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Abstract: With the current global trend of the wind turbines to be commissioned, the next generation
of state-of-the-art turbines will have a generating capacity of 20 MW with rotor diameters of 250 m
or larger. This systematic increase in rotor size is prompted by economies-of-scale factors, thereby
resulting in a continuously decreasing cost per kWh generated. However, such large rotors have
larger masses associated with them and necessitate studies in order to better understand their
dynamics. The present work regarding the aeroelastic behavior of stall-controlled rotors involves
the study of the frequency content and time evolution of their oscillatory behavior. A wide range
of experiments were conducted to assess the effects of rapid variations on the rotor’s operational
conditions. Various gust conditions were tested at different wind speeds, which are represented
by pulses of different intensities, occurring suddenly in an otherwise constant wind regime. This
allowed us to observe the pure aero-elasto-inertial dynamics of the rotor’s response. A reduced-
order characterization of the rotor’s dynamics as an oscillatory system was obtained on the basis of
energy-transfer principles. This is of fundamental interest for researchers and engineers working on
developing optimized control strategies for wind turbines. It allows for the critical elements of the
rotor’s dynamic behavior to be described as a reduced-order model that can be solved in real time,
an essential requirement for determining predictive control actions.

Keywords: wind turbine stall control; rotor aeroelastic response; turbulent wind fluctuations

1. Introduction

Renewable energy production, especially wind power, has been growing over time to
become an important source for providing for electricity and fuel demands. Technological
advances have made wind the fastest-growing renewable energy technology in electricity
generation systems. Following the current global trend of the wind turbines to be commis-
sioned and the studies conducted by the European Wind Energy Association (EWEA), the
next generation of state-of-the-art turbines will have a generating capacity of 20 MW with
rotor diameters of 250 m or larger [1]. This systematic increase in rotor size is prompted by
economies-of-scale factors, thereby resulting in a continuously decreasing cost per kWh
generated. However, such large rotors have larger masses associated with them and ne-
cessitate studies in order to better understand their dynamics. This has led to numerous
efforts on the development of suitable control approaches [2–5]. Bianchi et al. [6] provided
details on some common load control methodologies. Among the ones that have been
studied and implemented in the context of utility-scale wind turbines are stall control [7],
pitch control [8], active stall control [9], and passive control using aeroelastic devices [10].

In all cases, wind turbine control systems have to deal with the challenges of an
intermittent and difficult-to-predict source of energy. Wind, by its very nature, varies with
place and time, making energy conversion difficult. This calls for the development of
improved technologies that efficiently harness energy from the available wind resources,
and advanced control systems are a key research aspect of wind turbine technology [11].
Such systems are needed to maximize the output power at low wind speeds, limit rotor
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power at wind speeds above the nominal value, and reduce fluctuating loads on the turbine
blades that may compromise their long-term operational life [12]. That is, the basic objective
is to maximize the rotor’s power production for wind speeds below the nominal level
and limit it for wind speeds above the nominal level, keeping it as close as possible to the
nominal power of the drive train in order to avoid exceeding the nominal power of the
shafts, bearings, gear box, generators, and power electronics.

Among the several families of control methods mentioned above, pitch and stall
control have been by far the most commonly used in modern utility-scale machines. Both
are based on altering the aerodynamic characteristics of the blade sections in order to
control the forces that produce the rotor’s torque, power, thrust, and deformation. By
rotating the blades around their root, pitch-control systems allow us to smoothly change
the aerodynamic forces acting on the blade by altering the angle of attack on the airfoil
blade sections. By changing the tangential projection of the aerodynamic force (which is
the one contributing to the driving torque), pitch systems can smoothly control the rotor’s
output power. In stall-control turbines, the blades are rigidly attached to the hub. Thus,
the setting angle of every airfoil section along the blade span is fixed.

In the classic fixed-speed stall-control method, the rotational speed of the rotor is kept
constant at its nominal value, and the geometry of the blades is designed in such a way
that, as the wind speed increases above the nominal value, the angle of attack of the flow
incoming onto the blade’s airfoil sections increases, and a larger portion of the blade span
enters into stall. The stall condition is characterized by the separation of the boundary
layer on the rear-upper surface of an airfoil section at high angles of attack. Separation
disrupts the flow circulation and alters the pressure distribution, drastically reducing lift
and increasing drag. The overall result is that the portions of the blade span that enter into
stall stop contributing to the driving torque, limiting the rotor’s power production. The
stall transition is not intended to occur simultaneously all over the span. The method works
by gradually changing the portions of the blade span that are in the stall or attached regime.
Stall starts at the inner portions of the blade and close to the root, and then progresses
towards the tip.

With the stall method, the elimination of the pitch mechanism lowers the capital
cost and reduces maintenance expenses. The elimination of the pitching mechanism is
particularly important when considering the systematic increase in turbine size that has
been taking place over the last 30 years. This process, sometimes referred to as upscaling,
is prompted by economies of scale, which reduce the cost of energy production, and this
is likely to continue in the future. One of the consequences of upscaling is the substantial
increase in the blade mass per unit energy produced, as the blade mass depends on the
cube of the rotor’s diameter, while the energy captured depends on the rotor’s swept area
(i.e., the diameter’s square). In addition to the aspect of the construction and material costs,
this so-called "square–cube law" implies that the size and cost of the pitching mechanisms
(and the energy required for their actuation) would increase much faster than the increase
in the energy produced as the turbine size increases. Thus, the elimination of the pitch
mechanisms by adopting some form of stall control would represent a big advantage for
the next generation of high-capacity wind turbines with much larger blades [13].

Our current research consists of the investigation of the aeroelastic behavior of a
stall-controlled rotor by involving the study of the frequency content and time evolution of
the oscillatory behavior in order to gain a better understanding of the underlying physics.
To this end, we conducted a wide range of experiments to assess the effects of rapid
variations on the rotor’s operational conditions, such as gusts and turbulent fluctuations
in the wind flow. To systematize this analysis, various gust conditions were tested for
different wind speeds. These were represented by pulses of different intensity, occurring
suddenly in an otherwise constant wind regime. This allowed us to observe the pure
aero-elasto-inertial dynamics of the rotor’s response. We then focused on obtaining a
reduced-order characterization of the rotor’s dynamics as an oscillatory system based on
energy-transfer principles. In addition to its intrinsic scientific value, this aspect of the
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work presented here is of fundamental interest for researchers and engineers working
on developing optimized control strategies for wind turbines. It allows for the critical
elements of a rotor’s dynamic behavior to be described as a reduced-order model that can
be solved in real time, an essential requirement for determining predictive control actions.

2. The Numerical Model

In this section, we shall provide a brief description of a novel member of the BEM
model family used in our research, which is called the Dynamic Rotor Deformation–
Blade Element Momentum model (DRD-BEM) and was introduced in Ponta et al. [14].
This model accounts for the aerodynamic effects of the misalignments at every blade
section. This is achieved by transforming the velocity and force vectors across different
coordinate systems—from the coordinate system of the free-stream wind to the coordinate
system of the blade section. These coordinate transformations are performed with a set of
orthogonal matrices that account for all forms of misalignments at each instance. These
include misalignments brought about by blade deformation, mechanical inputs such as
pitching and yawing, or even pre-conformed misalignments, such as pre-bending of the
original blade.

The DRD-BEM is coupled with an advanced technique used to simulate the structural
response of the blade that is based on the Generalized Timoshenko Beam Model (GTBM).
The GTBM, a dimensional reduction method, has the same parameters as the traditional
Timoshenko model and can work for complex beams that may have twisted or curved
shapes. In this model, originally introduced by Prof. Hodges [15,16], the beam section does
not remain planar after deformation, and a 2-D finite element mesh is used to interpolate
the warping of the deformed section. A mathematical formulation is then used to write
the 3-D strain energy in terms of the classical variables of the 1-D Timoshenko model. The
complexities of the 3-D model and geometry of the blades are reduced into a stiffness matrix
for the corresponding 1-D beam. This 1-D beam can then be solved along a reference line
representing the beam’s axis on the original configuration, and it can curve in any direction
after deformation. A new coordinate system is introduced to represent the dynamic and
kinematic variables along the reference line. This system follows the blade deformation into
the instantaneous configuration. The blade sections in the chord-normal, chord-wise, and
span-wise directions stay aligned with the intrinsic system. Therefore, accurate position
tracking can be achieved by using this technique, even in cases of large displacements or
rotations of the blade section. The GTBM technique uses a fully populated 6 × 6 stiffness
matrix instead of only six stiffness coefficients, as in the classical Timoshenko theory, which
gives it the capacity to represent the effects of coupled modes of deformation, such as
bend–twist. More details about our implementation of the GTBM and its coupling with
DRD-BEM can be found in Otero and Ponta [17] and Ponta et al. [14].

The inertia properties are also dimensionally reduced to produce a 6 × 6 inertia matrix
for the equivalent beam along the reference line L. This inertia matrix contains the moments
of inertia of both first and second order for blade sections along the span. These are acquired
from a 2-D integration that operates over the area of each blade section and also considers
the distribution of material properties and the details of the blade section’s shape. These
matrices operate on the linear and angular velocities, which give the linear and angular
momentum of the vibrational motion, as well as the inertia forces and moments associated
with them. We can also calculate the inertia forces of the rotation of the main shaft and of
mechanisms such as pitch and yaw. Therefore, all parameters, such as the angular, linear,
centrifugal, and acceleration effects, are taken into account in a full 3-D representation.

The aforementioned interaction of structural and aerodynamic modules can maximize
the capabilities of this advanced model. The equations of motion of the equivalent beam
modeled as a 1-D finite element problem are solved by means of a non-linear adaptive
ODE algorithm. Moreover, the ODE algorithm used to integrate the structural and aero-
dynamics module can easily be extended to include other modules in order to simulate
the response of control systems, electro-mechanical devices, etc. This type of solver checks
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the solution by tracking the truncation error at each time step. The control system can be
modeled by adding differential equations to the general ODE algorithm. This nonlinear
adaptive ODE algorithm, which is used as a “common framework”, can be extremely
useful as a way to integrate the solutions of all multi-physics aspects of the problem. A
flowchart of the scheme demonstrating the interaction between the different modules
can be seen in Ponta et al. [14]. This modular design of a multi-physics model, which is
called the Common ODE Framework (CODEF), can help to simplify code development by
independently improving each sub-model. Therefore, analyses of the aeroelastic problem
and innovative control strategies that include mechanical and electrical aspects can be
performed simultaneously by using an integral and computationally efficient solution
through a self-adaptive algorithm.

A detailed description of the implementation of the DRD-BEM model can be found
in Ponta et al. [14] and the references therein. Menon and Ponta [18] reported results
of the application of the DRD-BEM to the analysis of the aeroelastic dynamics of rotors
undergoing rapid pitch-control actions, and Otero and Ponta [19] used the model to
analyze the effects of blade section misalignment on cyclic loads on a rotor. Ponta et al. [14]
and Otero and Ponta [17] presented the details of the structural model. Additionally,
Ponta et al. [14] also included results of the DRD-BEM model when applied to the analysis
of vibrational modes of composite laminated wind turbine blades together with validation
results against the works of Jonkman et al. [20] and Xudong et al. [21].

3. Reduced-Order Characterization of the Aero-Structural Interaction
3.1. Objectives and Methodology

Following a limited set of preliminary experiments reported in Jalal et al. [22], we
conducted an extensive series of experiments on the aero-elasto-inertial response of wind
turbine rotors by using Delft University’s stall-control rotor (see Jaimes [23]), an alternative
to the NREL-5MW-RWT benchmark turbine. The DU-5MW stall RWT has a nominal wind
speed of 15.3 m/s and a nominal rotational speed of 10.7 rpm. By studying the time
evolution of the rotor’s oscillatory behavior when stimulated by pulses in the wind of
controlled amplitude and time span (see Figure 1), we gained a deeper understanding of
the underlying physics. We also obtained a reduced-order characterization of the rotor as
an oscillatory system based on the principle of energy transfer between the kinetic energy
of the wind-speed pulse and the elasto-inertial energy accumulated in the rotor. These
wind pulses are mounted on top of a uniform stream inflow of different constant speeds
covering the entire operational regime of the turbine from 5 to 25 m/s. The resultant study
provides extremely valuable information to the wind power control community in order
to produce Reduced-Order Models (ROMs) that could be solved in real time to develop
predictive control strategies.
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Figure 1. An example of a wind-speed pulse stimulus of controlled amplitude and time span.
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3.2. Wind-Speed Stability Threshold and the Role of Aerodynamic Damping

For wind speeds between 5–16.5 m/s, we found that the dynamic oscillatory response
of the rotor remains stable. The kinetic energy of the wind pulse initiates oscillations, and
those oscillations become damped by the system, creating a decay in the oscillatory signal
(which is observable in the time evolution of the axial component of the blade deflection
depicted in Figures 2 and 3). Here, Uhx represents the instantaneous axial deflection of the
blade about its equilibrium value corresponding to the deformation state induced by a
certain constant W∞.
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Figure 2. Examples of the time evolution of the axial component of the blade deflection at wind
speeds (a) below and (b) above the wind speed stability threshold.

Above 17 m/s, the rotor, as an oscillatory system, no longer damps the oscillations, but
amplifies them, feeding on the energy from the wind flow. After the pulse has passed, the
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oscillations continue expanding exponentially until a second damping mechanism starts
to act, slowing the growth and reaching an equilibrium where the oscillation amplitude
becomes stable and self-sustained.

As we will see in detail in the following, this change in behavior from stable to unstable
oscillatory regimes is associated with a change in sign of the aerodynamic damping. This
depends exclusively on the mean value of the wind speed.

Between the stable and unstable regimes, there is a narrow range of wind speeds that
exhibit the classical signs of a transitional behavior where attenuation and amplification
may occur. Here, we see two examples (even though several variations are possible).
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Figure 3. Examples of the time evolution of the axial component of the blade deflection at wind
speeds on the narrow range of the transitional regime. (a) lower end of the transitional range, and (b)
higher end of the transitional range.
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For wind speeds that are early on in the transitional regime (Figure 3a), the system
starts damping the oscillations, but they are not completely dissipated, and some residual
“bands” of oscillation remain. Further, at higher wind speeds in this regime (Figure 3b),
expansion occurs, followed by a brief stabilization, and then the oscillations decay. The
same manifestation of sustained residual oscillations is present in the long term.

This regime is characterized by a very rich combination of frequencies whose ampli-
tudes evolve in time in a very complex manner.

3.3. Characterization of Pulses Representing Typical Atmospheric Flow Oscillations

Our objective was to identify and quantify pulses with a characteristic time span
and amplitude that represent typical oscillations in wind speed in a statistical sense. We
collected samples of anemometry data from different sources and classified them in an am-
plitude versus characteristic time span chart (see Figure 4). We found three distinguishable
regions in this chart, which are indicated by encircling elliptical dashed lines.
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Figure 4. Amplitude versus characteristic time span chart for typical oscillations in wind speed.

1. Short pulses (associated with wind flow turbulence): These are characterized by pulses
that are short enough that they end before the first peak in the blade oscillation occurs.
After a very short initial time when the blades start displacing and accumulating
energy by their own inertia, they deflect to a maximum, and the kinetic energy content
of the wind pulse is accumulated as blade elastic deformation. The energy transfer
and subsequent evolution can be characterized only by measuring the instantaneous
blade deflection.

2. Pulse-duration transitional zone: This is characterized by pulses that are long enough
that energy dissipation by aerodynamic damping occurs during the duration of the
pulse itself (i.e., only part of the pulse energy goes into elastic energy). Energy transfer
and evolution can no longer be characterized only by measuring blade deflection.

3. Long pulses: These are characterized by pulses that are long enough that they act as
gradual variations in the kinetic energy of the flow that are absorbed by the rotor,
inducing very small (or even negligible) oscillations.
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4. Energy-Transfer Characterization of the Pulse (Stable Oscillatory Regime)

The axial displacement of the blade Uhx (depicted in Figure 5a for a wind-speed
regime of 8 m/s) reflects the main component of the instantaneous amount of elastic energy
stored in the rotor as an oscillatory system. We used it as an observable to construct a
reduced-order characterization of the complex nonlinear oscillatory behaviors in terms of
only one degree of freedom. We conducted this experiment for a wide variation of pulses
in the short-duration zone, as in the classification chart shown in Figure 4, by combining
different values of pulse amplitude and pulse time span. Figure 6 shows the code of the
colors and markers used to identify the results for the pulses that combined different values
of amplitude and time span.

0 2 4 6 8 10 12

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

2 3 4 5 6 7 8 9

-5.0

-2.5

0.0

2.5

5.0
10

-3

0.02

0.04

0.02

0.04

 [
m

] 

time [s] 

= 8 m/s 

(a)

0 2 4 6 8 10 12

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
10

-6

 [
] 

time [s] 

2 3 4 5 6 7 8 9

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0
10

-7

(b)

Figure 5. (a) Time evolution of the axial displacement of the blade at a wind-speed regime of 8 m/s for pulses that combine
different values of amplitude and time span. (b) The same curves normalized by the kinetic energy content of their
respective pulses.



Appl. Sci. 2021, 11, 6886 9 of 24

W

tpls

Figure 6. Code of colors and markers used to identify the results for pulses that combine different values of amplitude and
time span.

When normalized by the kinetic energy content of the pulses, as shown in Figure 5b,
all of the displacement curves collapse into a unique signal, which scales as the time
evolution of the rotor’s elastic vibrational energy. This has the units of an equivalent
flexibility, N−1, or the inverse of a stiffness 1/Kel .

We repeated the same experiment for several wind speed conditions that covered
the entire stable regime and found the same systematic behavior. For example, Figure 7
shows the results of the kinetic energy normalization for a wind speed of 12 m/s, and
Figure 8 shows the results for a wind speed of 16 m/s. The value of the equivalent stiffness
mentioned above, Kel , which serves as a scaling factor for the rotor’s elastic vibrational
energy, depends exclusively on the mean wind speed. This is consistent with the average
deflection of the blades around which the oscillations occur. The higher the mean wind
speed is, the higher the value of this “pre-stiffening” will be.
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Figure 7. Cont.
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Figure 7. (a) Time evolution of the axial displacement of the blade at a wind-speed regime of 12 m/s for pulses that
combine different values of amplitude and time span. (b) The same curves normalized by the kinetic energy content of their
respective pulses.
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Figure 8. (a) Time evolution of the axial displacement of the blade at a wind-speed regime of 16 m/s for pulses that
combine different values of amplitude and time span. (b) The same curves normalized by the kinetic energy content of their
respective pulses.

Frequency Content in the Stable Oscillatory Regime

In analyzing the frequency content in the stable regime, we found the appearance of
five frequencies (only three of them were dominant), which showed different proportional
contributions in four different subranges along the stable wind-speed range.

Figure 9 shows the spectra for the first subrange, which extends from 5 to 8 m/s, where
only the first two frequencies (0.87 and 1.2 Hz) are dominant. The upper panel shows the
frequency content along the time evolution (i.e., until oscillations are totally dissipated),
where the 0.87 Hz frequency dominates, with a relatively small contribution of the 1.2 Hz
frequency. The lower panel shows the spectrum for the long-term part of the same time
signals. The 0.87 Hz frequency rapidly decays, while the 1.2 Hz component—even though
it is smaller in the beginning—persists longer. In the long term, there is also a minimal
contribution of the non-dominant 4.2 Hz frequency.

Figure 10 shows the spectra for the second subrange, which extends from 9 to 10 m/s.
In this subrange, the 0.87 Hz frequency is dominant in the early stages, but the contribution
of the 1.2 Hz frequency becomes more prominent. The long-term spectra for the same
signals only show the 1.2 Hz component, which persists even longer than in the first
subrange. Again, there is also a minimal contribution of the non-dominant 4.2 Hz frequency.

Figure 11 shows the spectra for the third subrange, which extends from 12.5 to
12.5 m/s. This subrange shows a much richer combination of the five frequencies ob-
served, with three of them being dominant. Even though the 4.2 and 5.14 Hz components
take a long time to decay, they are still not dominant. As before, the 0.87 Hz frequency
is the most prominent, but the relative contribution of the 1.2 Hz component increases
even more compared with the previous subranges. The most remarkable feature of this
subrange is the emergence of a third dominant frequency of 2.4 Hz, which is particularly
intense at 11 m/s. The 2.4 Hz frequency is only observed as a dominant component in this
subrange specifically.
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(a)

(b)

Figure 9. Frequency spectra for the first subrange along the stable regime. (a) Complete time
evolution. (b) Long-term evolution.



Appl. Sci. 2021, 11, 6886 13 of 24

(a)

(b)

Figure 10. Frequency spectra for the second subrange along the stable regime. (a) Complete time
evolution. (b) Long-term evolution.
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Figure 11. Frequency spectra for the third subrange along the stable regime. (a) Complete time
evolution. (b) Long-term evolution.

Figure 12 shows the spectra for the fourth and last subrange, which extends from 13
to 16 m/s, where the contribution is again mostly centered around the 0.87 Hz frequency,
with a stronger presence of the 1.2 Hz component. An important distinctive feature is
the presence of the 0.87 Hz frequency in the long-term spectra, which indicates a longer
persistence (thus, a lower exponential decay) for this component. This ever-lower expo-
nential decay of the 0.87 Hz component leads to the end of the stable regime, where the
exponential decay approaches zero and then becomes negative. Thus, the aerodynamic
damping turns into exponential expansion. In this subrange, the contributions of the other
three frequencies become minimal.
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(a)

(b)

Figure 12. Frequency spectra for the fourth subrange along the stable regime. (a) Complete time
evolution. (b): Long-term evolution.

When analyzing the semi-log plots of the oscillating signals, it becomes clear that their
time evolution is characterized by an exponential enveloping curve, which is manifested as
a linear relation when plotted in semi-log axes. Figure 13 shows three examples of semi-log
plots of the time evolution of the normalized blade deflection at selected wind speeds in
different subranges of the stable regime. In all of the panels, the short-term evolution, in
which the 0.87 Hz frequency dominates, shows a greater exponential decay, λ1, given by
the slope of the red line. However, the lower exponential decay associated with the 1.2 Hz
frequency, λ2, becomes dominant in the long term. In the middle panel, we can see the
contribution of the 2.4 Hz frequency overlapping with the 0.87 and 1.2 Hz components.
By applying a bandpass filter to each one of the dominant components, the values of their
corresponding exponential decays can be measured.
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Figure 13. Semi-log plots of the time evolution of the normalized blade deflection at selected wind
speeds in different subranges of the stable regime.

Figure 14 shows the variation of the exponential decay of the aerodynamic damping
for the complete range of wind speeds in the stable oscillatory regime. The exponential
decay associated with the 0.87 Hz frequency (λ1) shows a clear connection with the four
different subranges associated with the frequency content that we have seen before.

Figure 14. Variation of the exponential decay of the aerodynamic damping for the complete range of
wind speeds in the stable oscillatory regime.

The 1.2 Hz frequency shows an exponential decay that is much lower. Even though it
has a lower amplitude in the mix of frequencies, it persists for a longer time, and that is the
reason for why it is more prominent in the long-term spectra.

The 2.4 Hz frequency only appears in the third subrange, and it shows a sudden
decrease in its exponential decay located at 11 m/s, which makes that component persist
for a longer time. It returns to a higher dissipation rate at wind speeds of 12 m/s.

Figure 13. Semi-log plots of the time evolution of the normalized blade deflection at selected wind speeds in different
subranges of the stable regime. The red and blue lines indicate the enveloping curves for the decaying components of the
signal associated with the first (0.88 Hz) and second (1.2 Hz) frequencies respectively.

Figure 14 shows the variation of the exponential decay of the aerodynamic damping
for the complete range of wind speeds in the stable oscillatory regime. The exponential
decay associated with the 0.87 Hz frequency (λ1) shows a clear connection with the four
different subranges associated with the frequency content that we have seen before.

Figure 14. Variation of the exponential decay of the aerodynamic damping for the complete range of wind speeds in the
stable oscillatory regime.
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The 1.2 Hz frequency shows an exponential decay that is much lower. Even though it
has a lower amplitude in the mix of frequencies, it persists for a longer time, and that is the
reason for why it is more prominent in the long-term spectra.

The 2.4 Hz frequency only appears in the third subrange, and it shows a sudden
decrease in its exponential decay located at 11 m/s, which makes that component persist
for a longer time. It returns to a higher dissipation rate at wind speeds of 12 m/s.

5. Energy-Transfer Characterization of the Pulse (Unstable Oscillatory Regime)

In the unstable regime, λ1 becomes negative (that is, the attenuation of the aerody-
namic damping becomes an amplification of the oscillatory amplitude), producing an initial
exponential expansion that will be studied in detail in Section 5.1. The initial expansion
continues until the axial displacement reaches a certain level. From then on, a second
damping mechanism emerges that competes with the existing λ1 amplification associated
with the first mechanism. This evolution then starts to depart from the exponential behavior
until the amount of energy extracted from the flow by the first mechanism is equivalent to
that dissipated by the second. At that point, the oscillation levels out at a fixed amplitude.
This effect shall be discussed in Section 5.2.

As in the stable regime, the axial displacement of the blade Uhx around the equilibrium
position (depicted in the upper panel in Figure 15 for a wind-speed regime of 18 m/s)
reflects the main component of the instantaneous amount of elastic energy stored in the
rotor as an oscillatory system. The time evolution of the blade deflection shows the same
qualitative behavior for all of the wind speeds in this regime (17.5 to 25 m/s), but with
different values of the initial exponential expansion. As in the stable regime, λ1 depends
exclusively on the mean wind speed.

The effect of the kinetic energy content of different pulses manifests as a delay in time,
and all of the curves for a certain wind speed can be collapsed into one, as shown in the
lower panel of Figure 15. That is, the pulse energy provides an initial threshold in the
oscillation curve, and from then on, the oscillations continue feeding upon the energy of
the mean flow. The delay time could be directly associated with the time required for the
exponential expansion to build up the same amount of energy contained in their respective
pulses by extracting it from the mean flow.

Figure 16 shows semi-log plots of the same time evolutions of the blade deflection
previously shown in Figure 15. The initial expansion is exponential, which can be observed
clearly in the linear shape of the initial enveloping curve in the semi-log plot. The en-
veloping curves of all of the pulses for the same mean wind speed show the same initial
exponential coefficient λ1, which becomes clear in the collapse of the curves for all of the
pulses shown in the lower panel of Figure 16.

As mentioned before, all of the curves can be collapsed into one by shifting them by
a certain delay time, td, which is associated with the time required for the exponential
expansion to build up the same amount of energy contained in the respective pulse. As
depicted in Figure 17, we took the curve for the pulse with the lowest energy (which is the
pulse with the longest build-up) as a a time reference.
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Figure 15. (a) Time evolution of the axial displacement of the blade at a wind-speed regime of 18 m/s for pulses combining
different values of amplitude and time span. (b) The same curves, but delayed in time for the exponential expansion to
build up the same amount of energy contained in their respective pulses.
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(a)

(b)

Figure 16. (a) Time evolution of the axial displacement of the blade at a wind-speed regime of 18 m/s for pulses combining
different values of amplitude and time span. (b) The same curves, but delayed in time for the exponential expansion to
build up the same amount of energy contained in their respective pulses. The red and blue lines indicate respectively the
enveloping curves for the exponential component and maximum amplitudes of the different signals.



Appl. Sci. 2021, 11, 6886 20 of 24

0 20 40 60 80 100
10

-6

10
-4

10
-2

10
0

10
2

 [
m

] 

60
time [s] 

 

 

= 18 m/s 

Figure 17. Time delay for each pulse, taking the curve for the pulse with the lowest energy as a time reference. The red lines
indicate the enveloping curves for the exponential component of the different signals.

Then, the value of td for each pulse can be directly computed by using the parameters
obtained by fitting each pulse’s exponential curve. Equations (1) through (5) show the
evaluation of td by equating the exponential expression for each individual pulse with
the exponential expression for the reference pulse (that is, collapsing the curves for all of
the pulses).

Uh = A0e−λ1(tre f −td) (1)

Uhre f
= A0re f e−λ1tre f (2)

A0re f e−λ1tre f = A0e−λ1(tre f −td) (3)

A0re f

A0
=

e(−λ1tre f +λ1td)

e−λ1tre f
(4)

td =
1

λ1
Ln

(
A0re f

A0

)
(5)

5.1. Validation for the Unstable Regime of the Hypothesis Connecting the Time Delay and the
Kinetic Energy Content of the Pulse

In order to validate the hypothesis that the time delay, td, is indeed associated with
the time required for the exponential expansion to build up the same amount of energy
contained in the respective pulse, we analyzed the relationship between two parameters:
pulse kinetic energy and time delay. In this derivation, we also validate the hypothesis
that the energy-transfer mechanism is exactly the same as in the stable regime, but with a
negative value of λ1, i.e., an amplification instead of attenuation of the oscillatory blade
deflection. We shall start by combining Equations (1) and (2):

Uh = A0e−λ1(tre f −td) = A0e−λ1tre f e−λ1td = Uhre f
e−λ1td (6)
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Uh
Uhre f

= eλ1td (7)

From the findings about the energy-transfer mechanism in the previous section, we
have that, when normalized by the kinetic energy of the pulse, the blade displacement
curves collapse into a unique signal, which scales with the time evolution of the rotor’s
elastic vibrational energy. This has the units of flexibility or the inverse of stiffness 1/Kel ,
which depends exclusively on the mean value of the wind speed. Hence, for all of the
pulses occurring at the same wind speed, we have:

Uh
PulsEner

= 1/Kel =
Uhre f

PulsEnerre f
(8)

PulsEner
PulsEnerre f

=
Uhre f

Uh
(9)

Equating expressions (7) and (9), we finally obtain:

PulsEner
PulsEnerre f

= e(λ1td) (10)

Ln

(
PulsEner

PulsEnerre f

)
= λ1td (11)

According to Equation (11), if the mechanism of energy transfer found earlier for
the stable regime also holds for the unstable regime, the logarithm of the ratio between
the kinetic energy of any pulse versus the energy of the reference pulse occurring at the
same mean wind speed must show a linear relationship with the corresponding time delay
for that same pulse, and the slope of that linear relation must be the value of λ1 at that
wind speed.

Figure 18 shows a plot of the logarithm of the kinetic energy ratio in Equation (11)
versus the time delay for wind speeds covering the entire unstable regime. It can be seen
that the values for all of the pulses show a very clear alignment with a linear relation,
and least-squares fitting gives a value of λ1 for each wind speed, which is in very close
agreement with the values obtained by the fitting of λ1 in the exponential expansion stage
of Uhx from the semi-log plots. Figure 19 shows a plot of λ1 obtained with these two
methods for the complete range of wind speeds in the unstable oscillatory regime.

The coincidence of the value of λ1 obtained from these two different methods—one
measuring the expansion as it progresses in time, and the other evaluating the time that
would have been taken for the same expansion to build the same energy delivered by the
pulse—proves that the time delay, td, is indeed associated with the time required for the
exponential expansion to build up the same amount of energy contained in the respective
pulse. This also validates the hypothesis that the energy-transfer mechanism is exactly the
same as in the stable regime.

5.2. Stabilization of the Oscillatory Amplitude of the Unstable Regime

As mentioned before, the amplitude of the Uhx oscillations shows evidence of the
presence of a second dissipative mechanism that acts in parallel with the one associated with
(the now amplifying) λ1. This second dissipative mechanism also seems to be aeroelastic
in nature, and it starts acting when the amplitude reaches a certain threshold that depends
exclusively on the value of the uniform-stream wind speed, regardless of the nature of the
pulse that triggered the oscillations in the first place.

In the same manner, there is another threshold in the amplitude value at which the
rate of energy dissipation associated with the second aeroelastic mechanism equates the
rate of energy influx from the first physical mechanism associated with λ1 in such a manner
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that the oscillation amplitude levels out into a constant value. This stabilization threshold
also depends exclusively on the wind speed.

Figure 18. Logarithm of the kinetic energy ratio for different pulses occurring at the same mean wind
speed versus the pulse time delay for wind speeds covering the entire unstable regime.
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Figure 19. Comparative plots of λ1 versus the mean wind speed for the complete range of wind
speeds in the unstable oscillatory regime, which was obtained through a direct fitting on the ex-
ponential expansion stage of Uhx from the semi-log plots and from the energy-transfer relation in
Equation (11).

Figure 20 shows an example of the oscillatory signal at 18 m/s, indicating the threshold
at which the enveloping curve starts departing from the exponential behavior, Dep_Uh, and
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the threshold at which the amplitude levels out into a stable regime, SS_Uh. It also shows
the values of these two thresholds for the whole range of wind speeds corresponding to
the unstable regime.
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Figure 20. An example of the oscillatory signal at 18 m/s indicating the Dep_Uh and SS_Uh thresholds and the values of
these thresholds for wind speeds in the unstable regime.

6. Concluding Remarks

In our current work, we studied the pure aero-elasto-inertial dynamics of stall-
controlled wind turbine rotors as oscillatory systems. We presented the results from an
extensive series of experiments analyzing the dynamic response of the rotor to wind speed
fluctuations associated with the turbulent characteristics of the atmospheric boundary
layer, thus obtaining a reduced-order characterization based on energy-transfer principles.

In addition to its intrinsic scientific value, this aspect of the work presented here is
of fundamental interest to researchers and engineers working on developing optimized
control strategies for wind turbines. It allows for the critical elements of the rotor’s dynamic
behavior to be described by a reduced-order model that can be solved in real time, an
essential requirement for determining predictive control actions. These are critical in terms
of mitigating peak structural loads, the stability of a turbine’s operational parameters, such
as torque and power output, and reducing the accumulation of fatigue efforts.

As an outlook for further work, we envision a series of experiments exploring the
dynamics of a rotor when subjected to wind-speed pulses of longer durations. Contrary to
what happens with the short pulses associated with the turbulent content of the wind flow,
for long pulses, the kinetic energy content of a pulse is delivered during a period of time
that is comparable to or even longer than the period of the first peak of the displacement
oscillation. Consequently, the aerodynamic damping has time to act during the duration of
the pulse itself, dissipating a non-negligible part of the energy of the gust pulse before it
becomes accumulated as elastic energy in the blade deflection. In this range of time scales
of longer pulses, the energy-transfer principle is still expected to operate, but with the
evolution of the blade-deflection peaks evolving in a different manner.
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