method, the noise components of the vibration signals were
mostly removed. The wealthy feature pool configuration based on CWT, then, translated
the output of LADT as insignificant-noise vibration sub-bands to the scalogram images.
These scalogram images carried enough information for fault discrimination. The wavelet-
based vibration image datasets were used as input datasets for DCNA for the classification
task. First, the proposed network tried to perform Scenario 1 to discover the effect of the
quantity of input data on the time consumption and classification accuracy. The dataset,
which contained all four speeds and seven categories, was randomly split into the training
set and validation set. Each input sample was a colorized image with dimensions of
224 × 224 × 3, which met the demand of the input layer size of the proposed DCNA.
From the numerous proportions of the training set, the computational consumptions and
accuracies are listed in Table 5. It shows that when 50% to 60% of total samples were used
for training, the best performances were obtained (by high accuracies in the acceptable
time consumption) in the observed quantities. Thus, a ratio of 60% was used in this study.
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In Scenario 2, four experiments (in Table 4) were executed in this study to analyze the
accuracy and reliability of the proposed framework for an MDTF gearbox under differential
speed conditions. In each of the four experiments, the training dataset was composed
of two different speed samples (2800 samples), and the data samples of the validation
set contained samples collected at speeds that differed from that of the training dataset
(1400 samples). Following Scenario 2, the speed-varying datasets were alternately used for
the training and testing process over a total of four observed rotational speeds in this paper.
The learned features of the activation processes in different layers of the applied network
model can be seen in Figure 12. From the input RGB image of the defect type 3 with a speed
of 600 RPM (Figure 12a), through the beginning steps of the high-dimensional feature
extraction process, performed by 96 kernel filters (Figure 12b) of the first convolutional
layer (Cv1), the feature images of the Cv1 of one channel are shown in Figure 12c. With
the help of this process, the one time-frequency domain vibration image is mapped to
96 feature images for observing the defect-related elements in high-dimensional feature
spaces. Next, the several mapping values in feature images are reduced by the max-pooling
layer (Pm1) as shown in Figure 12d. Thus, the feature image in Figure 12d is inclined to
be viewed more dubiously and softly than Figure 12c. From Figure 12e to Figure 12h, the
complex learned feature images from Cv2 to Cv5 of an example channel are demonstrated
the impacts of the kernels of those layers. After flowing through Cv and Pm layers of the
applied DCNA network, the learned feature maps were flattened as feature vectors. Those
feature vectors, which were outputs of the final fully connected layer (Fc3), were then used
as input of a SoftMax layer or output layer for clustering.

The t-SNE (t-stochastic neighbor embedding) approach is popular in deep networks
for exploring the feature spaces. Figure 13 depicts the three-dimensional distribution of the
output feature vectors from the Fc3 layer according to seven defect categories through four
experiments. As shown in Figure 13, the samples of the same defect type were close to each
other, separate from the samples of another defect type. The clear discrimination between
defect types verifies the high accuracy and stable capability of the proposed framework
through the condition of the inconsistent speed. Based on this, the classification process
can identify the defect types of an MDTF gearbox more easily.

Moreover, the confusion matrix, which is shown in Figure 14, provided perfect perfor-
mance (100% accuracy) of fault identification for seven defect types of the experimental
MDTF gearbox under variable speed conditions through the four experiments in Scenario 2.

Table 5. The classification accuracy and time consumption for various size of the training set.

Training Size (Percentages of
5600 Samples) Number of Epochs Time Consumption

(Second)
Overall Classification Result

(%)

1680 Samples (30%) 160 105.101 89.51

2240 Samples (40%) 200 138.276 94.63

2800 Samples (50%) 210 147.846 99.79

3360 Samples (60%) 250 165.569 100

3920 Samples (70%) 300 375.497 100

4480 Samples (80%) 360 458.990 100

5040 Samples (90%) 410 546.832 100
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For robustness analysis of the proposed methodology, a comparison was made be-
tween the proposed method and existing state-of-the-art methods such as ANR-GRS + SFE
+ GA + KNN (Fw1), LADT + GA + KNN (Fw2), LADT + FSE + SVM (Fw3), ANR-GRS
+ CWT + DCNA (Fw4), LADT + STHT + DCNA (Fw5). Those are explained in detail
as follows:

(1) ANR-GRS + SFE + GA + KNN (Fw1): This framework used the denoising method as
an adaptive noise-reducer-based Gaussian reference for optimizing vibration signals.
Next, the handcraft feature extraction technique was used to extract the statistical
features in the time and frequency domain (SFE: statistical feature extraction). The
achieved feature pool, then, was processed by a feature-selection-method-based
genetic algorithm (GA) to fetch the most discriminate features in preparation for
input into the learning model as k-nearest neighbors (KNN). KNN performed fault
classification based on the selected features (reduced dimensionality) to identify the
gear defect types for validating the accuracy of the constructed model (Fw1). The
details of Fw1 can be found in [56].

(2) LADT + GA + KNN (Fw2): To validate the improved denoising technique, the LADT
module was used instead of the ANR-GRS module in the Fw1 to construct the Fw2.

(3) LADT + FSE + SVM (Fw3): This observed framework was created to explore the
noise reduction proficiency of LADT, incorporating the high-dimensional feature
pool, which can be well-classified by a support vector machine (SVM). The proposed
denoising approach (LADT) in this study was applied to optimize vibration signals.
The FSE step tried to configure the feature pool. Then, an SVM was utilized to process
fault diagnosis by using the extracted features to input learning data [22].

(4) ANR-GRS + CWT + DCNA (Fw4): By implementing this framework, the effectiveness
of the LADT module was straightforwardly compared to the initial adaptive noise
technique (ANR-GRS). In this situation, we only replaced the LADT module with
ANR-GRS.

(5) LADT + STHT + DCNA (Fw5): This framework was implemented by using short-time
Fourier transform (STHT) to extract the visualized image features as spectrogram
images. It was used for comparison with the proposed scheme in the process of
enriching feature extraction.

Those methodologies were selected to evaluate the performance of the proposed
method in terms of the improvement of LADT for denoising in comparison with the initial
method (ANR-GRS), the effective performance between the automatic feature engineering
methods (feature extraction, feature selection, and classification) based on DNN from the
enriched feature pool (CWT + DCNA), handcraft-method-aided shallow neural networks
(SFE + GA + KNN, SFE + SVM), and the effect of enriching feature pool configuration
methods (CWT and STHT).

To evaluate the proposed method against the reference methods, the overall classifica-
tion accuracy (Rf) for each framework was calculated using Equation (10).

R f =
∑ TP
∑ TS

· 100% (10)
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where, ∑ TP denotes the summation of the true positives and ∑ TS refers to the total
number of samples used in the classifying process. Each framework was executed several
times to achieve the average results of overall classifying accuracies for seven defect types.
The classification results of all frameworks through two scenarios are shown in Table 6.

Table 6. The overall identification accuracies of the compared frameworks through two scenarios.

Scenarios Experiment
Average Classification Accuracies of Frameworks (%)

Fw1 Fw2 Fw3 Fw4 Fw5 Proposed Fw

Scenario 1 Experiment 0 62.18 65.13 54.71 83.50 91.68 100

Scenario 2

Experiment 1 53.43 57.35 72.54 86.65 88.82 100

Experiment 2 45.31 51.43 68.78 81.51 86.85 100

Experiment 3 57.62 67.71 74.19 88.30 90.21 100

Experiment 4 50.17 58.69 72.70 85.90 89.49 100

As can be seen from Table 6, the LADT approach performed denoising better than the
ANR-GRS method in the three frameworks: Fw1, Fw2, Fw3; however, the identification
accuracy results were lesser than the proposed method from 54.69% to 25.81% due to
the limitations of those frameworks in engaging with handcraft feature extraction and
shallow learning networks. The different results (from 12.7% to 18.49%) between Fw4
and the proposed framework in this paper confirm the high improvement in denoising
delicacy of LADT. The Fw5 results (from 13.15% to 8.32% as lower) demonstrate that the
wavelet-based vibration imaging to configure the wealth feature pool achieved a better
performance than using STFT. By comparative analysis, the applied framework in this
paper outperformed the defect type identification for an MDTF gearbox under variable
speeds condition in comparison with those state-of-the-art frameworks, yielding an average
classification performance of 100% during two scenarios.

To establish an accurate fault identification framework, an effective denoising tech-
nique for the complex gearbox vibration signals is critically needed. The disturbance
noises in the vibration signals make the subsequent processes of feature engineering and
classification less effective. Therefore, this paper combined LADT for highly effective
denoising, VWI for wealthy visual feature pool configuration, and DCNA for high dimen-
sional and automated feature extraction, feature-optimizing selection and classification,
and to draw the accurate and stable fault identification framework for an MDTF gearbox
under inconsistent speed conditions. Through analysis and experimentation, our proposed
methodology achieved the highest classification result, verifying the effectiveness of the
proposed model.

6. Conclusions

This paper proposed an accurate and stable fault diagnosis framework for multi-
degree tooth faults in the gearbox under variable speed conditions. The raw vibration
signal obtained from the gearbox contains fault-related information and background noises.
To obtain information related to multi-degree tooth faults from the vibration signal, the
proposed method preprocesses the raw vibration signal by using the newly developed
localized adaptive denoising technique. The localized adaptive denoising technique results
in optimized vibration sub-bands with reduced noise. To obtain fault-related information
in the form of a time–frequency scale image, a wavelet-based vibration imaging approach
is applied to the denoised vibration signal. Finally, these wavelet-based vibration images
are provided as an input to a deep convolutional neural network model for fault classifica-
tion. The deep convolutional neural network is specifically developed for fault diagnosis
purposes. To verify the effectiveness of the proposed method, the proposed method was
applied to two different datasets. The first dataset had a fixed speed; however, the second
dataset consisted of variable speed conditions. On both datasets, the proposed method
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outperformed the existing state-of-the-art methods with an average classification accuracy
of 100%. In the future, the goal is to apply the proposed fault diagnosis technique to the
fault diagnosis of complex rotating machinery, such as centrifugal pumps.
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