
applied  
sciences

Article

Structural Damage Identification Using a Modified Directional
Bat Algorithm

Yonghui Su, Lijun Liu * and Ying Lei

����������
�������

Citation: Su, Y.; Liu, L.; Lei, Y.

Structural Damage Identification

Using a Modified Directional Bat

Algorithm. Appl. Sci. 2021, 11, 6507.

https://doi.org/10.3390/

app11146507

Academic Editor: Mohammad Noori

Received: 21 June 2021

Accepted: 12 July 2021

Published: 15 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil Engineering, Xiamen University, Xiamen 361005, China; suyh97@163.com (Y.S.);
ylei@xmu.edu.cn (Y.L.)
* Correspondence: liulj214@xmu.edu.cn

Abstract: Bat algorithm (BA) has been widely used to solve optimization problems in different fields.
However, there are still some shortcomings of standard BA, such as premature convergence and lack
of diversity. To solve this problem, a modified directional bat algorithm (MDBA) is proposed in this
paper. Based on the directional bat algorithm (DBA), the individual optimal updating mechanism is
employed to update a bat’s position by using its own optimal solution. Then, an elimination strategy
is introduced to increase the diversity of the population, in which individuals with poor fitness values
are eliminated, and new individuals are randomly generated. The proposed algorithm is applied
to the structural damage identification and to an objective function composed of the actual modal
information and the calculated modal information. Finally, the proposed MDBA is used to solve the
damage detection of a beam-type bridge and a truss-type bridge, and the results are compared with
those of other swarm intelligence algorithms and other variants of BA. The results show that in the
case of the same small population number and few iterations, MDBA has more accurate identification
and better convergence than other algorithms. Moreover, the study on anti-noise performance of
the MDBA shows that the maximum relative error is only 5.64% at 5% noise level in the beam-type
bridge, and 6.53% at 3% noise in the truss-type bridge, which shows good robustness.

Keywords: directional bat algorithm; structural damage identification; constrained optimization
problem; modal parameters; objective function

1. Introduction

Due to the diversity of loads and the complexity of working environment, civil
engineering structures often suffer various damages during service, such as concrete
cracking, steel yield and so on. Structural damage could cause the change of structural
physical characteristics (stiffness, mass, damping, etc.) and cause the variation of modal
characteristics (natural frequency, modal shape, etc.). These damages also affect the safety
of the structure to a certain extent, so it is very important to find the damage of the
structure in time. Goyal et al. [1] gave an introduction to various methods for structural
damage identification using vibration response data and vibration characteristics, such
as acceleration response, natural frequency, vibration mode and flexibility. However,
these measurement data are often affected by environmental factors, experimental errors
and other uncertain factors, which lead to their failure to truly reflect the status of the
structure. Therefore, how to use the structural health identification technology to evaluate
the reliability, integrity and safety of the structure is particularly important [2].

In recent years, with the development of the computer, the combination of the swarm
intelligence optimization algorithm (SIOA) and structural damage identification has be-
come a popular direction in the field of structural health monitoring (SHM). SIOA trans-
forms a complex structural damage identification into a constrained optimization problem.
There are many kinds of SIOA, such as the classical genetic algorithm (GA) [3], parti-
cle swarm optimization (PSO) [4], differential evolution algorithm (DE) [5,6], simulated
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annealing algorithm (SA) [7], ant colony optimization (ACO) [8] and so on. In recent
years, many new algorithms have emerged, such as the whale optimization algorithm
(WOA) [9], bat algorithm (BA) [10], ant lion optimizer (ALO) [11], shuffled frog leaping
algorithm (SFLA) [12], cuckoo algorithm (CS) [13], grey wolf optimizer (GWO) [14], fruit
fly optimization algorithm (FOA) [15,16], backtracking search algorithm (BSA) [17,18]
and so on. Swarm intelligence algorithms have been applied to a variety of problems.
For example, SFLA algorithms have been used for the traveling salesman problem and
maximum power point tracking problems and so on [19,20]. Each algorithm has its own
characteristics and shortcomings. For example, the GA algorithm is easy to implement
and has a fast convergence speed, but it lacks global search ability. The PSO algorithm
has simple structure and fast convergence speed, and it is easy to fall into a local optimal
solution. The ACO algorithm has strong global search ability, is easy to combine with other
evolutionary algorithms, has low convergence speed, is easy to fall into a local optimal
solution and so on. Many SIOAs have been employed in structural damage identification.
Chen et al. [21] proposed a hybrid ant lion optimizer. Based on the damage identification
objective function of modal parameters, the numerical simulation of a two-story rigid frame
structure and plane truss structure was carried out, and the effectiveness and feasibility of
the method were verified. Du et al. [22] used the Jaya algorithm to determine the damage
location and damage degree of truss and frame structures based on multi damage location
assurance criteria and modal flexibility changes. Roumaissa et al. [23] compared the ac-
curacy of the GA algorithm and Bat algorithm through the objective function composed
of a measured frequency response function and calculated frequency response function.
The substructure, strain energy and SIOA were used to identify the damage of a large
spatial structure [24,25], in which the substructure was used to divide the large spatial
structure, the strain energy was used to locate the structural damage, and SIOA was used
to quantify the structural damage. It is worth noting that in addition to the above modal
parameters, the objective function can also be constructed by using the structural response
data. Ding et al. [26] proposed a Gauss tree seed algorithm to identify the structural
damage of simply supported beam and truss structures based on the objective function
composed of the absolute error of acceleration response. Zhu et al. [27] proposed a damage
identification method of a bird mating optimizer, which used the bird mating optimizer to
identify the structural damage based on the objective function composed of frequency and
acceleration. Although most of the above-mentioned SIOAs have achieved good success
in solving constrained optimization problems of structural damage identification, there
are still problems like large population and too many iterations, which lead to complex
calculation and long calculation time, especially when using structural response data as
the error objective function.

The bat algorithm (BA) is a random search algorithm proposed by Yang [28], which
simulates bats in nature using sonar to detect prey and avoid obstacles. It consists of
three parts: global search, local search and parameter update. BA has been widely used
in different fields because of its few parameters, fast convergence and feasibility [29].
However, the standard BA is a kind of searching mechanism close to the current optimal
solution, which makes it easy to fall into the problem of local optimal solution, resulting in
it being unable to find the optimal solution of the objective function. To solve this limitation,
many researchers have improved the standard BA by enhancing the search ability and
population diversity. He et al. [30] modified the global search formula of the standard BA
through Levy flight to enhance the search ability of the algorithm, and they used it to solve
the logistics planning problem. Gan et al. [31] combined BA with an iterative local search
algorithm to enhance the diversity of population, add stochastic inertia weight to adjust
search step length and balance search mode by linear updating pulse rate and loudness.
Liu et al. [32] combined the improved time factor, Gaussian mutation factor and Cauchy
mutation factor with BA to improve the performance of BA in the optimization problem,
and they applied them to the problem of low-velocity impact localization. Cui et al. [33]
proposed an adaptive BA to optimize the observation matrix, and they designed a dynamic
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adjustment strategy of the optimal radius to improve its global convergence ability. In
addition to the above bat variants, there are many other variants, such as Island Bat [34],
directional Bat algorithm (DBA) [35], Hybrid Bat algorithm [36], Enhanced Bat [37], Novel
chaotic Bat [38], Chaotic bat swarm optimization [39] and so on. It can be seen that many
improved BAs have made some progress in different fields, but the above methods are
not well applied to the problem of structural damage identification. For the problem of
structural damage identification, the BA needs to be improved to find out the location
and degree of structural damage accurately under the condition of small population and
few iterations.

In this paper, a modified directional bat algorithm (MDBA) has been proposed, which
combines the individual optimal updating mechanism, elimination strategy and DBA,
and it is applied to the optimization problem of structural damage identification. The
beam-type bridge model and truss-type bridge model are used for numerical simulation.
The structural damage is expressed by linear reduction of element stiffness, and the error
objective function is constructed by structural modal information. Under the condition of
low population and few iterations, the MDBA is compared with the differential evolution
algorithm (DE), particle swarm optimization algorithm (PSO), shuffled frog leaping algo-
rithm (SFLA) and several variants of BA. Furthermore, the robustness of the algorithm is
tested by using different degrees of noise. The results show that the MDBA can be used as
an efficient application tool to solve the problem of structural damage identification.

The remainder of this paper is as follows. The second section introduces the establish-
ment of the objective function. The third section introduces the modified directional bat
algorithm in detail. In the fourth section, a beam-type bridge and a truss-type bridge are
used to compare the effects of different optimization algorithms and bat variants in damage
identification. Finally, the research results are analyzed, and the conclusion is drawn.

2. Theoretical Background

In the problem of structural damage identification based on the optimization algo-
rithm, by adjusting the parameters of the finite element model, the response data of the
finite element model is close to that of the actual model, so that the structural parameters
of the actual model can be obtained. The key is to reduce the error between the measured
data and the calculated data as much as possible. In this paper, the modal information data
are used to construct the objective function, and the specific process is shown in Figure 1.
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It is well known that the eigenvalue equations of the structural finite element model
are as follows: (

K−ω2
i M

)
φi = 0 (1)
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where K is the global stiffness matrix, M is the global mass matrix, ωi is the i-th natural
frequency and φi is the corresponding mode shape.

In this paper, the linear reduction of structural stiffness is used to simulate the struc-
tural damage. The damage of each structural element can be expressed by the damage
factor of each element; thus, the stiffness matrix of the element is expressed as follows:

Kd =
Nel

∑
i=1

(1− αi)ke
i (2)

where ke
i is the stiffness of the i-th element in the healthy structure, Nel is the total number of

structural elements and Kd is the overall structural stiffness of the structure to be identified.
αi is the damage degree of i-th element of the structure to be identified. When αi = 0, it
means that the structure is healthy; αi = 1 means that the structure is completely damaged.

In the structural damage identification, the objective function can reflect the difference
between real measurement and simulation. Structural modal properties are often used as
an index of objective function. The most common modal indicators are the relative error of
natural frequency and the modal assurance criterion. Usually, the objective function only
uses the first several order modal information of the structure for calculation. In this study,
the natural frequency, mode shape and flexibility matrix of the structure are used to form
the objective function. The error function of frequency is expressed as follows:

MDLACi =

∣∣ωm
i −ωc

i

∣∣
ωm

i
(3)

where ωm
i and ωc

i are the i-th order measured natural frequency and calculated natural
frequency, respectively.

The modal assurance criterion is used to check the correlation between modes. When
the measured mode shape is closer to the calculated mode shape, the modal confidence is
closer to 1, otherwise it is 0. The expression of the modal assurance criterion is as follows:

MACi =

∣∣φm
i •φc

i

∣∣2∣∣φm
i •φm

i

∣∣∣∣φc
i •φc

i

∣∣ (4)

where φm
i and φc

i are the i-th measured mode shape and calculated mode shape, respectively.
It is well known that the stiffness matrix and the flexibility matrix are reciprocal

matrices. The decrease of structural stiffness will increase the corresponding flexibility, and
the flexibility matrix is more sensitive to damage [40–42]. The expression of the flexibility
assurance criterion is as follows:

MACFi =

∣∣Fm
i •Fc

i

∣∣2∣∣Fm
i •Fm

i

∣∣∣∣Fc
i •Fc

i

∣∣ (5)

where Fm
i and Fc

i are the i-th order measurement flexibility vector and calculation flexibility
vector, respectively. The flexibility matrix can be obtained by the following formula:

[F] =
s

∑
i=1

1
ω2

i
{φi}{φi}T (6)

The objective function is defined as follows:

Function =
s

∑
i=1

[∆1(1−MACi) + ∆2MDLACi + ∆3(1−MACFi)] (7)

where s is the order obtained. In order to distinguish the sensitivity of natural frequency,
mode shape and flexibility matrix in structural damage identification, the objective function
is weighted [21,43]. The weight coefficient of the objective function is determined to be
∆1 = 0.82, ∆2 = 0.13, ∆3 = 0.05 and ∆1 + ∆2 + ∆3 = 1.

Considering the influence of uncertain factors on modal parameters, random noise is
added. The expression is as follows:

xnoise = x(1 + ηRn) (8)
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where xnoise and x are the modal parameters with and without noise, respectively; η is the
noise level; Rn is a random matrix, and each number in the matrix is a random number
of [0, 1].

3. Modified Directional Bat Algorithm (MDBA)

Standard BA is a swarm intelligence heuristic search algorithm proposed by Yang [28],
which is a random search algorithm that simulates bats in nature using sonar to detect prey
and avoid obstacles. It is mainly composed of exploration and exploitation. Exploration is a
rough search for undeveloped areas, while exploitation is a fine search for developed areas.
Standard BA is a kind of algorithm close to the optimal solution. If the initial position
distribution is too concentrated, it would easily lead to the algorithm falling into the local
optimum. To overcome this deficiency, Chakri et al. [35] proposed the DBA, in which
the directional echolocation and three other modifications were embedded into the BA to
increase its exploitation and exploration capabilities. However, DBA still has the problems
of a large population and too many iterations, and it is not well applied in structural
damage identification under the condition of a small population and few iterations. Thus,
a modified DBA (MDBA) is proposed here to solve the above limitation, in which the
individual optimal renewal mechanism and elimination strategy are employed to enhance
the search algorithm performance.

Inspired by the position update mechanism of PSO and combined with the individual
historical optimum position, the exploration formula of DBA has been improved in this
study. Individual historical optimum position refers to one of the best positions of each
particle in the iteration process. As shown in Figure 2, the current optimal solution is in a
local optimal situation. Without combining the individual optimal solution, other bats will
be close to the current optimal solution, resulting in the algorithm being unable to identify
the optimal solution of the objective function. When the individual optimum is added,
the other bats are subject to the traction of the global optimum bat position on the one
hand, and the traction of their own optimum position on the other hand. By adjusting the
parameters of the step size, the possibility of jumping out of the local optimum is increased.
Moreover, if the bat is in the individual optimal position, the value of the individual optimal
term is 0. Therefore, the exploration formula is combined with the individual optimal
solution, and the expression formula is as follows:

fi = fmin + ( fmax − fmin)rand (9){
xt+1

i = xt
i + (xbest − xt

i ) f1 + (xt
k − xt

i ) f2 + (x∗i − xt
i ) f3 f (F(xt

v) < F(xt
i ))

xt+1
i = xt

i + (xbest − xt
i ) f1 + (x∗i − xt

i ) f3 else
(10)

where xt
i is the current position of the ith bat (i = 1, . . . , m), m is the number of the bat

population, xt+1
i is the updated position of the ith bat, xt

k is the randomly selected bat
position (k 6= i), x∗i is the individual optimum solution for the ith bat in the search process,
fi is the frequency of the ith bat and F(•) is the function value of substituting the bat into
the objective function. Rand is a random number generated by a uniform distribution in
the range of [0, 1].

To increase the diversity of the population, broaden the search range and avoid the
possibility of falling into the local optimum, the elimination strategy is used in this paper.
It is used to rank bats in a population according to their fitness during the iteration, and
the lower-ranked bats are eliminated, and a corresponding number of new bats are added
based on their current optimal location. The new bats randomly inherit a certain number
of coordinates from the optimum bat, while the remaining coordinates are randomly
generated within the search range. The elimination strategy can perturb the bat population
and give the BA a chance to jump out of the local optimum. This strategy improves the
quality of the bat population well, eliminates bats with poor fitness values, generates
new bats based on the optimal bats and increases the diversity of the bat population in
the algorithm.
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The detailed procedures of MDBA are as follows:

1. Give different initial values of parameters, bat population m, iteration number N,
initial value of loudness A0, final value of loudness A∞, initial value of pulse rate
r0, final value of pulse rate r∞, maximum frequency fmax, minimum frequency fmin,
upper limit of variable Ubi, and lower limit of variable Lbi.

2. Give each bat a random initial position xi(i = 1, 2, 3, . . . . . . , m), and select the optimal
solution from the initial bat xbest.

3. Update bat frequency and location according to Equations (9) and (10).
4. When the condition (rand > ri) is satisfied, each bat uses the local search Equation (11)

to generate a new location locally.

xt+1
i = xt

i + Atεwt
i (11)

where At is the average loudness of all bats, and ε ∈ [−1, 1] is a random vector. wt
i

is a parameter that regulates the search scale during iteration. It starts with a larger
value (about a quarter of the search domain) and then decreases to 1% of the initial
value. The updating formula of wt

i is as follows:

wt
i =

(
wi0 − wi∞
1− tmax

)
(t− tmax) + wi∞ (12)

5. When the condition (rand < Ai&F(xt+1
i ) < F(xt

i ) is met, update parameters ri and
Ai according to the following rules:

rt = (
r0 − r∞

1− tmax
)(t− tmax) + r∞ (13)

At = (
A0 − A∞

1− tmax
)(t− tmax) + A∞ (14)

6. Update the optimal solution.
7. If the elimination strategy is satisfied, population adjustment is carried out, otherwise

perform the next step.
8. Judge if the maximum number of iterations is reached, and if not, the next will

be performed.
9. At the end of the iteration, the optimal solution that minimizes the value of the

objective function is the output.

Figure 3 is a flow chart of MDBA.
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4. Numerical Simulation

A beam-type bridge model and a truss-type bridge model have been used as numerical
examples to verify the convergence, accuracy and robustness of the proposed MDBA under
the condition of low population and few iterations. The MDBA is compared with PSO, DE,
SFLA and several variants of BA. All the algorithms have the same population number
and iterations times in the different simulations, and the population number is set to 40,
and the number of iterations is set to 100. The parameters of these algorithms are set as
follows [12,19,35,44], MDBA: The parameters’ settings are r0 = 0.1, r∞ = 0.7, A0 = 0.9,
A∞ = 0.6, fmin = 0 and fmax = 2. SFLA: The parameters’ settings are m = 5, L = 25
and Smax = 100%. PSO: The parameters’ settings are c1 = 1.49 and c2 = 1.49. DE: The
parameters’ settings are CR = rand[0.2, 0.9] and F = rand[0.4, 1]. DBA: The parameters’
settings are r0 = 0.1, r∞ = 0.7, A0 = 0.9, A∞ = 0.6, fmin = 0 and fmax = 2. LBA: The
parameters’ settings are r = 0.1, A = 0.9, fmin = 0, fmax = 2, α = 0.9, γ = 0.9 and β = 1.7.
TMBA: The parameters’ settings are r = 0.1, A = 0.9, fmin = 0, fmax = 2, α = 0.9 and
γ = 0.9.

4.1. Beam-Type Bridge Model

The beam-type bridge model is shown in Figure 4, with a total of 10 elements and
11 nodes. The moment of inertia of the beam is I = 7.617× 10−7m4, the young’s modulus of
elasticity is E = 2.1× 1011 Pa, the mass density is ρ = 7850 kgm−3 and the cross-sectional
area is A = 1.164× 10−3 m2. The first five natural frequencies and the corresponding
modes of vertical degrees of freedom are used to identify the structural damage.
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The numerical simulation process is completed by matlab2020b software. The damage
of the beam-type bridge model is shown in Figure 5. The stiffness of the second element
and the seventh element are reduced by 20% and 25%, respectively.
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Figure 5. Case of damage beam-type bridge model.

The stiffness is identified by MDBA, PSO, DE and SFLA under the same population
number and iteration times. The convergence graph and identification result without noise
of different optimization algorithms are shown in Figure 6 and Table 1. It is clear that all
the algorithms could identify the damage location. From the point of view of identification
accuracy, MDBA had the highest identification accuracy, and its maximum relative error
was only 0.05%. The maximum relative error of other algorithms was 1.36% (SFLA),
20% (PSO) and 10.95% (DE), respectively. The accuracy of SFLA was better than that of
PSO and DE, but SFLA and PSO had small misjudgments in the undamaged area. As
can be seen from Figure 6a, the MDBA algorithm had the fastest convergence speed of
all the algorithms, and its number of iterations was only 10 when the objective function
reached its optimal value. Though the SFLA algorithm shows better convergence than
MDBA at the beginning, the iterations times with the optimal objective function was about
twice that of MDBA. Therefore, the proposed MDBA had faster convergence speed and
better identification accuracy than those of the other three algorithms in the case of small
population and few iterations.
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Table 1. The identification results of the damaged case by four different algorithms.

Algorithm
Damage Severity (Relative Error) Obvious Error Alarm

Damage Element 2 Damage Element 7 Damage Severity @ Element

MDBA 19.99% (0.05%) 25.00% (0%) none
SFLA 20.16% (0.80%) 24.66% (1.36%) 5.15%@5
PSO 20.08% (0.40%) 30.00% (20.00%) 3.00%@1, 3.17%@3
DE 17.81% (10.95%) 23.53% (5.88%) none

In addition, when different swarm intelligence algorithms [42,43,45] were employed
to identify the same structure of 10-element beam, a large number of populations and
iterations were required. The total number of searches by the swarm intelligence algorithm
depends on population and iterations, which reflects the efficiency of the algorithm [44]. In
this example, MDBA showed high efficiency under the condition of a smaller population
and fewer iterations.
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To verify that the MDBA algorithm has better superiority than other improved meth-
ods of BA, MDBA was compared with other bat variants algorithms (DBA, LBA, TMBA) in
this simulation. The convergence graph and identification result without noise of different
bat variants are shown in Figure 7 and Table 2. It is clear in Figure 7a that under the
condition of the same small population and few iterations, MDBA had a faster convergence
rate than other bat variants. All of the four algorithms could accurately find the damage
location of structure, but the MDBA had the best identification accuracy in damage degree,
and its maximum relative error was only 0.05%. The maximum relative error of other bat
variants algorithms were 5.7% (DBA), 8.6% (TMBA) and 23.4% (LBA), respectively. DBA
had a small error alarm in element 4. Due to the small population and few iterations, the
other three variations of BA did not perform well in the accuracy of structural damage
identification. Therefore, the proposed MDBA has better superiority under the condition
of a small population and few iterations.
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Table 2. The identification results of the damaged case by other variations of BA.

Algorithm
Damage Severity (Relative Error) Obvious Error Alarm

Damage Element 2 Damage Element 7 Damage Severity @ Element

MDBA 19.99% (0.05%) 25.00% (0%) none
DBA 18.86% (5.70%) 26.01% (4.04%) 2.65%@4
LBA 15.32% (23.40%) 23.51% (5.96%) none

TMBA 21.28% (6.40%) 22.85% (8.60%) none

Next, the robustness of MDBA was verified, and different degrees of noise were
applied to the modal information. The identification result under the same small population
and few iterations is shown in Figure 8 and Table 3. It is clear that with the increase of noise
level, the relative error of the identification results also gradually increased. However, the
maximum relative error was only 5.64% in the noise levels of 5%. Under the condition of a
small population and few iterations, MDBA also showed good identification results and
robustness in the case of different noises.

Table 3. The identification results of the damaged case by MDBA in different noise levels.

Noise Level
Damage Severity (Relative Error)

Error Alarm Element
Damage Element 2 Damage Element 7

none 19.99% (0.05%) 25.00% (0%) none
1% 19.76% (1.2%) 24.43% (2.28%) none
5% 20.41% (2.05%) 23.59% (5.64%) 10



Appl. Sci. 2021, 11, 6507 10 of 15

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15 
 

  

(a) (b) 

Figure 7. (a) The convergence curves achieved by other variations of BA for the objection function. (b) The identification 

results of the damaged case by other variations of BA. 

Table 2. The identification results of the damaged case by other variations of BA. 

Algorithm 
Damage Severity (Relative Error) Obvious Error Alarm 

Damage Element 2 Damage Element 7 Damage Severity @ Element 

MDBA 19.99% (0.05%) 25.00% (0%) none 

DBA 18.86% (5.70%) 26.01% (4.04%) 2.65%@4 

LBA 15.32% (23.40%) 23.51% (5.96%) none 

TMBA 21.28% (6.40%) 22.85% (8.60%) none 

Next, the robustness of MDBA was verified, and different degrees of noise were ap-

plied to the modal information. The identification result under the same small population 

and few iterations is shown in Figure 8 and Table 3. It is clear that with the increase of 

noise level, the relative error of the identification results also gradually increased. How-

ever, the maximum relative error was only 5.64% in the noise levels of 5%. Under the 

condition of a small population and few iterations, MDBA also showed good identifica-

tion results and robustness in the case of different noises. 

 

Figure 8. The identification results of the damaged case by MDBA under different noise condi-

tions. 

Table 3. The identification results of the damaged case by MDBA in different noise levels. 

Noise Level 
Damage Severity (Relative Error) 

Error Alarm Element 
Damage Element 2 Damage Element 7 

none 19.99% (0.05%) 25.00% (0%) none 

1% 19.76% (1.2%) 24.43% (2.28%) none 
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4.2. Truss-Type Bridge Model

To further verify the performance of MDBA in structural damage identification, a truss-
type bridge model was used. The young’s modulus of elasticity was E = 2.1× 1011 Pa, the
mass density was ρ = 7800 kgm−3 and the cross-sectional area was A = 7.854× 10−5 m2,
as shown in Figure 9. The first five natural frequencies and the corresponding modes of
vertical degrees of freedom were used to identify the structural damage.
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Figure 9. Truss-type bridge model.

Two kinds of damaged cases were set; case 1 was the complex damaged case with
multiple damage of members; case 2 was the small damage cases with multiple damage of
members, as shown in Figure 10a,b. The MDBA was verified by applying different degrees
of noise to the modal information.
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Figure 10. (a) case 1: complex damage case with multiple damage of members. (b) case 2: small
damage case with multiple damage of members.

This structure was also identified by several bat variants with the same population
number and iterations times in the complex multiple damage cases. The convergence
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graph and identification result diagram of the objective function of different bat variants
algorithms in damage case 1 are shown in Figure 11. The detailed results of identification
are shown in Table 4.
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In the complex multi-damage cases without noise, the MDBA converged to the op-
timal value of the function when the number of iterations reached 25. The structural
damage identification results of MDBA at damaged elements were 19.99% (element 6),
20.00% (element 7), 24.99% (element 14) and 14.99% (element 22), respectively, and the
relative error was 0.07%–0%. Under the condition of a small population and few iterations,
all four algorithms could accurately find the location of structural damage, but the MDBA
had the best identification accuracy in damage degree and the best and fastest conver-
gence. Furthermore, MDBA had no error alarm where the structure was not damaged.
Therefore, MDBA was superior to the other three bat variants in convergence rate and
recognition accuracy.
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Table 4. The identification results of the damaged case by other variations of BA.

Algorithm
Damage Severity (Relative Error) Obvious Error Alarm

Damage Element 6 Damage Element 7 Damage Element 14 Damage Element 22 Damage Severity@Element

MDBA 19.99% (0.05%) 20.00% (0%) 24.99% (0.04%) 14.99% (0.07%) none
DBA 19.16% (4.20%) 20.60% (3.0%) 24.47% (2.12%) 12.85% (14.33%) 2.17%@11
LBA 19.67% (1.65%) 13.88% (30.60%) 26.41% (5.64%) 23.73% (58.20%) 2.21%@8

TMBA 14.48% (27.60%) 18.69% (6.55%) 26.06% (4.24%) 7.92% (47.20%) 6.64%@25

To verify the anti-noise performance of the MDBA, the identification of two damage
cases by MDBA at different noise levels were studied. The detailed results of identification
are shown in Figure 12 and Table 5. It is clear that the relative error of the identification
results also gradually increased with the increase of noise level, and there are two tiny
misjudgments in element 11 and element 13 in case 2. In the two damage cases, the
maximum relative error was only 6.53%. Especially in cases of minor damage in case 2,
the maximum relative error was only 5.5%. Therefore, under the condition of a small
population and few iterations, the MDBA not only showed accurate identification results
for complex and multiple damage cases at different noise levels, but had a high sensitivity
for a minor damage case and could accurately locate and quantify the structural damage.
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ElementDamage
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Damage
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Damage
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Damage

Element 22

Case 1

None 19.99% (0.05%) 20.00% (0%) 24.99% (0.04%) 14.99% (0.07%) none

1% 20.05% (0.25%) 19.83% (0.85%) 25.26% (1.04%) 14.52% (3.20%) none

3% 19.11% (4.45%) 19.61% (1.95%) 24.87% (0.52%) 15.98% (6.53%) none

Damage Case Noise Level Damage
Element 7 Damage Element 15 Damage

Element 22
Error Alarm

Element

Case 2

None 7.99% (0.13%) 6.00% (0%) 5.99% (0.17%) none

1% 7.95% (0.63%) 6.06% (1%) 6.24% (4%) none

3% 7.94% (0.75%) 6.05% (0.83%) 5.67% (5.5%) 11, 13
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5. Conclusions

In this paper, a modified directional bat algorithm (MDBA) has been proposed for
structural damage identification. By combining the individual optimal solution and elimi-
nation strategy, the optimization ability of the directional bat algorithm was strengthened.
In this method, the problem of damage identification was transformed into a mathematical
constrained optimization problem, and the objective function was established by frequency
and mode shape. The MDBA was used to solve the constrained optimization problem. The
performance of the MDBA was evaluated through the numerical simulation of a beam-type
bridge and a truss-type bridge, and it was compared with other algorithms (PSO, DE,
SFLA) and other variations of BA (DBA, LBA, TMBA). The following conclusions could
be drawn:

1. The MDBA has the advantages of less parameters, fast convergence speed and strong
global search ability, which provides a more effective and potential tool for solving
structural damage identification problems.

2. For a variety of structural damage cases given different degrees of environmental
noise, the MDBA could accurately locate the structural damage and estimate the
damage degree, which shows its good robustness.

3. Compared with PSO, DE, SFLA and several BA variant algorithms, the MDBA has
better accuracy and convergence rate in the case of the same small population and
few iterations.

Under a small population and few iterations, however, the MDBA showed the fast
convergence and accurate identification in the two above numerical simulations, and the
robustness performance and the sensitivity to small damage were verified. It should
be noted that the proposed method needs to be further verified by complex large struc-
tures and more realistic 3D models, as well as through laboratory verification or actual
structure verification.
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