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Abstract: This paper presents a co-rotational beam formulation, which is used for geometric nonlinear
analysis with the differential reproducing kernel (DRK) approximation collocation method. The
present formulation, based on the Timoshenko beam hypothesis, is capable of effectively solving
geometrically nonlinear problems such as large deformation, postbuckling, lateral buckling, and
snap-through problems. The kinematics have been constructed with the concept of co-rotational
formulation adopted in the finite element method (FEM). A meshfree method based on the differential
reproducing kernel (DRK) approximation collocation method, combined with the Newton–Raphson
method, is employed to solve the strong forms of the geometrically nonlinear problems. The DRK
method takes full advantage of the meshfree method. Moreover, only a scattered set of nodal points is
necessary for the discretization. No elements or mesh connectivity data are required. Therefore, DRK
will be able to completely circumvent the problems of mesh dependence and mesh distortion. The
effectiveness of this study and its performance are shown through several numerical applications.

Keywords: differential reproducing kernel; meshless method; co-rotational; nonlinear analysis;
stability; postbuckling

1. Introduction

The geometrically nonlinear analysis of a beam structure undergoing large displace-
ment remains a strong topic of interest, with applications in various fields such as civil
engineering over the past few decades. Various formulation strategies and numerical proce-
dures using FEM have been developed to deal with the large deformation problems [1–22].
For the large displacements and finite rotation problems of a geometrically nonlinear
analysis, the description of the kinematics can be regarded as the dominant factor. The
formulations used to describe the kinematics of beam structures in the literature might be
divided into three categories: total Lagrangian (TL) formulation [2,5,9,11,12,15], updated
Lagrangian (UL) formulation [3,7,18], and co-rotational (CR) formulation [4,8,10]. The
main difference between these formulations lies in their definitions of the reference of the
coordinates adopted in FEM. In the total Lagrangian formulation, the initial undeformed
configuration is adopted as the reference configuration. Consequently, the system equa-
tions are defined with respect to the fixed global coordinate system through the analysis.
In contrast, the updated Lagrangian formulation adopted the local coordinate system,
updated with the current configuration, as the reference configuration—that is, the system
equations were constructed at the current deformed beam configuration. Generally, the
system equations expressed in the updated Lagrangian formulation will be simpler than
the corresponding equations in the total Lagrangian formulation. However, if the displace-
ment from the current configuration to the last equilibrium configuration is large, it will be
in violation of the basic assumption and will lead to unreliable results. To circumvent this
problem, the co-rotational formulation was introduced. In the co-rotational framework,
there are global coordinates and co-rotational coordinates, kept fixed at the deformed beam
segment during the analysis procedure. The co-rotational coordinate rotates and translates
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with each element but does not deform with it. Therefore, the total motions of the element
can be divided into the rigid body part and the purely deformational part.

For the finite element formulation, another important issue is the choice of the primary
interpolated variables. No matter which of the above formulations is adopted to describe
the kinematics, most of the large deformation analyses performed with the FEM use
the conventional displacement approach with the principle of virtual work or minimum
potential energy [2–5]. Both displacements and rotations or rotations alone are taken as
the interpolated variables in the finite element implementation. Hence, the choice of the
primary interpolated variables is also an important issue in the finite element formulation.
In standard finite element formulations, the stress resultants solved by the equilibrium
equations, and those computed by the constitutive equations, are not equal since the
differentiated quantities are, as a rule, one order less accurate than the quantity itself.
When formulations based on displacement and rotation were employed, the strains had to
be computed by differentiating toward the assumed kinematic field. The internal forces
and moments will be evaluated by the constitutive law with the recovered strain field.
However, the accuracy of the differentiated quantities may decline. In particular, employing
low-order shape functions to solve the shear flexible models may yield locking problems.
Therefore, the performance of the element may deteriorate rapidly while dealing with
shear flexible models such as thinner beam problems. However, the numerical effect can
be corrected with the aid of reduced integration. Still, the displacement–rotation-based
formulations may acquire inaccurate stress fields due to recovery by the differentiation
procedure, even if the displacement fields can be solved accurately. To circumvent the
numerical problem, some researchers have taken strain vectors [13] or stress resultants [16]
as the primary variables. For instance, Zupan and Saje [13] presented a formulation in
terms of the strain vectors such that the additive interpolation has no restrictions. On
the contrary, Cannarozzi and Molari [16] took the stress vectors as the only interpolated
degree of freedom. In this way, the displacement can be obtained by integration of the
kinematic equations. Magisano et al. [21] developed a large rotation finite element analysis
of three-dimensional beams based on the Mixed Integration Point (MIP) Newton iterative
scheme [22], in which the co-rotational nodal rotations defined by incremental nodal
rotation vectors are interpolated for the evaluation of the nonlinear strains. In the above
studies, whether the stress or strain vectors have been employed to be the interpolated
variables in the finite element formulation, it still deals with the weak form based on the
principle of virtual work or the principle of minimum potential energy.

As opposed to FEM, adopted to solve numerical analysis, in this study a meshfree
method based on the Differential Reproducing Kernel (DRK) Approximation collocation
method combined with the Newton–Raphson method was adopted to analyze geometri-
cally nonlinear problems. The kinematics of beam structures undergoing large deformation
are derived with the concepts of the co-rotational framework. It is well-known that the
primary characteristic of meshfree methods is that the domain is completely discretized by
a scattered set of nodal points instead of elements. However, this naturally circumvents
mesh problems may result in numerical problems in FEM. Therefore, in the present scheme
the solution of nonlinear equilibrium equations such as displacements, rotations, and
force resultants of a beam that has undergone large deformation will be directly solved
toward the strong form of the governing equations. The DRK implementation of the three-
dimensional co-rotational beam formulation, leading to differentiation of the assumed
kinematic field, is not necessary while evaluating strains, internal forces, and moments.
This also shows that the primary interpolated variables will not be the dominant factor in
the present scheme.

In the literature, meshfree methods have been used by numerous researchers [23–34].
Several meshfree methods, including collocation and finite point methods based on differ-
ent approximations, have been proposed to solve the strong form problems. Aluru [28]
implemented a point collocation method to solve the differential equations by reproducing
kernel approximations.
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Onate et al. [29] adopted weighted least squares interpolations to develop a finite
point method to analyze elasticity problems. Yang et al. [30] proposed a radial basis col-
location method with a strong-form generalized displacement control method to solve
geometrically nonlinear problems. Most point collocation methods are based on the idea
of reproducing kernel (RK)approximations. However, conventional RK methods com-
pute the derivatives of the shape functions by differentiating toward the shape functions
directly. In particular, this may lead to complex expressions and computations while com-
puting high-order derivatives. Several methods were developed to solve the complicated
problems. Wang et al. [31] employed a trivial numerical implementation of second-order
smoothed gradients to develop a superconvergent gradient smoothing meshfree collocation
method. Wang et al. [32], Yang et al. [33], and Yeh [34] developed the DRK method for
one-dimensional and two-dimensional elasticity analysis.

In comparison with the conventional RK approximations, the DRK approximations
involve the calculation of the derivatives of shape functions in the conventional RK. In the
DRK approximations, the derivatives will be determined by the differential reproducing
conditions instead of differentiating toward the shape functions directly in the conventional
RK. In the present paper, the meshfree method based on the DRK approximations proposed
by Wang et al. [32,33] and Yeh [34] is adopted to solve the geometrically nonlinear problems.
In addition to the advantage of having no mesh, the DRK method also allows for easy
computation of the derivative of the shape function. This characteristic enables the DRK
approximations to construct system equations easily and directly from the governing
equations. The aim of the present paper is to develop a three-dimensional co-rotational
beam formulation with the aid of the DRK approximations combined with the Newton–
Raphson method. The effectiveness of this approach and its performance are shown by
numerical examples.

2. Theoretical Formulation
2.1. Basic Assumptions

The following assumptions are made in the derivation of the three-dimensional co-
rotational beam formulation:

1. The Timoshenko beam hypothesis is valid.
2. The theory is limited to elasticity problems.
3. The twist rate and unit extension of the centroid axis of the beam are uniform.
4. The displacements and rotations of the beam can be large.
5. The out-of-plane warping of the cross section is excluded.

2.2. Geometry and Kinematics of Three-Dimensional Beam
2.2.1. Coordinate System

In order to describe the geometry and kinematics of the beam in the undeformed
and deformed configurations, we defined two sets of right-handed rectangular Cartesian
coordinate systems:

1. Fixed global coordinates:
As shown in Figure 1, the global coordinate, which remains fixed during the entire

analysis, describes the displacements, rotation, and curvature of the structure. The govern-
ing equations of the system are also constructed with respect to the global coordinates.

2. Co-rotational local rectangular Cartesian coordinates:
The DRK collocation method adopts a scattered set of nodal points to fulfill the

discretization instead of the element adopted in FEM. Hence, a set of co-rotational local
coordinates has to be defined, associated with the nodal points collocated on the centroidal
axis of each cross section. The origin of the co-rotational local coordinate system is tied to
the centroid of the cross section. The xo and yo axes of the co-rotational local coordinates
are taken as the principal directions of the cross section. In addition, the zo axis is selected
to coincide with the normal direction of the cross section. In this way, this co-rotational
local coordinate will be co-rotated with the beam undergoing large deformation.
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Figure 1. Coordinate systems of the co-rotational beam.

2.2.2. Kinematics of Deformed Beam

From the kinematic assumptions made in the present paper, the deformations of the
beam can be described by the displacements and rotation of the beam centroid axis. As
shown in Figure 1, the position vector of an arbitrary point P on the beam centroidal axis at
the undeformed and deformed configuration can be expressed as follows:

rp(S) = Xo(S) eX + Yo(S) eY + Zo(S) eZ (1)

And
rp’ (s) = X(s) eX + Y(s) eY + Z(s) eZ, (2)

where eX, eY, and eZ are the unit basis vector of the global coordinates; S and s are the arc
length of beam centroidal axis in undeformed and deformed configuration, respectively.
Moreover, Xo(S), Yo(S), Zo(S) and X(s), Y(s), Z(s) are the coordinate components of the
position vector associated with undeformed and deformed configuration.

From the geometric relationship between the global and co-rotational local coordinates
at deformed configuration, Equation (3) can be given as follows:

ez(s) = dr(s)/ds. (3)

The relationship between the global and co-rotational local coordinate associated
with each nodal point by collocation point method on the deformed beam axis can be
represented by the rotation matrix R(s):

exyz(s) = R(s) eXYZ, (4)

where R is the rotation matrix defined according to the Rodrigues formula [35], as follows:

R = I +
sin ϑ

ϑ
Θ +

1− cos ϑ

ϑ2 Θ2

ϑ =

 ϕ
χ
ψ

, Θ =

 0 −ψ χ
ψ 0 −ϕ
−χ ϕ 0

, Θ2 = ΘΘ =

 −(χ2 + ψ2) χϕ ϕψ
χϕ −(ψ2 + ϕ2) ψχ
ϕψ ψχ −(ϕ2 + χ2)

. (5)

The rotation ϑ is a vector that lies on the axis of rotation, with its length equal to
the angle of rotation. The rotation vector ϑ can be written as a column matrix composed
of components ϕ, χ, and ψ in the fixed global coordinates. Furthermore, Θ is a skew-
symmetrical matrix composed from the rotation vector.
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For the convenience of later derivation, the curvature vector is defined to represent the
bending and twisting of the beam in terms of the co-rotational local coordinate as follows:

ω = ωx ex + ωy ey + ωz ez, (6)

where ωx, ωy, and ωz are curvatures with respect to the x, y, and z axes of the co-rotational
coordinates, respectively. Hence, the change rates of unit vectors with respect to the chord
length of beam axis at deformed configuration can be expressed as follows:

e′xyz = K exyz (7)

where K =

 0 ωz −ωy
−ωz 0 ωx
ωy −ωx 0

 is the curvature matrix, and

 ex
ey
ez

 is the basis vectors

of the co-rotational local coordinates.
From Equations (4) and (7), the curvature matrix can be represented in terms of the

rotation matrix as follows:
K = R′RT (8)

Then, substituting Equation (5) into Equation (8) will yield the curvature of the beam
at the deformed configuration as follows:

ωx =
1
ϑ4

{
dχ/ds

[
ϑ2(ϕχ + ψ− ψ cos ϑ)− ϑϕχ sin ϑ

]
+dψ/ds

[
ϑ2(−χ + ϕψ + χ cos ϑ)− ϑϕψ sin ϑ

]
+dϕ/ds

[
ϑ2 ϕ2 + ϑ(χ2 + ψ2) sin ϑ

]} (9)

ωy =
1
ϑ4

{
dϕ/ds

[
ϑ2(ϕχ− ψ + ψ cos ϑ)− ϑϕχ sin ϑ

]
+dψ/ds

[
−ϑ2(−ϕ− χψ + ϕ cos ϑ)− ϑχψ sin ϑ

]
+dχ/ds

[
ϑ2χ2 + ϑ(ϕ2 + ψ2) sin ϑ

] (10)

ωz =
1
ϑ4

{
dψ/ds

[
ϑ2ψ2 + ϑ(ϕ2 + ψ2) sin ϑ

]
+dϕ/ds

[
ϑ2(χ + ϕψ− χ cos ϑ)− ϑϕψ sin ϑ

]
+dχ/ds

[
ϑ2(−ϕ + χψ + ϕ cos ϑ)− ϑχψ sin ϑ

]} (11)

The change rate of rotation with respect to the arc length at deformed configuration
can be obtained by solving Equations (9)–(11) as follows:

dϕ/ds =
1

2ϑ2

[
2ωx ϕ2 + ϑ2(ωzχ−ωyψ) + 2ϕ(ωyχ + ωzψ)

+ϑ(−ωyσϕχ−ωzτϕψ + ωxκ(χ2 + ψ2)) cot J
2 ]

(12)

dχ/ds =
1

2ϑ2

[
2χ(ωxκϕ + ωyσχ) + ωxκ(ϕ2 + χ2)ψ + ωxκψ3

−ωzτ(ϕ3 − 2χψ + ϕ(χ2 + ψ2)) + J(−χ(ωxκϕ + ωzτψ) + ωyσ(ϕ2 + ψ2)) cot ϑ
2 ]

(13)

dψ/ds =
1

2ϑ2

[
(ωyσϕ−ωxκχ)(ϕ2 + χ2) + 2(ωxκϕ + ωyσχ)ψ

+(2ωzτ + ωyσϕ−ωxκχ)ψ2 + ϑ(ωzτ(ϕ2 + χ2)− (ωxκϕ + ωyσχ)ψ) cot ϑ
2

]
.

(14)
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In addition, from Equations (3)–(5), the relationships between the fixed global coordi-
nate and the rotation vector ϑ at the deformed configuration can be expressed in terms of
the rotation vector as follows:

dX/ds =
ϕψ

ϑ2 (1 − cos ϑ)+
χ

ϑ
sin ϑ (15)

dY/ds =
ψχ

ϑ2 (1 − cos ϑ)− ϕ

ϑ
sin ϑ (16)

dZ/ds = 1−
[

1− (
ψ

ϑ
)

2]
(1 − cos ϑ) (17)

2.3. Equilibrium and Constitutive Equations

As shown in Figure 2, the fulfilment of equilibrium of the beam segment with dis-
tributed forces and moments has to satisfy the following conditions:

dFXYZ/ds + f = 0 (18)

dMXYZ/ds + (dr/ds) × FXYZ + m = 0. (19)
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The co-rotational scheme means the equilibrium condition can be constructed directly
with respect to the local coordinate system. Hence, Equations (21) and (22) can be given by
the following transformation:

dGXYZ/ds = dGxyz/ds + ω × G, (20)

where GXYZ and Gxyz represent any vector with reference to the global coordinate and local
coordinate, respectively:

dFxyz/ds + ω × F + f = 0 (21)

dMxyz/ds + ω ×M + ez × F + m = 0. (22)

In the present study, we established the constitutive equations with the Timoshenko
beam hypothesis. Therefore, the constitutive laws between the external forces and defor-
mation can be expressed as follows:

Mx = EIxx (ωx − ωxo + dγy/ds) (23)

My = EIyy (ωy − ωyo − dγx/ds) (24)

Mz = GJ (ωz − ωzo) (25)

Fx = kxGAγx (26)

Fy = kyGAγy (27)

Fz = EAε (28)

where E is the Young’s modulus, A is the cross-sectional area, J is the torsional constant,
G is the shear modulus, ε is the axial strain of beam axis, γx and γy are the average shear
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strain, kx and ky are the shear modificatory factors, and Ixx and Iyy are the moments of
inertia about the x and y axes, respectively.

2.4. Governing Equations

The above equations have been constructed from the arc length of the beam axis,
s, at the deformed configuration. For the convenience of later derivation, the equations
can be represented with respect to the arc length of the undeformed beam axis, S, by the
relationship of the chord length between the undeformed and deformed configuration
as follows:

d f /ds = (1 + Fz/EA)−1(d f /dS). (29)

Substituting Equation (29) into the kinematics and equilibrium equations leads to the
governing equations:

dX/dS = (1 + Fz/EA)

[
ϕψ

ϑ2 (1 − cos ϑ)+
χ

ϑ
sin ϑ

]
(30)

dY/dS = (1 + Fz/EA)

[
ψχ

ϑ2 (1 − cos ϑ)− ϕ

ϑ
sin ϑ

]
(31)

dZ/dS = (1 + Fz/EA)

[
1−

[
1− (

ψ

ϑ
)

2]
(1 − cos ϑ)

]
(32)

dϕ/dS =
(1 + Fz/EA)

2ϑ2

[
2ωx ϕ2 + ϑ2(ωzχ−ωyψ)

+2ϕ(ωyχ + ωzψ) + ϑ(−ωy ϕχ−ωz ϕψ + ωx(χ2 + ψ2)) cot ϑ
2

(33)

dχ/dS =
(1 + Fz/EA)

2ϑ2

[
2χ(ωx ϕ + ωyχ) + ωx(ϕ2 + χ2)ψ + ωxψ3

−ωz(ϕ3 − 2χψ + ϕ(χ2 + ψ2)) + ϑ(−χ(ωx ϕ + ωzψ) + ωy(ϕ2 + ψ2)) cot ϑ
2

] (34)

dψ/dS =
(1 + Fz/EA)

2ϑ2

[
(ωy ϕ−ωxχ)(ϕ2 + χ2) + 2(ωx ϕ + ωyχ)ψ

+(2ωz + ωy ϕ−ωxχ)ψ2 + ϑ(ωz(ϕ2 + χ2)− (ωx ϕ + ωyχ)ψ) cot ϑ
2

] (35)

dFx/dS = (1 + Fz/EA)(ωzFy −ωyFz − fx) (36)

dFy/dS = (1 + Fz/EA)(ωxFz −ωzFx − fy) (37)

dFz/dS = (1 + Fz/EA)(ωyFx −ωxFy − fz) (38)

dMx/dS = (1 + Fz/EA)(ωz My −ωy Mz + Fy −mx) (39)

dMy/dS = (1 + Fz/EA)(ωx Mz −ωz Mx − Fx −my) (40)

dMz/dS = (1 + Fz/EA)(ωy Mx −ωx My −mz) (41)

where
ωx = Mx/EIxx + ωx0 − (1 + Fz/EA)d(Fy/κyGA)/dS (42)

ωy = My/EIyy + ωy0 + (1 + Fz/EA)d(Fx/κxGA)/dS (43)

ωz = Mz/GJ + ωz0 (44)

The 12 nonlinear ordinary differential equations, Equations (30)–(41), are derived
to solve the spatial beam with naturally curved and twisted beams undergoing
large deformations.
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3. Differential Reproducing Kernel Approximation Collocation Method (DRK)
3.1. Reproducing Kernel Approximation

Most numerical methods transform a differential equation into the integration form
while solving it, such as the Galerkin method [23,27]. However, the DRK approximations
adopted in this paper can circumvent the numerical mesh for numerical integration. The
DRK collocation method is developed based on the DRK approximation [32–34]. The DRK
approximation can be derived from the kernel function with a reproducing condition or the
moving least square method. Two kinds of derivations represent different characteristics of
the DRK approximation. In this section, a brief introduction is given with regard to the
moving least square method. Consider a set of N nodal points scattered in a domain Ω and
let x* be the reference point. The DRK approximation of a variable u(x) in the neighborhood
of the reference point x*, denoted by uh(x), is

u(x) ≈ uh(x) =
M

∑
i=1

pi(x∗ − x)ai = pT(x∗ − x)a (45)

where pT = {p1(x), p2(x), . . . , pM(x)} is a linear independent basis; aT = {a1, a2, . . . , aM}
is a vector of undetermined coefficients. Hence, the error in the weighted least-squares of
N nodes at neighborhood with respect to the reference point x* can be expressed as follows:

J =
Ne
∑

i=1
wa(x∗ − xj)[pT(x∗ − xj)a− u(xj)]

2

= (aTP(x∗)− uT)W(x∗)(PT(x∗)a− u)
(46)

where wa(x∗ − x) is the local weight function and Ne is the number of neighboring nodes
of x*. The index a is the radius of support and u(xj) is the approximation of u(x) at node
xj. By minimizing the error of the weighted least-square, the approximation uh(x) can be
obtained as follows:

uh(x) = pT(x∗ − x)M−1(x∗)B(x∗)u = NT(x; x∗)u, (47)

where M(x∗) = P(x∗)W(x∗)PT(x∗), B(x∗) = P(x∗)W(x∗), uT = {u(x1), u(x2), . . . u(xN)}
and NT(x; x∗) is the shape function that can be defined as follows:

NT(x; x∗) = pT(x∗ − x)M−1(x∗)B(x∗) (48)

The approximation uh(x) in Equation (47) is a local approximation in the neighborhood
with respect to the refence point x*. However, the global approximation can be fulfilled
by the moving least-square method by imposing x = x* such that point x* will move with
the point that has to be computed. In this way, the global approximation can be expressed
as follows:

uh(x) = pT(0)M−1(x)B(x)u = NT(x)u (49)

where NT(x) = pT(0)M
−1
(x)B(x).

3.2. Differential Reproducing Kernel Approximation

Different from conventional RK approximants, the derivatives of the shape function in
DRK are computed by differentiating toward the reproducing condition instead of directly
with a shape function. Hence, no special treatment is needed in DRK while computing a
different order derivative of the shape function. The derivative of the reproducing kernel
function can be obtained by differentiating Equation (47) directly:

∂kNT(x; x∗)
∂xk =

∂kpT(x∗ − x)
∂xk M−1(x∗)B(x∗) (50)
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By moving the least squares method and imposing x = x*, the derivatives of the global
approximation can be obtained as follows:

∂kNT(x)
∂xk =

∂kpT(x∗ − x)
∂xk |x=x∗ M−1(x)B(x) (51)

Thus, the procedures for computing the different order derivative in DRK are the
same. In addition, by imposing the point collocation method with the moving least squares
method, a boundary valued problem can be expressed as in the following equations:

LΩ

{
pT(x∗ − x)

}
|x=x∗ M−1(xj)B(xj)u = f (xj) (52)

L∂Ω

{
pT(x∗ − x)

}
|x=x∗ M−1(xj)B(xj)u = g(xj) (53)

where Ω and ∂Ω are the domain and boundary of the problem; LΩ and L∂Ω are linear
differential operators. If the number of nodes in the domain is Np, the number of nodes on
the boundary is Nb. Equations (52) and (53) lead to

G(Np+Nb)×NpuNp×1 = f(Np+Nb)×1 (54)

The variables in the above equation are unknown, so the least squares method is
adopted to find the optimum solutions.

Similar to most meshfree methods, the influence of the nodal values of the neighboring
nodes is estimated by the weight function. Therefore, domain ΩI should contain the nodal
point x∗ itself and also make the shape function to be zero outside. In the following analysis,
the cubic spline is adopted to be the weight function as follows:

w(d) =


2
3
− 4d2 + 4d3

4
3
− 4d + 4d2 − 4

3
d3

0

f or d ≤ 1
2

f or
1
2
< d ≤ 1

f or d > 1

, (55)

where the normal distance d =
∣∣xj − x∗

∣∣/a and a is the radius of support.
However, the radius of support also has to be small enough to exhibit the local

character and cannot be too small to yield an ill-conditioned problem at the same time.
Hence, it is necessary to determine the optimum range of radius of support. The present
scheme is capable of tuning with the density of nodes automatically such that the radius
of support can exhibit the local character and not lead to an ill-conditioned problem. For
a point at x∗, the number of neighboring nodes, Ne, is determined by the order of basis
functions. Then we can sort the neighboring nodes by the distance to the point x∗. The
distance of the Ne-th neighboring node is adopted as the radius of support. In this way,
the radius of support can be tuned automatically with the density of nodes instead of
being fixed.

3.3. Strategy for Incremental–Iterative Procedure

An incremental–iterative method combining the DRK approximations with the Newton–
Raphson method was adopted to solve the 12 coupled, nonlinear ordinary differential
equations, Equations (30)–(41). In the present incremental–iterative procedure, force or
displacement will be adopted as the prescribed increment. Whichever kind of increment is
adopted, the solution from the preceding iteration will be taken as the new initial guess
for the next one. Let Xk, Yk, Zk, ϕk, χk, ψk, Mx,k, My,k, Mz,k, Qx,k, Qy,k, and Qz,k denote
the solutions of the Kth incremental step. The incremental–iterative steps adopted in the
present scheme are as shown in Figure 3.
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4. Numerical Examples

Five numerical examples, including large deformation, postbuckling of two-dimensional
beam structures, stability, and lateral buckling problems of three-dimensional beam struc-
tures, are presented to show the effectiveness and performance of the proposed three-
dimensional co-rotational beam formulation.

4.1. Cantilever Curved Beam Subjected to End Moment

Figure 4 represents the geometrically nonlinear analysis of a cantilever curved beam
with an initial circle shape such that the fixed and free ends can be reduplicated. The
geometry and material properties of the curved beam are: L = 10.0 m, b = 1.0 m, h = 0.1 m,
and E = 1.2 × 105 kN/m2. The basic equation of the fixed global coordinates and end
moment can be written as follows:

Z2 + X2 =

(
EI
M

)2
(56)

Hence, a curved beam with an initial circular shape will bend into a straight beam
when the end moment, M =

(
2πEI

L

)
, is applied. If the end moment reaches M =

(
4πEI

L

)
,

the beam will bend into a circle in the opposite direction.
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To find the optimal number of neighboring nodes and order of basis function, the
L2 error for a combination of neighboring nodes 3, 5, and 7 with respect to the basis
functions of quadratic, cubic, and quartic was plotted in Figure 5. It shows that the optimal
relationship between the number of the neighboring nodes and basis functions can be
given as follows:

Ne = (2m − 1), (57)

where Ne is the number of the neighboring nodes and m is the number of basis functions.
The computational time of the above combinations shown in Figure 5 was less than 10 s.
Additionally, the above optimal combination of neighboring nodes with order of basis
function was adopted to plot Figure 6, which shows the convergence corresponding to
the number of nodal points of 21, 31, 41, and 51 with quadratic, cubic, and quartic basis
functions, respectively. It should be noted that h, shown in Figure 6, means the spacing of
nodal points. The results show that the DRK approximations with a higher degree basis
and more nodal points can effectively improve the solution accuracy. Moreover, the higher
degree basis functions will achieve better solution accuracy even if the same number of
nodal points is adopted. A combination of quadratic basis functions and five neighboring
nodes was adopted in the following examples.
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The moment–displacement curves of the curved cantilever beam are plotted in
Figure 7, solved by 31 nodal points with 10 loading increments. The number of itera-
tions of each increment is less than three. As can be seen, the present theory can provide
accurate solutions.
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4.2. A cantilever Beam Initially Curved to π/4 Subjected to a Concentrated Tip Load

As shown in Figure 8, a cantilever beam initially curved to an arch of radius 100 m
with 45-degree bending was subjected to a concentrated end load. This example was
originally proposed by Bathe [1] and has also been adopted by a number of other re-
searchers [2,3,12,13,21]. The beam has a unit square cross section and lies in the X–Y plane
with initial tip position 70.71 m, 29.29 m, 0 m of the fixed X–Y–Z global coordinates. The ma-
terial was linear and elastic, with the following properties: Elastic modulus, E = 107 N/m2,
and Shear modulus, G = 5 × 106 N/m2. In the above reference, the beam was modeled
by straight and curved beam elements with the nodes on the centroidal axis of the beam.
In the present study, DRK was fulfilled by nodal points to simulate a beam undergoing
large deformation.
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tangular cross section. As shown in Figure 10, a transverse force, Fz, is loaded on the di-
rection of the strong axis of the cross section. The geometry and material properties of the 

Figure 8. Cantilever beam 45-degree bend with an upward concentrated load.

Figure 9, solved by 31 nodal points with 10 loading increments, shows the evolution
of tip displacement as a function of the applied load modulus. The number of iterations is
fewer than five within each increment. Table 1 shows the free end position of the initial
curved cantilever beam under out-of-plane force. A comparison of the free end position
from these references is also given in Table 1. The results show that the present theory can
provide accurate solutions.
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4.3. Lateral Buckling of a Cantilever Beam

This example presents the lateral buckling of a cantilever beam with a narrow rect-
angular cross section. As shown in Figure 10, a transverse force, Fz, is loaded on the
direction of the strong axis of the cross section. The geometry and material properties of
the cantilever beam are: E = 107 kN/m2, G = 5 × 106 kN/m2, b = 0.1 m, h = 1.0 m, and
L = 10.0 m. The theoretical buckling load is given by Timoshenko [36] as follows:

Pcr =
4.013599344

√
EIxGJ

L2 (58)

where EIx is the flexural rigidity of the weak axis of the cross section, a is the torsional rigidity,
and L is the length of the beam. The deformation processes of the cantilever beam with a
downward concentrated load up to instability are shown in Figure 11. Figure 12 shows the
load deflection curves obtained by 31 nodal points, with 62 loading increments up to three
times the buckling load. The number of iterations is fewer than five within each increment.
The buckling load, Pcr = 149.557 kN, obtained from Timoshenko [36], was indicated. It can
be seen that the present numerical solution agrees well with the analytical solution.
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Figure 10. Lateral buckling of a cantilever beam subject to a downward concentrated load.
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Different numbers of nodal points were adopted to evaluate the buckling load, and
72 nodal points were capable of acquiring good results. The deformation processes of the
circular arch subject to a concentrated load up to instability are plotted in Figure 14. An
analytical solution by DaDeppo and Schmidt is also available in [37]. Figure 15 shows
that the load factor–deflection curves of the pre- and postbuckling analysis were solved by
72 nodal points and 136 displacement increments. The number of iterations is fewer than
ten within each increment. Moreover, a comparison of numerical solutions of the buckling
load with FEM by Simo [2], Ibrahimbegovic [7], and Kapania [12] is given in Table 2.
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Figure 14. Spatial configurations of a clamped–hinged circular arch subject to a concentrated load up
to instability.
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Table 2. Buckling load of clamped-hinged circular arch.

Model Nelm Nnode Limit Buckling Load

Present 72 897.37
Simo [1] 40 (2-noded, straight) 905.28

Ibrahimbegovic [5] 20 (3-noded, curved) 897.30
Kapania [11] 6 (4-noded, curved) 897.27
Zupan [13] 80 (3-noded, curved) 897.87

Classical solution 897.00

4.5. Lateral Buckling of a Curve Beam

This example presents the performance of the three-dimensional nonlinear analysis of
the lateral buckling of a curve beam. As shown in Figure 16, there is a simply supported
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curve beam with a subtended angle of 60◦. Note that the rotation with respect to the
principal axes of inertia of the cross section is allowable, but it is unable to rotate about
the normal direction of the cross section. The geometric and material properties of the
curved beam are: curve length L = 240 mm, b = 0.6 mm, h = 30 mm, E = 71,240 N/mm2,
and G = 27,190 N/mm2.
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Figure 16. Curved beam subject to the end moment.

A comparison of the effect of imperfect loading is given by several imperfect loadings,
FYB = αMYA, applied at central point B. The coefficients of imperfection loads, α, adopted
to trigger the lateral deformation, are 10−5 and 10−6, respectively. Figures 17 and 18 show
the moment–displacement curves associated with different imperfection loads, FYB, under
positive and negative moments, in which 82 nodal points and 36 loading increments were
adopted. The maximum number of iterations was seven during the iteration computation.
The critical moments, Mcr = 835.82 N-mm and −411.70 N-mm, obtained from the curve
beam theory of Yang [38], are also indicated. Moreover, the postbuckling deformation
processes of the curved beam from buckling moment, Mcr, to 1.04 Mcr are also shown in
Figures 19 and 20.
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5. Conclusions

A three-dimensional co-rotational beam formulation for the geometrically nonlinear
analysis of a spatial beam was constructed in the context of a co-rotational formulation
and Timoshenko beam hypothesis. In this paper, the Rodrigues formula was adopted to
represent the finite rotation in a co-rotational scheme; this also circumvents the famous
Gimbal lock problem that may occur with rotation in terms of the Euler angle. The numer-
ical implementation of the DRK approximation collocation method, combined with the
Newton–Raphson method, directly solved the strong forms of the geometrically nonlinear
problems—different from FEM, which solves the weak form by means of the variation
method. The present scheme means that the stress field can be solved directly from the
governing equations instead of recovering through the differentiation procedure toward
the kinematic field. That is, the primary interpolated variables will not be the dominant
factor. The scheme presented is also capable of effectively solving geometrically nonlinear
analyses such as large deformation, snap-through, postbuckling, and lateral buckling
problems. Numerical examples are given to demonstrate the validity and effectiveness.

Funding: This research was funded by Taiwan Ministry of Science and Technology under grant
number MOST 109-2222-E-020-001.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Bathe, K.; Bolourchi, S. Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Meth. Eng. 1979, 14,

961–986. [CrossRef]
2. Simo, J.C.; Vu-Quoc, L. A three-dimensional finite-strain rod model. Part II: Computational aspects. Comput. Methods Appl. Mech.

Eng. 1986, 58, 79–116. [CrossRef]
3. Cardona, A.; Geradin, M. A beam finite element non-linear theory with finite rotations. Int. J. Numer. Meth. Eng. 1988, 26,

2403–2438. [CrossRef]
4. Crisfield, M.A. A consistent co-rotational formulation for non-linear, three-dimensional, beam elements. Comput. Methods Appl.

Mech. Eng. 1990, 81, 131–150. [CrossRef]
5. Jelenic, G.; Saje, M. A kinematically exact space finite strain beam model-finite element formulation by generalized virtual work

principle. Comput. Methods Appl. Mech. Eng. 1995, 120, 131–161. [CrossRef]
6. Ibrahimbegovic, A. On finite element implementation of geometrically nonlinear reissner’s beam theory: Three-dimensional

curved beam elements. Comput. Methods Appl. Mech. Eng. 1995, 122, 11–26. [CrossRef]
7. Ibrahimbegovic, A.; Shakourzadeh, H.; Batoz, J.L.; Mikdad, M.A.; Guo, Y.Q. On the role of geometrically exact and second-order

theories in buckling and post-buckling analysis of three-dimensional beam structures. Comput. Struct. 1996, 61, 1101–1114.
[CrossRef]

8. Hsiao, K.M.; Yang, R.T.; Lin, W.Y. A consistent finite element formulation for linear buckling analysis of spatial beams. Comput.
Methods Appl. Mech. Eng. 1998, 156, 259–276. [CrossRef]

9. Jelenic, G.; Crisfield, M.A. Geometrically Exact 3D Beam Theory: Implementation of a strain-invariant finite element for statics
and dynamics beams. Comput. Methods Appl. Mech. Eng. 1999, 171, 141–171. [CrossRef]

10. Hsiao, K.M.; Lin, W.Y. A co-rotational finite element formulation for buckling and postbuckling analyses of spatial beams. Comput.
Methods Appl. Mech. Eng. 2000, 188, 567–594. [CrossRef]

11. Yang, Y.B.; Kuo, S.R.; Wu, Y.S. Incrementally small-deformation theory for nonlinear analysis of structural frames. Eng. Struct.
2002, 24, 783–798. [CrossRef]

12. Kapania, R.K.; Li, J. A formulation and implementation of geometrically exact curved beam elements incorporating finite strains
and finite rotations. Comput. Mech. 2003, 30, 444–459. [CrossRef]

13. Zupan, D.; Saje, M. Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of
strain measures. Comput. Methods Appl. Mech. Eng. 2003, 192, 5209–5248. [CrossRef]

14. Zupan, D.; Saje, M. The three-dimensional beam theory: Finite element formulation based on curvature. Comput. Struct. 2003, 81,
1875–1888. [CrossRef]

15. Makinen, J. Total lagrangian reissner’s geometrically exact beam element without singularities. Int. J. Numer. Meth. Eng. 2007, 70,
1009–1048. [CrossRef]

16. Cannarozzi, M.; Molari, L. Stress-based formulation for non-linear analysis of planar elastic curved beams. Int. J. Nonlin. Mech.
2013, 55, 35–47. [CrossRef]

17. Ye, J.; Xu, L. Member discrete element method for static and dynamic responses analysis of steel frames with semi-rigid joints.
Appl. Sci. 2017, 7, 714. [CrossRef]

http://doi.org/10.1002/nme.1620140703
http://doi.org/10.1016/0045-7825(86)90079-4
http://doi.org/10.1002/nme.1620261105
http://doi.org/10.1016/0045-7825(90)90106-V
http://doi.org/10.1016/0045-7825(94)00056-S
http://doi.org/10.1016/0045-7825(95)00724-F
http://doi.org/10.1016/0045-7949(96)00181-2
http://doi.org/10.1016/S0045-7825(97)00210-7
http://doi.org/10.1016/S0045-7825(98)00249-7
http://doi.org/10.1016/S0045-7825(99)00284-4
http://doi.org/10.1016/S0141-0296(02)00007-X
http://doi.org/10.1007/s00466-003-0422-7
http://doi.org/10.1016/j.cma.2003.07.008
http://doi.org/10.1016/S0045-7949(03)00208-6
http://doi.org/10.1002/nme.1892
http://doi.org/10.1016/j.ijnonlinmec.2013.04.005
http://doi.org/10.3390/app7070714


Appl. Sci. 2021, 11, 6647 20 of 20

18. Silva, R.; Lavall, A.; Costa, R.; Viana, H. Formulation for second-order inelastic analysis of steel frames including shear
deformation effect. J. Constr. Steel. Res. 2018, 151, 216–227. [CrossRef]

19. Piotrowski, R.; Szychowski, A. Lateral torsional buckling of steel beams elastically restrained at the support nodes. Appl. Sci.
2019, 9, 1944. [CrossRef]

20. Reissner, E. On finite deformation of space-curved beams. J. Appl. Math. Phys. 1981, 32, 734–744. [CrossRef]
21. Magisano, D.; Leonetti, L.; Madeo, A.; Garcea, G. A large rotation finite element analysis of 3D beams by incremental rotation

vector and exact strain measure with all the desirable features. Comput. Methods Appl. Mech. Eng. 2020, 361, 112811. [CrossRef]
22. Magisano, D.; Leonetti, L.; Garcea, G. How to improve efficiency and robustness of the Newton method in geometrically

non-linear structural problem discretized via displacement-based finite elements. Comput. Methods Appl. Mech. Eng. 2017, 313,
986–1005. [CrossRef]

23. Belytschko, T.; Lu, Y.Y.; Gu, L. Element-free Galerkin methods. Int. J. Numer. Meth. Eng. 1994, 37, 229–256. [CrossRef]
24. Liu, W.K.; Jun, S.; Zhang, Y.F. Reproducing kernel particle methods. Int. J. Numer. Meth. Fluids 1995, 20, 1081–1106. [CrossRef]
25. Li, S.; Liu, W.K. Reproducing kernel hierarchical partition of unity. Part I: Formulation and Theory. Int. J. Numer. Meth. Eng. 1999,

45, 251–288. [CrossRef]
26. Atluri, S.N.; Zhu, T. New concepts in meshless methods. Int. J. Numer. Meth. Eng. 2000, 47, 537–556. [CrossRef]
27. Atluri, S.N.; Shen, S. The Meshless Local Petrov-Galerkin Method; Tech. Science Press: Los Angeles, CA, USA, 2002.
28. Aluru, N.R. A point collocation method based on reproducing kernel approximations. Int. J. Numer. Meth. Eng. 2000, 47,

1083–1121. [CrossRef]
29. Onate, E.; Perazzo, F.; Miquel, J. A finite point method for elasticity problems. Comput. Struct. 2001, 79, 2151–2163. [CrossRef]
30. Yang, J.P.; Chen, J.Y. Strong-form formulated generalized displacement control method for large deformation analysis. Int. J. Appl.

Mech. 2017, 9, 1750101. [CrossRef]
31. Wang, D.; Wang, J.; Wu, J. Superconvergent gradient smoothing meshfree collocation method. Comput. Methods Appl. Mech. Eng.

2018, 340, 728–766. [CrossRef]
32. Wang, Y.M.; Chen, S.M.; Wu, C.P. A meshless collocation method based on the differential reproducing kernel interpolation.

Comput. Mech. 2010, 45, 585–606. [CrossRef]
33. Yang, S.W.; Wang, Y.M.; Wu, C.P.; Hu, H.T. A meshless collocation method based on the differential reproducing kernel

approximation. Comp. Model. Eng. 2010, 60, 1–39.
34. Yeh, W.C.; Wang, Y.M. Meshfree method for geometrical nonlinear analysis of curved and twisted beams using a three-dimensional

finite deformation theory. Int. J. Struct. Stab. Dyn. 2019, 9, 1950116. [CrossRef]
35. Argyris, J.H. A excursion into large rotations. Comput. Methods Appl. Mech. Eng. 1982, 32, 85–155. [CrossRef]
36. Timoshenko, S.P.; Gere, J.M. Theory of Elastic Stability; Dover Pubns: New York, NY, USA, 2009.
37. Dadeppo, D.A.; Schmidt, R. Instability of clamped-hinged circular arches subjected to a point load. J. Appl. Mech. 1975, 42,

894–896. [CrossRef]
38. Yang, Y.B.; Kuo, S.R. Theory and Analysis of Nonlinear Framed Structures; Prentice-Hall: Hoboken, NJ, USA, 1994.

http://doi.org/10.1016/j.jcsr.2018.09.011
http://doi.org/10.3390/app9091944
http://doi.org/10.1007/BF00946983
http://doi.org/10.1016/j.cma.2019.112811
http://doi.org/10.1016/j.cma.2016.10.023
http://doi.org/10.1002/nme.1620370205
http://doi.org/10.1002/fld.1650200824
http://doi.org/10.1002/(SICI)1097-0207(19990530)45:3&lt;251::AID-NME583&gt;3.0.CO;2-I
http://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3&lt;537::AID-NME783&gt;3.0.CO;2-E
http://doi.org/10.1002/(SICI)1097-0207(20000228)47:6&lt;1083::AID-NME816&gt;3.0.CO;2-N
http://doi.org/10.1016/S0045-7949(01)00067-0
http://doi.org/10.1142/S1758825117501010
http://doi.org/10.1016/j.cma.2018.06.021
http://doi.org/10.1007/s00466-010-0472-6
http://doi.org/10.1142/S0219455419501165
http://doi.org/10.1016/0045-7825(82)90069-X
http://doi.org/10.1115/1.3423734

	Introduction 
	Theoretical Formulation 
	Basic Assumptions 
	Geometry and Kinematics of Three-Dimensional Beam 
	Coordinate System 
	Kinematics of Deformed Beam 

	Equilibrium and Constitutive Equations 
	Governing Equations 

	Differential Reproducing Kernel Approximation Collocation Method (DRK) 
	Reproducing Kernel Approximation 
	Differential Reproducing Kernel Approximation 
	Strategy for Incremental–Iterative Procedure 

	Numerical Examples 
	Cantilever Curved Beam Subjected to End Moment 
	A cantilever Beam Initially Curved to /4 Subjected to a Concentrated Tip Load 
	Lateral Buckling of a Cantilever Beam 
	Postbuckling of a Clamped–Hinged Circular Arch 
	Lateral Buckling of a Curve Beam 

	Conclusions 
	References

