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Abstract: In this paper, a nine degree-of-freedom dynamic model of the ball screw feed system con-
sidering the contact nonlinearity between balls and raceways is established to analyze the vibration
characteristics. The position relationship between raceway centers for the ball screw and bearings
is determined by using the homogeneous coordinate transformation, and then the restoring force
functions along the axial and lateral directions are derived. The dynamic equations of the feed system
are solved by using Newmark method, and the proposed model is verified by the experimental
method. Furthermore, the effect of the excitation amplitude on the axial vibration of the feed system
is investigated by the frequency-amplitude curve and 3-D frequency spectrum. With the increase of
excitation amplitude, the dynamic response of the feed system exits the softening, hardening type
nonlinearity and jump phenomenon. Additionally, the effects of the initial contact angle, length of
screw shaft and number of loaded balls on the axial vibration of the feed system in the resonance
region are discussed. The results show that the dynamic model established in this paper is suitable
for improving the machining accuracy and stability of the ball screw feed system.

Keywords: feed system; raceway center; nonlinear dynamics; excitation amplitude; design parameters

1. Introduction

The ball screw is a transmission device that converts linear motion into rotary motion
or rotary motion into linear motion, and it has the advantages of high position accuracy,
load capacity and fatigue life [1–3]. The dynamic characteristic of the feed system is the key
factor to determine the machining accuracy of the workpiece and stability of the cutting
process [4,5], and the nonlinear contact relationship between balls and raceways leads to
the complexity and instability of the worktable vibration [6,7]. Therefore, the establishment
of a dynamic model of the feed system is of great significance to improve the machining
accuracy and stability.

The feed system contains many kinematic joints, and their contact load distribution
is an important factor to determine the static behavior and contributes to the dynamic
behaviors of the feed system. Assuming that the contact angles do not vary after loading,
Mei et al. [8] analyzed the effect of the ball errors on the load distribution of the ball screw.
Bertolaso et al. [9] studied the contact load of the ball screw by experimental and numerical
methods. Considering the axial and lateral deformations of the screw shaft, Lin et al. [10]
investigated the effect of the ball error and screw shaft offset on the load distribution
of the ball screw. Zhao et al. [11] and Zhen et al. [12] investigated the effects of the ball
dimension errors, axial and radial loads on the contact load and fatigue life of ball screws.
Liu et al. [13] established a static model of ball screws to analyze the effect of nut position
on the distribution of the contact force, contact angle and torsion angle. Due to the sliding
behavior between balls and grooves, the contact angles are greatly different at the contact
areas [14,15]. Wei et al. established a numerical model to investigate the lubrication [16],
transmission efficiency [17] and wear [18] for a preloaded ball screw system. Chen et al. [19]
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established the 5-DOF static model of a double-nut ball screw to investigate the contact
stiffness characteristics.

The dynamic characteristic of the feed system is significant for the machining accuracy
of the workpiece. Nguyen et al. [20] investigated the relationship between preload, work-
table displacement and screw-nut natural frequency for the feed system. Deng et al. [21]
improved the vibration behaviors of the whole machine tool based on the joint stiffness
configuration. Zhang et al. [22] investigated the effect of the screw shaft pre-stretching on
the natural frequency for the feed system. When the feed system is at high acceleration,
the contact stiffness of the kinematic joints may change. By using the lumped parameter
method, Zhang et al. [23] investigated the influence of acceleration on the vibration charac-
teristics for the feed system. Vicente et al. [24] established a high-frequency dynamic model
of the feed system by simulating screw shaft as a continuous subsystem. Zhang et al. [25]
established an equivalent dynamic model of a high-speed feed system to analyze the effect
of feed rates on the natural frequency. Considering the contact nonlinearity between ball
and raceways, Gu et al. [26] studied the dynamic behaviors of a single-nut ball screw feed
system. Xu et al. [27] proposed a lumped dynamic model by deriving the restoring force
function of the axial deformation for the feed system.

The vibrations of the feed system along different directions are coupled with each
other. By simulating the screw shaft as a Timoshenko beam, Okwudire et al. [28,29]
established a screw-nut interface stiffness model of ball screws considering the axial,
torsional and lateral deformations. Using the finite element method, Hung et al. [30]
analyzed the vibration behaviors and machining accuracy for the vertical milling system.
Zhang et al. [31] established a hybrid dynamic model of a ball screw spindle system to
analyze the rigid-flexible coupling vibration. Wang et al. [32] studied the coupling vibration
characteristics of the feed system considering the contact nonlinearity of kinematic joints.
Liu et al. [33] developed a five degree-of-freedom dynamic model of a worktable system
considering the displacement coupling and assembly errors. To suppress the worktable
vibration of the machine tool, Varanasi et al. [34] developed a dynamic model of a ball screw
considering the distributed inertia of the screw shaft to effectively control the structural
vibration. Gordon and Erkorkmaz [35] investigated the active vibration damping and
positioning control by using the pole-placement technique of the feed system. Wang
et al. [36] developed a hollow screw shaft structure with multiple tuned mass dampers to
suppress the lateral vibration of the ball screw.

In the past, the dynamic model of the ball screw feed system has been established
successfully. However, the influence of design parameters on the axial vibration of the
feed system in the resonance region is rarely discussed. Considering that the vibration
characteristics of the feed system are mainly affected by screw nut, screw shaft and ball
bearing, a novel nine degree-of-freedom dynamic model of the feed system is established in
this paper by deriving the restoring force functions of the screw nut and ball bearing along
the x, y and z directions. The effects of the excitation amplitude, initial contact angle, length
of screw shaft and number of loaded balls on the dynamic response of the feed system are
discussed. In addition, the dynamic behaviors of the feed system at the resonance points
are analyzed by the time history, spectrum, phase diagram and Poincaré section.

2. Dynamic Model of the Feed System

The ball screw feed system model is composed of a worktable, a nut, a screw shaft,
balls, two linear guides, two angular contact ball bearings and a deep groove ball bearing,
as shown in Figure 1. The global coordinate system CS0(x, y, z) is located at the geometric
center of the nut chassis, and the worktable (nut) is assumed to be located at the middle
position of the screw shaft. Under the action of cutting force, the worktable may move
along the x, y and z directions due to the deformations of the screw nut, screw shaft and
bearing. In this paper, we simplify the feed system as a spring mass model to analyze the
influences of the excitation amplitude and design parameters on the axial vibration of the
feed system.
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Figure 1. Structure of ball screw feed system.

2.1. Calculation of Restoring Force for Ball Screw

To deduce the restoring force function at the screw-nut interface, the position rela-
tionship of the raceway centers of the screw and nut needs to be described, and then the
transformation relationship between the different coordinate systems should be established.
As shown in Figure 2, the global coordinate system CS0(x, y, z) is fixed at the geometric
center of the nut chassis; the coordinate system CS1(x1, y1, z1) is located at the screw shaft
centerline corresponding to the ith ball center, and its axes are parallel to the CS0 axes;
the coordinate system CS2(x2, y2, z2) is located at the ith ball center, and its y2 axis is
perpendicular to the screw shaft centerline; the coordinate systems CSW(xW , yW , zW) and
CSS(xS, yS, zS) are located at the geometric centers of the worktable and the screw shaft for
the screw-nut interface, respectively, and their three axes are parallel to the CS0 axes. The
homogeneous coordinate transformation matrix T1−2 from CS1 to CS2 can be expressed as:

T1−2 = Trans(Rsnm cos θsni, Rsnm sin θsni, 0)·Rotz

(
θsni +

π

2

)
·Roty(−λ) (1)

where Rsnm is the pitch radius; θsni is the ith ball azimuth angle; λ is the pitch angle,
given as:

λ = tan−1
(

Lp

2πRsnm

)
(2)

where Lp is the lead of ball screw.
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2.1.1. Restoring Force for the Screw-Nut Left Section

The structure of a single nut ball screw with preload applied by variable lead is shown
in Figure 3. Considering that the ball contact force direction for the screw-nut left and right
sections is different, this leads to the different restoring force function for the screw-nut left
and right sections. Therefore, it is necessary to describe the position of the raceway centers
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in CS0, respectively. The position vectors (RLs, RLn) of the raceway centers corresponding
to the ith ball for the screw-nut left section in CS2 can be given by:

RLs =
[

0 −(Rs − Rb) cos αsn0 (Rs − Rb) sin αsn0 1
]T (3)

RLn =
[

0 (Rn − Rb) cos αsn0 −(Rn − Rb) sin αsn0 1
]T (4)

where Rs and Rn are the raceway radius of the screw and nut; Rb is the ball radius; αsn0 is
the initial contact angle.
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Combining Equations (1), (3) and (4), the coordinates of the raceway centers corre-
sponding to the ith ball for the screw-nut left section in CSS and CSW can be expressed as:[

XS
Lsi YS

Lsi ZS
Lsi 1

]T
= Trans(0, 0, LLbi)·T1−2·RLs (5)[

XW
Lni YW

Lni ZW
Lni 1

]T
= Trans(−HW , 0, LLbi)·T1−2·RLn (6)

where HW is the distance along the x-axis direction between the CSW ’s origin and the nut
centerline; LLbi is the displacement of the ith ball center for the screw-nut left section along
the z-axis direction in CSS (CSW), given by:

LLbi = − LD
2

+ (i − 1)∆L (7)

where LD is axial distance between the first ball and last ball; ∆L is the distance along the
z-axis direction between adjacent balls.

Considering that the center position of the nut raceway changes with the worktable
posture variation, this affects the functions of the screw-nut restoring force. We assumed
that at the geometric center of the worktable exists three translational displacements
(δWx, δWy, δWz) along xW , yW and zW axes under the action of excitation force. According
to the homogeneous coordinate transformation, the coordinates of the nut raceway center
in CS0 are: 

xW
Lni

yW
Lni

zW
Lni
1

= Trans(HW , 0, LOW)·Trans
(
δWx, δWy, δWz

)
XW

Lni
YW

Lni
ZW

Lni
1

 (8)

where LOW is the axial distance between CS0 and CSS (CSW).
Because the screw shaft at the screw-nut interface is short, we assumed that this

section of screw shaft is rigid. Similarly, the geometric center of screw shaft at the screw-
nut interface exits three translational displacements (δSNx, δSNy, δSNz) along xS, yS and zS
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directions caused by the axial and bending deformations of screw shaft. The coordinates of
the screw raceway center in CS0 are:

xS
Lsi

yS
Lsi

zS
Lsi
1

= Trans(0, 0, LOW)·Trans
(
δSNx, δSNy, δSNz

)
·


XS

Lsi
YS

Lsi
ZS

Lsi
1

 (9)

Combining Equations (8) and (9), the radial distance σLsni of raceway centers for the
screw-nut left section can be expressed as:

σLsni =
(

xS
Lsi − xW

Lni

)
cos θsni +

(
yS

Lsi − yW
Lni

)
sin θsni (10)

With the increase of excitation amplitudes, the ball may lose contact with the raceway,
which affects the nonlinear contact characteristics of the feed system. To judge whether
each ball is loaded or not, if δLsni ≤ 0, then the ith ball is not loaded, and the contact force
is QLsni = 0. If δLsni > 0, then the ith ball is loaded, and the contact force QLsni can be
obtained by using Hertz contact theory, given by:

QLsni =


(

δLsni+δsn0
Csi+Cni

)2/3
δLsni + δsn0 > 0

0 δLsni + δsn0 ≤ 0
(11)

where Csi and Cni are the Hertz contact constant of the screw and nut; δsn0 is contact
deformation under the preload; δLsni is contact deformation of ith ball for the screw-nut
left section, which is composed of the ball-screw contact deformation δLsi and the ball-nut
contact deformation δLni, given by:

δLsni = δLsi + δLni =

√
σ2

Lsni +
(
zW

Lni − zS
Lsi
)2 − A0 (12)

where A0 is the initial distance of raceway centers, given by:

A0 = Rs + Rn − 2Rb (13)

According to the position relationship of raceway centers in CS0, the contact angle
αLsni for the screw-nut left section can be expressed as:

αLsni = cos−1
(

σLsni
A0 + δLsni + δsn0

)
(14)

In order to calculate the restoring force for the screw-nut left section, the ball contact
force should be transformed into equivalent force. According to the homogeneous coordi-
nates transformation, the restoring forces of ball screws along the x, y and z directions can
be expressed by:

FLsnx =
Nb

∑
i=1

QLsni(cos θsni cos αLsni + sin αLsni sin θsni sin λ) (15)

FLsny =
Nb

∑
i=1

QLsni(cos αLsni sin θsni − sin αLsni cos θsni sin λ) (16)

FLsnz =
Nb

∑
i=1

QLsni sin θsni cos λ (17)

where Nb is the number of loaded balls.
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2.1.2. Restoring Force for the Screw-Nut Right Section

Similar to the restoring force calculation for the screw-nut left section method, the
position vectors of the raceway centers corresponding to the ith ball for the screw-nut right
section in CS2 can be given as:

RRs =
[

0 −(Rs − Rb) cos α0 −(Rs − Rb) sin αsn0 1
]T (18)

RRn =
[

0 (Rn − Rb) cos α0 (Rn − Rb) sin αsn0 1
]T (19)

The coordinates of the raceway centers for the screw-nut right section in CSS and CSW
can be expressed as:[

XS
Rsi YS

Rsi ZS
Rsi 1

]T
= Trans(0, 0, LRbi)·T1−2·RRs (20)[

XW
Rni YW

Rni ZW
Rni 1

]T
= Trans(−HW , 0, LRbi)·T1−2·RRn (21)

where LRbi is the displacement of the ith ball center for the screw-nut right section along
the z-axis direction in CSS(CSW), which can be expressed as:

LRbi =
LD
2

− (Nb − i)∆L (22)

By the homogeneous coordinate transformation, the coordinates of the raceway centers
for the screw-nut right section in CS0 can be expressed as:

xS
Rsi

yS
Rsi

zS
Rsi
1

= Trans(0, 0, LOW)·Trans
(
δSNx, δSNy, δSNz

)
·


XS

Rsi
YS

Rsi
ZS

Rsi
1

 (23)


xW

Rni
yW

Rni
zW

Rni
1

= Trans(HW , 0, LOW)·Trans
(
δWx, δWy, δWz

)
·


XW

Rni
YW

Rni
ZW

Rni
1

 (24)

According to the position relationship of raceway centers, the radial distance σRsni of
the raceway centers for the screw-nut right section can be expressed as:

σRsni =
(

xS
Rsi − xW

Rni

)
cos θsni +

(
yS

Rsi − yW
Rni

)
sin θsni (25)

Considering that the ball may lose contact with the raceway, the contact force QRsni
can be obtained by using the Hertz contact theory, given by:

QRsni =


(√

σ2
Rsni+(zW

Rni−zS
Rsi)

2−A0+δsn0
Csi+Cni

)2/3

δRsni + δsn0 > 0

0 δRsni + δsn0 ≤ 0

(26)

where δRsni is ith ball contact deformation for the screw-nut right section.
According to the position relationship of raceway centers, the contact angle αRsni for

the screw-nut right section can be expressed as:

αRsni = cos−1
(

σRsni
A0 + δRsni + δsn0

)
(27)
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By transforming the ball contact force into an equivalent force along the x, y and z
directions, the restoring forces for the screw-nut right section can be expressed as:

FRsnx =
Nb

∑
i=1

QRsni(cos αRsni cos θsni − sin αRsni sin θsni sin λ) (28)

FRsny =
Nb

∑
i=1

QRsni(cos αRsni sin θsni + sin αRsni cos θsni sin λ) (29)

FRsnz = −
Nb

∑
i=1

QRsni sin θsni cos λ (30)

2.2. Calculation of Restoring Force of Bearings

To calculate the restoring force of bearings, the position relationship of the raceway cen-
ters should be determined. The coordinate systems CSAb(xA, yA, zA) and CSDb(xD, yD, zD)
are established at the geometric centers of the two angular contact ball bearings and a deep
groove ball bearing, respectively, and their axes are parallel to those of CS0, as shown in
Figure 4.
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2.2.1. Restoring Force of Angular Contact Ball Bearing

The coordinates of the inner and outer raceway centers for the left angular contact ball
bearing in CSAb are:

xA
Lij

yA
Lij

zA
Lij
1

= Trans
(

RAm cos θbj + δSx, RAm sin θbj + δSy,−LLA + δSz
)
·Rotz

(
θbj +

π

2

)
·


0

−(Ri − Rbb) cos αb0
(Ri − Rbb) sin αb0

1

 (31)


xA

Loj
yA

Loj
zA

Loj
1

= Trans
(

RAm cos θbj, RAm sin θbj,−LLA
)
·Rotz

(
θbj +

π

2

)
·


0

(Ro − Rbb) cos αb0
−(Ro − Rbb) sin αb0

1

 (32)

where δSx, δSy and δSz are the displacement of the screw shaft along the x, y and z directions;
RAm is the pitch radius; Ri and Ro are the inner and outer raceway radius; Rbb is the ball
radius; αb0 and θbj are the initial contact angle and jth ball azimuth angle; LLA is the axial
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distance between the ball center and the CSAb’s origin for the left angular contact ball
bearing, respectively.

The coordinates of the raceway centers for the right angular contact ball bearing in
CSAb are:

xA
Rij

yA
Rij

zA
Rij
1

= Trans
(

RAm cos θbj + δSx, RAm sin θbj + δSy, LRA + δSz
)
·Rotz

(
θbj +

π

2

)
·


0

−(Ri − Rbb) cos αb0
−(Ri − Rbb) sin αb0

1

 (33)


xA

Roj
yA

Roj
zA

Roj
1

= Trans
(

RAm cos θbj, RAm sin θbj, LRA
)
·Rotz

(
θbj +

π

2

)
·


0

(Ro − Rbb) cos αb0
(Ro − Rbb) sin αb0

1

 (34)

where LRA is the axial distance between the ball center and the CSAb’s origin for the right
angular contact ball bearing, respectively.

According to Equations (31)–(34), the radial distances (σLAj,σRAj) of the raceway
centers for the left and right angular contact ball bearings are expressed by:

σLAj =
(

xA
Lij − xA

Loj

)
cos θbj +

(
yA

Lij − yA
Loj

)
sin θbj (35)

σRAj =
(

xA
Rij − xA

Roj

)
cos θbj +

(
yA

Rij − yA
Roj

)
sin θbj (36)

According to the position relationship of raceway centers in CSAb, the contact force
QLAj and contact angle αLAj for the left angular contact ball bearing can be obtained by
using the Hertz contact theory, given as:

QLAj =



√

σ2
LAj+

(
zA

Lij−zA
Loj

)2
−B0+δA0

CAij+CAoj

2/3

δLAj + δA0 > 0

0 δLAj + δA0 ≤ 0

(37)

αLAj = cos−1

(
σLAj

B0 + δLAj + δA0

)
(38)

where δA0 is contact deformation under the preload; δLAi is contact deformation between
the jth ball and the raceways for the left angular contact ball bearing; B0 is the initial
distance of the raceway centers; CAij and CAoj are the Hertz contact constant of the inner
and outer rings.

The contact force and contact angle for the right angular contact ball bearing can be
expressed as:

QRAj =



√

σ2
RAj+

(
zA

Rij−zA
Roj

)2
−B0+δA0

CAij+CAoj

2/3

δRAj + δA0 > 0

0 δRAj + δA0 ≤ 0

(39)

αRAj = cos−1

(
σRAj

B0 + δRAj + δA0

)
(40)

where δRAj is contact deformation between the jth ball and the raceways for the right
angular contact ball bearing.
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The restoring forces along the x, y and z directions for the left angular contact ball
bearing can be expressed as:

FLAx = −
Nbb

∑
j=1

QLAj cos θbj cos αLAj (41)

FLAy = −
Nbb

∑
j=1

QLAj sin θbj cos αLAj (42)

FLAz = −
Nbb

∑
j=1

QLAj sin αLAj (43)

The restoring forces along the x, y and z directions for the right angular contact ball
bearing can be expressed as:

FRAx = −
Nbb

∑
j=1

QRAj cos θbj cos αRAj (44)

FRAy = −
Nbb

∑
j=1

QRAj sin θbj cos αRAj (45)

FRAz =
Nbb

∑
j=1

QRAj sin αRAj (46)

2.2.2. Restoring Force of Deep Groove Ball Bearing

According to the homogeneous coordinate transformation, the coordinates of the
inner and outer raceway centers for the deep groove ball bearing in CSDb are expressed by:

xD
ij

yD
ij

zD
ij
1

= Trans
(

RDm cos θbj + δSx, RDm sin θbj + δSy, δSz
)
·Rotz

(
θbj +

π

2

)
·


0

−(Ri − Rbb)
−(Ri − Rbb)

1

 (47)


xD

oi
yD

oi
zD

oi
1

= Trans
(

RDm cos θbj, RDm sin θbj, 0
)
·Rotz

(
θbj +

π

2

)
·


0

(Ro − Rbb)
(Ro − Rbb)

1

 (48)

where RDm is the pitch radius of deep groove ball bearing.
Combining Equations (47) and (48), the radial distance σDj of raceway centers can be

expressed as:
σDj =

(
xD

ij − xD
oj

)
cos θbj +

(
yD

ij − yD
oj

)
sin θbj (49)

Considering that the ball may lose contact with the raceway and according to the Hertz
contact theory, the contact force QDj of the deep groove ball bearing can be expressed as:

QDj =


(

σDj−B0
CDij+CDoj

)2/3
σDj − B0 > 0

0 σDj − B0 ≤ 0
(50)

The restoring forces along the x and y directions for the deep groove ball bearing can
be expressed as:

FDx = −
Nbb

∑
j=1

QDj cos θbj (51)
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FDy = −
Nbb

∑
j=1

QDj sin θbj (52)

2.3. Stiffness of Screw Shaft

Under the influence of the screw-nut restoring force, the bending deformation of the
screw shaft for the worktable locating at middle position is shown in Figure 5. The bending
deformations of the screw shaft for the screw-nut interface can be expressed by: ωx = (FLsnx+FRsnx)(2−L)

6EI

(
4L2 − 2L2 − (2 − L)2

)
ωy =

(FLsny+FRsny)(2−L)
6EI

(
4L2 − 2L2 − (2 − L)2

) (53)

where E is the Young’s modulus; I is the product of inertia; L is the length of screw shaft.
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Figure 5. Bending deformation of screw shaft.

The axial deformation of screw shaft at the screw-nut interface is:

ωz =
(FLsnz + FRsnz)L

2EAs
(54)

Assuming that the worktable is located at the middle position of screw shaft, the screw
shaft stiffness can be obtained according to the force-displacement relationship of the Euler
Bernoulli beam, given by: 

kx = 48EI
L3

ky = 48EI
L3

kz =
2EAs

L

(55)

2.4. Dynamic Equations of Ball Screw System

The vibration characteristics of the feed system are affected by three harmonic forces
Fx sin(ωt), Fy sin(ωt) and Fz sin(ωt). In order to investigate the vibration characteristics
of the feed system, the dynamic model is simplified as a nine degrees-of-freedom mass-
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spring-damping model, as shown in Figure 6. The dynamic equations can be written
as follows:

mW
..
δWx + cx

( .
δWx −

.
δSNx

)
+ Fsnx = Fx sin(ωt)

kSx(δSNx − δSx) + cx

( .
δSNx −

.
δSx

)
= Fsnx + cx

( .
δWx −

.
δSNx

)
mS

..
δSx + 2cx

.
δSx + FAx + FDx = cx

( .
δSNx −

.
δSx

)
+ kSx(δSNx − δSx)

mW
..
δWy + cy

( .
δWy −

.
δSNy

)
+ Fsny = Fy sin(ωt)

kSy
(
δSNy − δSy

)
+ cy

( .
δSNy −

.
δSy

)
= Fsny + cy

( .
δWy −

.
δSNy

)
mS

..
δSy + 2cy

.
δSy + FAy + FDy = cy

( .
δSNy −

.
δSy

)
+ kSy

(
δSNy − δSy

)
mW

..
δWz + cz

( .
δWz −

.
δSNz

)
+ Fsnz = Fz sin(ωt)

kSz(δSNz − δSz) + cz

( .
δSNz −

.
δSz

)
= Fsnz + cz

( .
δWz −

.
δSNz

)
mS

..
δSz + cz

.
δSz + FAz = cz

( .
δSNz −

.
δSz

)
+ kSz(δSNz − δSz)

(56)

where δWx, δWy and δWz are the displacement of worktable along the x, y and z directions;
δSNx, δSNy and δSNz are the displacement along the x, y and z directions caused by the
bending deformation of screw shaft; δSx, δSy and δSz are the displacement of the screw shaft
along the x, y and z directions; mW and mS are the mass of the worktable and screw shaft,
respectively; kSx, kSy and kSz are the stiffness of screw shaft along the x, y and z directions;
Fsn and FA are the restoring force functions of the screw-nut interface and angular contact
ball bearing, respectively, which are given by Fsn = FLsn + FLsn, FA = FLA + FRA; cx, cy
and cz are the damping constants of the feed system, respectively, their damping ratio is
calculated by the half power bandwidth method. In this paper, the damping ratios along
the x, y and z directions are assumed to be ξx = ξy = 0.0434, ξz = 0.0483, respectively [32].
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3. Results and Discussion

According to the above analysis, the restoring force of the screw nut and bearings
are a time-varying piecewise nonlinear function due to the contact behaviors between the
ball and raceway, which leads to the nonlinear vibration behaviors of the feed system.
In this paper, the THK SBN4016 type of ball screws, NTN 7206B type of angular contact
ball bearing and NSK 6206Z type of deep groove ball bearing are selected to carry out
numerical simulation, and their main parameters are shown in Tables 1 and 2.
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Table 1. Specifications of ball screw.

Parameter Value

Ball diameter 7.14 mm
Initial contact angle 45◦

Length of screw shaft 1000 mm
Number of loaded balls 46

Shear modulus 206 GPa
Preload 300 N

Mass of screw shaft 10.6 kg
Pitch diameter 42 mm

Lead 16 mm
Circle of loaded balls 2.5

Mass of worktable 58 kg

Table 2. Specifications of bearing.

Parameter Value

Ball diameter 8.8 mm
Initial contact angle 40◦

Number of loaded balls 13
Shear modulus 206 GPa

Preload 290 N
Pitch diameter 23 mm
Poisson’s ratio 0.3

3.1. Experimental Verification

To verify the accuracy of the proposed dynamic model, the experimental model of the
feed system was established, as shown in Figure 7. The harmonic exciting force along the
z-axis direction is generated by using a modal shaker (JZK-50); a piezoelectric force sensor
(Sinocera CL-YD-331A) and acceleration sensor (Sinocera CA-YD-189) are used to measure
the excitation force and acceleration of the worktable along the z-axis direction (screw
shaft direction). The excitation amplitude and frequency acting on the worktable can be
adjusted by the signal generator (Sinocera YE1311). When the excitation amplitude and
frequency are fixed at 30 N and 270 Hz, the comparison of acceleration between theoretical
and experimental results is shown in Figure 8. It can be seen that the experimental result
is slightly larger than the proposed model result, which may be caused by the frame
deformation, but the error is within the acceptable range.
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3.2. Effects of Axial Excitation Amplitude on Axial Vibration of the Feed System

It is widely known that the axial vibration of the worktable is the key factor for
the machining accuracy and stability of the feed system. For axial excitation amplitudes
Fa = 1000 N, 2000 N and 3000 N, the amplitude-frequency curves of the axial vibration of
worktable with the excitation amplitude variation are shown in Figure 9. The amplitude-
frequency curves appear as softening type nonlinearity around the excitation frequency
ω = 500 rad/s. With the further increase of the excitation frequency, the vibration amplitude
increases obviously, and the hardening type nonlinearity and jump phenomenon appear
after the resonance frequency. In addition, the main resonance frequency moves to the high
frequency region and the region width of main resonance increases with the increase of
excitation amplitude.
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The 3-D frequency spectrum of the worktable vibration along the z direction for
Fa= 3000 N is shown in Figure 10, and it can be observed that the different frequency
components (3f, 5f et al.) appear in the low excitation frequency region. With the excitation
frequency increasing, the amplitudes of frequency components f and 3f increase and
the jump phenomenon appears near the excitation frequency ω = 1580 rad/s. To further
analyze the nonlinear characteristics of the feed system, the time histories, spectrums, phase
diagrams and Poincaré sections are investigated for Fa = 1000 N, 2000 N and 3000 N, as
shown in Figures 11–13. The vibration waves present periodicity; the frequency component
3f appears at ω = 500 rad/s and 1500 rad/s and disappears with the excitation frequency
increasing. In addition, the phase diagrams and Poincaré sections at ω = 500 rad/s,
1500 rad/s and 2000 rad/s are a closed circle and single point, and these illustrate that the
vibration responses of the feed system are periodic-1 motions.
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3.3. Effects of Design Parameters on Axial Vibration of the Feed System

The initial contact angle, length of screw shaft and number of loaded balls are the
main parameters in the design of the ball screw. According to Equations (17), (30) and
(55), the restoring force of the ball screws is a function of these parameters. Obviously, the
vibration characteristics of the feed system are influenced by these parameters.

When the axial excitation amplitude is fixed at 1000 N, the amplitude-frequency curves
of the worktable vibration with the initial contact angle variation (α0 = 30◦, 45◦, 60◦) are
shown are Figure 14. It can be seen that these curves almost coincide in the low and high
frequency regions, and the vibration amplitude of the worktable decreases slightly and
the main resonance frequency moves to the high frequency region with the initial contact
angle increasing. This may be that the initial contact angle increasing makes the increase
of axial internal force at the screw-nut interface, which leads to the increase of natural
frequency for the feed system. To analyze the influence of the initial contact angle on the
nonlinear vibration at the resonance point, the time histories, spectrum, phase diagrams
and Poincaré sections are investigated, as shown in Figure 15. With the initial contact
angle variation, the Phase diagrams and Poincaré sections are a circle and a single point,
respectively, and this shows that the vibration responses with the initial contact angle
variation are periodic-1 motions.
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With the length of screw shaft variation, the amplitude-frequency curves of the work-
table vibration for Fa = 1000 N are shown in Figure 16. The variation tendency of vibration
amplitude in the resonance region is opposite to that with the variation of initial contact
angle, and the stiffness of the screw shaft at the middle position decreases with the increase
of the length of screw shaft, leading to the main resonance frequency of vibration response
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moving to the low frequency region, and the axial displacement of the worktable increases.
The time history, spectrum, phase diagram and Poincaré section are investigated with the
length of screw shaft variation, as shown in Figure 17, and the excitation frequency at
resonance points increases equivalently with the increase of the length of screw shaft. The
difference of the adjacent frequencies is about 20 rad/s; the Phase diagrams and Poincaré
sections are a circle and a single point, respectively, and this shows that the vibration
responses with the length of screw shaft variation are periodic-1 motions.
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With the increase of the number of loaded balls, the amplitude-frequency curves of
the worktable vibration for Fa = 1000 N are shown in Figure 18. Similar to the amplitude-
frequency curves with the initial contact angle variation, the vibration amplitude of the
worktable decreases and the resonance frequency moves to the high frequency region
with the increase of the number of loaded balls. As shown in the Figure 19, the frequency
components f and 3f appear in the spectrum, and the phase diagrams and Poincaré sections
are a circle and a single point, respectively; this illustrates that the vibration responses with
the number of loaded balls variation are periodic-1 motions. From the analysis above, the
initial contact angle and the number of loaded balls have the same effects on the vibration
behaviors of the feed system, but opposite to that of the length of the screw shaft.
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4. Conclusions

In this study, a nine degree-of-freedom dynamic model of the feed system is estab-
lished by deriving the stiffness of the screw shaft and restoring the force functions of the
screw nut and bearings. The influence of the excitation amplitude and design parameters
on the axial vibration are analyzed. In addition, the effects of the initial contact angle,
length of screw shaft and number of loaded balls on the dynamic responses are discussed,
and the main conclusions may be summarized as follows:

(1) The nonlinear contact between balls and raceways for the ball screw and bearing is
the main factor leading to the nonlinear vibration of the feed system. With the excitation
amplitude increasing, the axial vibration of the feed system exits the softening, hardening
type nonlinearity and jump phenomenon in the amplitude-frequency curves.

(2) The length of the screw shaft is the main parameter affecting the axial vibration
characteristics of the feed system. With the increase of the length of screw shaft, the axial
stiffness of the feed system is decreased, resulting in the vibration amplitude increasing
and the main resonance frequency moving to the low frequency region.

(3) With the increase of the initial contact angle and number of loaded balls, the
axial stiffness increases and the axial vibration nonlinearity decreases for the feed system.
Therefore, increasing the initial contact angle and number of loaded balls will improve
the stability.

From the analysis above, the axial vibration of the feed system is affected by the
screw-nut, screw shaft and bearing, and has strong nonlinearity behavior in the resonance
region. Future work will aim to study the influence of excitation amplitude and assembly
error on the coupling vibration of the feed system.
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