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Abstract: It is recognized that stress conditions play an important role in the definition of individual
wellness and represent a major risk factor for most non-communicable diseases. Most studies focus
on the evaluation of response to maximal stress conditions while a few of them reports results
about the detection/monitoring of response to mild stimulations. In this study, we investigate the
capability of some physiological signs and indicators (including Heart Rate, Heart Rate Variability,
Respiratory Rate, Galvanic Skin Response) to recognize stress in response to moderate cognitive
activation in daily life settings. To achieve this goal, we built up an unobtrusive platform to collect
signals from healthy volunteers (10 subjects) undergoing cognitive activation via Stroop Color
Word Test. We integrated our dataset with data from the Stress Recognition in the Automobile
Drivers dataset. Following data harmonization, signal recordings in both datasets were split into
five-minute blocks and a set of 12 features was extracted from each block. A feature selection was
implemented by two complementary approaches: Sequential Forward Feature Selection (SFFS)
and Auto-Encoder (AE) neural networks. Finally, we explored the use of Self-Organizing Map
(SOM) to provide a flexible representation of an individual status. From the initial feature set we
have determined, by SFFS analysis, that 2 of them (median Respiratory Rate and number peaks in
Galvanic Skin Response signals) can discriminate activation statuses from resting ones. In addition,
AE experiments also support that two features can suffice for recognition. Finally, we showed that
SOM can provide a comprehensive but compact description of activation statuses allowing a fine
prototypical representation of individual status.

Keywords: personal wellness; stress monitoring; multi-sensing platforms; imaging photo-
plethysmography; galvanic skin response; sequential forward feature selection; auto-encoder net-
works; self-organizing maps

1. Introduction

Wellness indicates the state or condition of being in good physical and mental health.
According to the World Health Organization, health should be defined as a state of com-
plete physical, mental, and social wellness, and not merely as the absence of disease and
infirmity [1].

Stress is a common state of emotional strain that plays a crucial role in everyday
quality of life with a significant impact on the wellness state of a person. This state
consists of several complementary and interacting components (i.e., cognitive, affective,
and psycho-physiological). Furthermore, chronic stress carries a wide range of health-
related diseases, including cardiovascular diseases, cerebrovascular diseases, diabetes,
and immune deficiencies [2,3]. Due to the adverse effects of stress in our daily life, stress
monitoring and management has been receiving an increasing attention in healthcare and
wellness research [4]. As a matter of fact, stress is recognized as a major risk factor for most
non-communicable diseases and its evaluation is crucial for defining individual wellness.
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Stress induces anomalous responses of the Autonomic Nervous Systems (ANS) which
is a main actor in stress counteraction [5,6]. In particular, the activation of the sympa-
thetic nervous system might be accompanied by many physical reactions, such as increas-
ing the heart rate and blood supply to muscles, activating sweat glands, and increasing
respiratory rate.

As to stress monitoring, several physiological signals and indicators provide impor-
tant clues about individual status. Heart rate (HR) and heart rate variability (HRV) are
crucial indicators of the psychophysical status of an individual and are useful clues for
detecting risky conditions. The HR varies according to the body’s physical needs, changes
being observed in a variety of conditions including physical exercise, sleep, anxiety, stress,
illness, and assumption of drugs. Monitoring the heart rate is therefore important in both
normal and disease conditions. The HRV is an index of the adaptation of the heart to
circumstances by detecting and readily responding to unpredictable stimuli. The HRV is
mainly modulated by the sympathetic and parasympathetic components of the autonomic
nervous system [7]. Beside alterations related to cardiac diseases [8], HRV is an important
measure of mental stress and, coupled with the HR, is commonly used to monitor individ-
ual wellness in behavioral research [9]. The gold standard for HR and HRV assessment
is ECG recording that allows the fine localization of heart beats [10]. In recent years, sev-
eral methods have been studied to allow the non-contact measurement of HR and HRV,
including HR from speech [11], thermal imaging [12], microwave Doppler effect [13], and
imaging photoplethysmography (iPPG) [14–17]. The latter approach could greatly simplify
data acquisition, making measurement easily available in non-clinical scenarios (e.g., driver
monitoring [14], human–machine interaction monitoring [18]). According to our previous
experience [19], iPPG can offer a valid alternative to standard PPG.

Respiratory rate (RR) carries important information on a person’s health condition and
physiological stability, an abnormal respiratory rate being a strong illness indicator [20]. In
particular, respiratory rate increases significantly under stressful situations [21]. Current
methods to collect respiration data include the use of respiration belts, measurement of
impedance through ECG electrodes, spirometers, or visual observation/counting. These
techniques have drawbacks that limit the frequency and convenience of the respiratory
monitoring. The large diffusion of wearable devices has stimulated interest in monitoring
athlete training, with the aim of maximizing performance, and minimizing the risk of
injury and illness. In these field, chest belts are a common choice. It worth mentioning that
respiratory rate too could be monitored by imaging ([22–24]).

Galvanic skin response (GSR) is sensitive to many different stimuli (strong emotion, a
startling event, pain, exercise, deep breathing, a demanding task, cognitive workload, and
stressing stimulation) and identifying the primary cause of a particular skin-conductivity
response may be hard. Anyway, a lot of different studies reported that the electrodermal
response represents an adequate measure for stress-related sympathetic activation [25].
GSR can be measured by different methods. In general, GSR sensor measures the real-time
skin conductance which is related to the sweat gland activity depending on emotional
response and environmental condition [26]. GSR is typically acquired in hand fingers.

In recent years, the interest of the scientific community has progressively expanded
toward multi-sensing technologies able to integrate different signals and build effective
monitoring system useful to detect dangerous conditions and driving coping actions [27].
In particular, machine learning paradigms looks very promising, and their application is
an active field of investigation [28–30].

A common framework of most studies on stress detection/monitoring is the evalu-
ation of response to maximal (or intense) stress. This provides significant details on the
individual capability to react to severe stress. On the other hand, maximal activation is
not the most common experience in everyday life. People usually face a wide spectrum of
stressors implying a variety of activations both positive and negative.

In this work, we focus on the impact of mild stimulations which can be somehow
comparable to usual conditions that everyone can deal with in daily life. The aim is to
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set up a general platform useful to observe the individual status in routine setting (e.g.,
working in an office, driving a car) making it possible to design minimally obtrusive
monitoring/testing procedures for detecting stress situations even in response to mild
cognitive activation or other daily activities.

In the following we will report on the use of machine learning techniques for recog-
nizing activation statuses with respect to resting conditions. To obtain a description of
individual status, iPPG, respiratory waves and GSR signals are integrated at feature level.
Our main aim is to build a flexible representation scheme able to capture the different
facets of individual status, rather than implementing a rest/stress classification scheme.
The reported usage of Kohonen map allows the representation of the individual status
through a set of prototypes (weight vectors) learned from real data without supervision.

In next sections, after describing the used datasets (Section 2) and the related harmo-
nization/processing methodology adopted to derive a compact feature set from signals
acquired in different conditions (Section 3), we analyze the discriminating power of such a
feature set (Section 4) and describe the use of the Self-Organizing Map (SOM) to represent
the status of an individual (Section 5). Results are reported in Section 6.

2. Datasets

In this work we used data from two different datasets: the first one is called Mild
Cognitive Activation (MCA) dataset and was collected in our laboratory to investigate
stress response during cognitive activation in an office-like setting; the second one is the
Stress Recognition in Automobile Drivers (SRAD) dataset from the MIT Media Lab made
publicly available for scientific purposes [31].

2.1. The MCA Dataset

Ten healthy participants (7 females and 3 males with mean age 45 years, range 25–62)
were recruited for voluntary participation in this study. The experimental protocol re-
ceived the Ethical Clearance certification (0050349/2019) by the National Research Council
Committee for Research Ethics and Bioethics. Written informed consent was obtained
from all subjects. The following non-medical commercial devices were adopted to monitor
physiological signals:

• IDS UI-5240SE gigabit ethernet camera with a CMOS monochrome sensor to monitor
HR and HRV via face iPPG. To enhance the iPPG signal, an optical band-pass filter
centered at 560 nm with a bandwidth of 40 nm was mounted on the camera.

• BioHarness 3 Zephyr chest belt used to measure RR;
• Shimmer3 GSR to acquire galvanic skin response.

All sensors were connected to an Apple Mac Mini computer (Intel Core i7 dual-core
3 GHz processor, 16 GB RAM, and 500 GB SSD).

Cognitive activation was induced by the Stroop Color Word Test (SCWT). A portable
SCWT was implemented by an ad hoc Java app (Figure 1). We used two different versions
of the test:

• Test A—a congruent version of the SCWT, where the font color always matched the
displayed color name. A two-seconds maximum response time was adopted, the
overall test lasting two minutes.

• Test B—an incongruent version of the SCWT, where the font color did not match the
displayed color name. Maximal response time limits as in Test A and overall test
duration was three minutes.

During the acquisition, subjects were sitting in front of a computer monitor at a dis-
tance of about one meter (see Figure 2). The camera was positioned on a tripod next the
monitor. To reduce acquisition artifacts related to involuntary movements, the chair had
a headrest to contain head motion and make the recording comfortable for the volunteer.
Through the iPPG camera the acquisition was continuously monitored by experimenters.
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Videos were permanently stored for post-processing analysis. The subject face was illumi-
nated by a white LED light source.
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Figure 1. Stroop Color Word Test.

Figure 2. Experimental setup for MCA data acquisition.

Data acquisition occurred according to the following schedule:

1. At first the volunteer was asked to fill the Perceived Stress Scale questionnaire [32].
Subsequently, all the devices were positioned and tuned.

2. The subject was asked to close his/her eyes and relax. Signals were recorded for five
minutes in resting state.

3. Subsequently, signals were acquired during cognitive activation induced by the SCWT
using Test A followed by Test B.

To self-assess the stress level, after each test we used two different tools as reported
in [33]:

- A Likert-scaled (1–5) question directly asking subjects how much stressed they were
feeling during tests [10];

- A subset of the Stress Appraisal Measure questionnaire [34] including questions 2, 16,
24, and 26.
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2.2. The SRAD Dataset

SRAD database contains a collection of multi-parametric recordings from 17 healthy
volunteers during driving. The dataset is fully described in [31] and is freely available
for download in the Physionet repository [35] at [36]. Records include two 15-min rest
periods occurred before and after a driving session, respectively. In rest periods, the
volunteer sat in the garage with eyes closed and the car in idle. After the first rest period,
drivers drove, for around 50 min, on a prescribed route including city streets and highways.
Four types of physiological sensors were used during the experiment: electrocardiogram,
electromyogram (not used in the present study), galvanic skin response, and respiration.
ECG electrodes were placed in a modified lead II configuration. Respiration was monitored
through chest cavity expansion using an elastic Hall-effect sensor strapped around the
driver’s diaphragm. The ECG was sampled at 496 Hz, the galvanic skin response and
respiratory wave were sampled at 31 Hz.

3. Dataset Harmonization and Analysis

For each subject, the MCA dataset included three blocks of data. The first block was
5 min long and contained the data acquired during the rest state. The other two blocks
were 2 min and 3 min long respectively and contained data acquired during activation of
Test A and B, respectively. For our aims, these two blocks were merged into a single 5-min
window. In this way, each record contains two 5-min blocks.

To homogenize the data from the two datasets, all SRAD recordings were divided
into non-overlapping blocks lasting five minutes. For each subject we had, on average,
a 3–5 blocks representing the resting condition and about 9–11 blocks for driving periods.
A total of 140 blocks , 39 at rest and 101 during driving was extracted.

Signals and data of both datasets were analyzed to extract a set Y of 12 psychophysical
features from ECG, video signal, RR, and GSR as summarized in Table 1.

Table 1. The set Y of extracted features and related source sensors.

Feature Sensor
MCA Dataset SRAD Dataset

Median RR Chest belt Chest belt
RR interquartile range Chest belt Chest belt
Minimum RR Chest belt Chest belt
Maximum RR Chest belt Chest belt
Number of GSR peaks GSR GSR
Maximum GSR peak amplitude GSR GSR
Median GSR peak amplitude GSR GSR
NN Video iPPG ECG
SDNN Video iPPG ECG
LF Video iPPG ECG
HF Video iPPG ECG
LF/HF Video iPPG ECG

It is worth mentioning that data from auto-evaluation questionnaires are only available
for MCA and, therefore, they were not considered for data analysis. In any case, all MCA
subjects did not refer relevant stressing conditions both before, during, and after test.

3.1. MCA Dataset Analysis

The video signal was processed as described in [19] to extract HR and HRV descrip-
tors. In particular, blood volume pulses were detected by analyzing time peaks in video
signals. The related time series provided the video tachogram used for HRV analysis.
To remove possible artifacts, the inter beat intervals were analyzed by a variable-threshold
non-causal algorithm [37]. Tachograms were analyzed both in time domain and in fre-
quency domain. Concerning time domain, we calculated the average time between adjacent
normal heartbeats (NN) and its standard deviation (SDNN). Concerning frequency do-
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main, HRV description was based on power spectrum density (PSD), as estimated by the
Lomb–Scargle periodogram. According to the standard definition of the HRV frequency
bands, low frequency (LF) and high frequency (HF) were calculated as the area under
the PSD curve corresponding from 0.04 Hz to 0.15 Hz and from 0.15 Hz to 0.4 Hz, re-
spectively. The LF component reflects both sympathetic and parasympathetic actions, the
HF component reflects parasympathetic action, and the LF/HF ratio is a measure of the
sympatho/vagal balance.

The values of the median, the interquartile range, the minimum, and the maximum
were calculated for the respiratory rate. RR waveforms were monitored to detect too long
or too short leading to a rate outside a physiological range (8–25 bpm).

Concerning the galvanic skin response, the interfering mains frequency (50 Hz) was
removed from the signal by a notch filter. Subsequently, the GSR signal was down sampled
to 10 Hz. Then it was filtered through a mean filter spanning a 4 s window and a median
filter spanning 8 s. To obtain the phasic component, the signal from the median filter
was subtracted to the one from the mean filter. The number of peaks, the maximum peak
amplitude, and the median peak value were calculated. A total of 20 blocks was then
available from MCA: 10 in rest condition and 10 during SCWT.

3.2. SRAD Dataset Analysis

Due to incompleteness of data, seven SRAD subjects were excluded from the analysis,
and a sub-group of 10 subjects with IDs 4, 5, 7, 8 , 9 ,10, 11, 12, 15, and 16 was considered
in this work. Only the signals common to MCA dataset were analyzed. They included:
ECG, respiratory wave, and the GSR acquired on the palm of the hand. ECG signals were
first pre-processed to detect QRS complexes by Pan-Tompkins algorithm [38] and derive
tachograms that were processed as in the case of MCA data. The respiratory rate (breaths
per minute) was estimated from the respiratory wave by detecting and counting the signal
peaks. The GSR was analyzed as previously described for the MCA dataset.

We wish to point out that 13 blocks of ECG recordings (10 at rest and 3 during driving)
resulted corrupted and were not included in the analysis. A total of 127 blocks was therefore
available from SRAD: 29 in rest condition and 98 during driving.

4. Feature Analysis and Activation Recognition

We have analyzed the Y feature set with respect to its capabilities to recognize resting
states from activation ones, particular attention being paid to the relevance of the various
features. To this end we investigated two complementary approaches: Sequential Forward
Feature Selection (SFFS) and Auto-Encoder (AE) neural networks.

SFFS is a well-established search algorithm whose advantages and limits are well
known [39]. In particular, SFFS is known to work nicely, though non-optimally, for
spaces with moderate dimension [40]. Therefore, though more sophisticated techniques
exist, we adopted SFFS as reasonable trade-off between simplicity and expected accuracy.

Simple feature selection is based on the use of a possibly optimal subset of available
features, and may hinder the correlation among features. During the feature selection
process, dimensionality reduction is usually achieved by completely discarding some
dimensions, which inevitably lead to loss of information. However, sample data in high-
dimensional space generally cannot diffuse uniformly in the whole space; they actually lie
in a low-dimensional manifold embedded in high-dimensional space, the dimension of the
manifold being called the intrinsic dimensionality of the data [41]. Therefore, we explored
an alternative approach based on AEs. They provide a sort of non-linear generalization of
principal component analysis [42]. AEs are largely employed in different machine learn-
ing applications and provide a modern non-supervised framework to assess the intrinsic
dimensionality of data space based on neural networks that learn to output an optimal
reconstruction of the input.

Methods were implemented in MATLAB using ad hoc scripts.
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4.1. Sequential Forward Feature Selection

As summarized in Algorithm 1 SFFS is an iterative search algorithm aiming to find the
best subset including K, K < n, features of the original n-dimensional set Y according to
the predefined criterion J. At first the best single feature optimizing a predefined criterion
is individuated. Afterward, the same criterion is optimized using pairs of features, pairs
being generated by sequentially adding to the previous best single feature one of the
remaining features. The best couple of features is so defined. Next, triplets of features are
formed using one of the remaining features and the previous best couple. This procedure
continues until K features are found.

Algorithm 1: Sequential Forward Feature Selection
Result: Best feature subset YK including K features
Y0 = ∅;
while i < K do

x+ = arg maxx[J(Y + x)] with x ∈ Y−Yi ;
Yi+1 = Yi + x+ ;
i = i + 1 ;

end

The process was implemented using the MATLAB sequentialfs function which selects
a subset of features from the data matrix that best predict the data by sequentially selecting
features until there is no improvement in prediction. Prediction was implemented by
Linear Discriminant Analysis (LDA) [43]. For each candidate feature subset, sequentialfs
performs 10-fold cross-validation by repeatedly training and testing a model (in our case
the LDA classifier) with different training and test subsets.

As sequentialfs randomly splits the initial dataset to implement 10-fold cross-validation,
the feature selection process can yield to different results depending on the run. This is
true for both the number of selected features and which features are selected. To analyze
this effect, sequentialfs was run 1000 times. For each run, we recorded the features selected
by the procedure and the order in which they were selected. In addition, we set up a
scoring system to properly weigh the relevance of the features. Specifically, at each run,
every selected feature received a score equal to its position in the selection process (e.g.,
1 for the first one, 3 for the third one). The features that were not selected were given a
conventional score of 12. The process was repeated for every run and the scores for each
run were summed up. By doing so, a final score of 1000 would indicate a feature selected
as the first one in all runs. A feature with a final score of 12,000 would be a feature never
selected by the method. The method was trained using the SRAD, while MCA data were
used as independent test set. Related results are reported in Section 6, where the behavior
of k-means clustering is also discussed.

4.2. Auto-Encoder Neural Networks

An auto-encoder neural network was applied to the SRAD dataset. This was designed
as a feed-forward neural network with 12 input units, a single hidden layer with logistic
activation, and an output layer with 12 units. The hidden layer had several units variable
from 1 to 12.

The network was trained to reconstruct the input pattern by minimizing the MSE
loss function using the scaled conjugate gradient descent algorithm [44] with a maximum
number of epochs set to 1000.

To optimize data usage and reduce the risk of over-fitting, a training scheme based on
5-fold cross-validation. Twelve AE models were obtained, each with a different number of
hidden units ranging from 1 to 12.

Using the feature sets generated by the auto-encoder, we trained a family of LDA
classifiers to recognize driving periods from rest ones in the SRAD data. This process
generated 12 classification models each of them using several features ranging from 1 to 12.
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In Section 6, accuracy of LDA classifiers in predicting the activation level based on AE
features is reported.

5. Representation of Activation Status in SOM Space

Up to now we have considered the discrimination of resting statuses from activity-
related ones, a task relevant for monitoring and possibly advising a person against risky
conditions. As a matter of fact, a sharp dichotomization between activation and rest
is rather arbitrary and dependent on the subject. In facts, stress responses are largely
variable among individuals and, for an individual, they vary with time. It is, therefore, not
surprising that for a given subject, a set of feature values can relate to a possible activation
status, while for another subject similar values can relate to a different condition. On the
other hand, labels used for training are defined by the presence/absence of stimulation
which, in general, produces a different response depending on the subject. Therefore,
we decided to explore unsupervised machine learning paradigms which do not need a
priori data labeling. In particular, we resorted to investigate the use of Kohonen SOM
which can build accurate, but low-dimensional, topology preserving-maps of the input
data space [45]. This means that similar inputs data tend to excite neighboring units in
the map.

The map space is defined beforehand, usually as a finite two-dimensional region
where a set of nodes mi, i = 1, . . . , N is arranged in a regular grid.

Each node is fed by input data xk via a weight vector wi. For a given input xk, the
output of the network is defined by the best matching (or winning) unit mc obtained by:

c = arg min
k

(||wk − x||) (1)

The weight wc represents the network response and is a point in data space. In this
way, the SOM maps the high-dimensional input space to the low-dimensional
network space.

During training, nodes in the map space stay fixed, while their weight vectors are
moved toward the input data without spoiling the topology induced from the map space.
During a training epoch all input patterns are presented to the network. For each pattern,
the weight of mc unit and neighboring units are adapted according to a predefined neigh-
borhood function hck (Gaussian is a common choice for h). In this work we adopted the
batch version of the SOM adaptation algorithm [45] leading to the adaptation rule:

wi =
∑k hcixk

∑k hci
(2)

Equation (2) ensures a faster convergence and provide more stable results with respect
to stochastic adaptation. After training, SOM can build accurate topographic representation
of the input space catching significant details including data clustering. In particular, each
weight vector ca be viewed as a prototype in data space as it tends to respond to a set of
“near” input points.

Using the MATLAB Neural Network package, we have analyzed 2D maps of varying
dimensions, from 3 × 3 to 6 × 6 units. Networks were trained using the SRAD dataset.
The obtained maps were tested using the MCA dataset.

6. Results

Data were analyzed from different viewpoints including feature analysis and selection
and their ability to describe and recognize rest from activation statuses. Given the limited
sample size of MCA dataset we decide to use SRAD data as development set and MCA
data as test set.
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6.1. SFFS Analysis

Results of the feature selection process are summarized in Table 2 where features are
ranked according to the SFFS score and selection frequency is also reported. In particular,
the median RR was selected in all runs, and is constantly the most relevant single feature.
This suggests that it carries a significant piece of information, irrespective of how the data
are split between training and test set. The number of GSR peaks obtains the second score
in the process, being selected in almost 99% of the runs.

Table 2. SFFS score and selection frequency (SF) for each feature.

Features Score SF (%)

Median RR 1000 100
Number of GSR peaks 2146 98.7
LF/HF 9220 34.2
RR Interquartile range 9571 30.9
NN 9842 26.2
SDNN 10,958 11.8
LF 11,501 7.0
Minimum RR 11,700 4.0
Maximum GSR peak amplitude 11,850 1.7
HF 11,974 0.5
Median GSR peak amplitude 11,991 0.1
Maximum RR 12,000 0

After the first two features, we observed a marked drop in the score. Indeed, LF/HF
(the feature with the third best score, i.e., >9200) was selected in 34% of the runs only.
Similar results were observed for the RR interquartile range and NN. Finally, all other
features have scores that are very close to the maximum (>10,000) to end up with the last
one (the maximum RR) never being selected by the process. Table 3 shows values for the
two most relevant features for all subjects of SRAD used in this work. Analogous data are
reported for MCA in the Table 4.

Table 3. SRAD database: Median RR and Number of GSR peaks both at rest and during driving.
Interquartile range is reported in brackets.

Median RR (bpm) Number of GSR Peaks

ID Rest Driving Rest Driving

04 13.5 (3) 24.5 (3) 8 (6) 22.5 (5)
05 15.5 (3) 23 (4.5) 0 (0) 21 (8.5)
07 14 (2) 20 (2) 10.5 (2) 25 (5)
08 12 (2) 20.5 (2) 0 (2.25) 17 (7)
09 15 (0.75) 21 (2) 0 (0) 15.5 (3)
10 13 (0) 20 (3.8) 3 (0) 18 (6.75)
11 16 (1) 21 (3.3) 0 (0) 21 (5.5)
12 18 (0) 24 (1.6) 6 (6) 26 (10.25)
15 14 (3) 17 (2) 5 (12) 18 (1.5)
16 18 (0.75) 24.5 (2) 15 (8.25) 31 (4)
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Table 4. MCA database: Median RR with interquartile range (in brackets) together with the Number
of GSR peaks both at rest and during SCWT. No IQR is available for MCA GSR as only one block is
present in data.

Median RR (bpm) Number of GSR Peaks

ID Rest SCWT Rest SCWT

01 14 (1) 17.3 (2.7) 0 25
02 16 (3) 17 (1.5) 0 19
03 16 (2) 19.5 (2) 0 18
04 13 (2) 13.5 (1) 0 32
05 11 (4) 18 (3.5) 0 25
06 10 (2) 14.5 (4.5) 11 45
07 17 (1) 19.5 (1) 7 36
08 15 (1) 17 (0) 0 0
09 13 (1) 15.5 (1) 0 0
10 13 (1) 13 (2) 5 44

In Figure 3 we plot the accuracy of LDA classifier obtained on the SRAD dataset with
different numbers of features according to SFFS ranking. A similar plot is also given for
MCA as test set. For SRAD the accuracy amounts at about 93% for a single feature rising
to about 98% with two features with no further significant changes using the remaining
features. For the MCA data we observe a rapid increase to about 90% with two features,
fluctuations being present when using more than six features.

SRAD MCA

Figure 3. On the left: Accuracy of LDA classifier evaluated on the SRAD dataset varying the number of features according
to SFFS ranking. On the right: accuracy versus number of features evaluated on MCA.

6.2. AE Features

In general, the observed accuracy of AE features resulted high (>90%), with the worst
performance (about 93%) obtained when a single feature was available (Figure 4). When
two (or more) features were employed, the accuracy fluctuated around 93–95%. Therefore
using more than two AE features did not significantly improve discrimination capabilities.
Indeed, a maximal accuracy of (about 95%) was already met using two features.
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SRAD MCA

Figure 4. On the left: Accuracy of LDA classifier evaluated on the SRAD dataset with different auto-encoding dimensionality.
On the right: accuracy evaluated on MCA.

When each of the 12 models were tested on the MCA dataset, results were found to be
affected by a larger variability (Figure 4). With a single feature, the accuracy is 0.5 (chance
level). However, also in this case, using two features produces a substantial accuracy
boosting. This reached its maximum with three features (at around 90%). The inclusion of
additional features results in accuracy fluctuation about lower values.

To sum up, both SFFS and AE support the finding that two features may be sufficient
to reliably recognize activation statuses.

6.3. Data Clustering

According to the results of the selection process, the best features were identified
as the median RR and the number of GSR peaks. We have further investigated the joint
use of these features with respect to their capability to cluster the data space. To this end,
we partitioned SRAD data in two cluster using standard k-means algorithm as provided
in MATLAB. Clustering (see Figure 5) was correlated with the dataset labels (either rest
or driving). K-means clustering led to an 87.9% recognition rate for the rest state and a
92.3% recognition rate for the driving state. As shown in Table 5, the overall classification
accuracy was 89.4%.

It is worth mentioning that using the same cluster centroids for MCA data we found a
90% rate of correct classification (Figure 5). By taking a closer look at these results, we found
that 100% classification accuracy was not achieved as the algorithm failed to recognize the
activation state of the two non-naïve subjects. Actually, they have had significant previous
experience with the SCWT.

Table 5. Confusion matrices for k-means clustering for both SRAD and MCA datasets (R: rest,
A: activation).

Predicted as

R A R A

True R 48 (92.3%) 12 (12.1%) R 10 (100%) 2 (20%)

A 4 (7.7%) 87 (87.9%) A 0 (0%) 8 (80%)

SRAD MCA
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Figure 5. On the left: cluster scatter-plot on the SRAD dataset. On the right: clustering evaluated on MCA.

To better understand what could have been the contribution of additional features,
we repeated the same process using other features. However, performance of k-means
clustering deviated significantly from rest/activation data labeling.

Finally, we wish to point out that k-means was repeated 1000 times with random
cluster initialization: we observed changes in final centroid position in less than 15% of
cases. However, even in these cases, displacement of cluster centroids was quite limited.
Indeed, we observed a change in coordinates of < 1% the total range of the feature space.

6.4. Self-Organizing Maps

We have trained a set of two-dimensional SOMs with several units varying from 3× 3
to 6× 6. We did not consider larger maps due the limited dataset size. Maps were trained
on the SRAD dataset. For each map size, training was run ten times with random weight
initialization. Apart changes in map orientation, no relevant difference was detected inside
each run.

As we are interested in the topographic representation produced by SOMs, we have
analyzed each map with respect to the distance between weights of neighboring units (the
so-called U-map), and the distribution in the network space of each weight dimension
(weight-plane maps). In addition, to explore the semantic role of unit activation we
analyzed the distribution of data labels in network space (categorical hit maps). Since the
results do not vary significantly with the number of units, to ease readability, we show only
data for 5× 5 SOM.

Map distances in Figure 6 suggest that the units in the right upper corner are rather
apart from the other units that tend to be closer each other. This confirms previous data from
feature selection and data clustering, and suggests that the data space can be partitioned
into two highly structured clusters. It is worth noting that larger maps are expected to
capture finer structural details of data as suggested by the comparison of the maps.
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SOM Neighbour Weight Distances

Figure 6. Maps of distances between the weight of neighboring units for 5× 5 SOM. Darkest colors
indicate largest distance while light colors denote smallest ones.

The distribution of SOM weights (Figure 7) provides additional support to distance
maps. In particular, spatial arrangement of weights looks consistent among different map
sizes. In addition, several components (e.g., those corresponding to median RR, GSR peak
number, LF/HF, NN, LF, and HF ) exhibit a well-defined spatial distribution. In particular,
some of them such as the weights of median RR and GSR peak number can be related to
the partition appearing the left upper part of the map.

Categorical hit maps (top of Figure 8) for the rest and activation labels of the SRAD
dataset show a rather neat distinction among the two categories: only a few units respond
simultaneously to both rest and activation data. In the bottom part of Figure 8, we report
the hit maps for rest and activation categories of MCA dataset. These maps exhibit a
behavior similar to the case of SRAD data.

Map units can be a posteriori labeled according to several criteria. For example, using
the majority-voting scheme as in [46], we obtain the label map in Figure 9. Comparing
MCA hits maps with labels we obtain 3 misclassifications (2 false rests and one false
activation). It is worth noting that misclassified patterns are next to units that would
correctly classify them. It stands to reason that using larger maps trained on extended
data could improve labeling result. On the other hand, majority-voting labeling can be
sub-optimal and the use of fuzzy labeling [47] should be preferred.
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Figure 7. Maps of weight components. Darkest colors indicate smallest values while light colors denote largest ones.

SRAD dataset

ActivationRest

MCA dataset

Figure 8. Map of winning units according to rest and activation labels. Top: data from SRAD dataset, Bottom: data for
MCA dataset.
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rest activation

Figure 9. SOM units labeled according to a majority-voting scheme described in [46].

To summarize, results support that SOM has learned a topographic representation of
the input space congruous with a priori data labels.

7. Discussion and Conclusions

In this work we reported on the use of a measurement setup aiming to the unobtru-
sive monitoring of psychophysical signals for detecting and analyzing potential stressing
conditions in everyday life settings.

We have jointly analyzed two different datasets (MCA collected by our research group
and SRAD from MIT Media lab). Aiming to assess stress activation, both were produced by
recording a set of physiological signals in different settings. Our investigation was mainly
conducted using the SRAD dataset (the most numerous) as development set, while MCA
data were used for independent testing.

The work is focused on two main aspects: (a) recognition of activation statuses from
resting ones and (b) building a comprehensive but compact description of individual status
that could be useful in monitoring individual well-being.

From the original data space we extracted a set of 12 features including descriptors of
HR, HRV, RR and GSR which are sensitive to individual response to stressors with emphasis
on ANS response. Analysis of SRAD feature space by SFFS supports the conclusion that
median RR and GSR peaks number has a prominent discriminating power and can lead to
recognize activation statuses, which is also confirmed by MCA data analysis.

We also tested AE features obtained from the SRAD dataset. They are estimated using
whole original data and are expected to reduce the potential information loss of SFFS
mechanism. Results suggest that using two AE features can lead to good discrimination of
rest states from activation ones. A similar conclusion is obtained using the same AE features
for MCA dataset. It stands to reason that our data space is intrinsically two-dimensional
with respect recognition of activation condition. This conclusion is also in accord with SFFS
results.

Though the obtained results are consistent with background literature, they are in
a sense surprising as the two datasets used for development and testing were acquired
under completely different experimental conditions (while driving or while performing the
SCWT). This supports the idea that the used feature set is highly descriptive of individual
activation status and able to predict a wide spectrum of activation conditions. When
applying standard k-means algorithm using the two most relevant features we observed
two clusters that well represent rest and activation labels. This clustering is consistent with
MCA data.



Appl. Sci. 2021, 11, 6381 16 of 18

It must be pointed out that individual responses are intrinsically variable and the use
of flexible but compact representations of individual status are highly desirable. In this
context, the use of SOM networks revealed promising.

Being non-supervised, SOM can autonomously discover significant pieces of informa-
tion embedded in data space. In addition, they project input data manifold onto network
space by preserving topology and related structural properties such as clustering.

SOMs derived on SRAD data show the existence of two virtually separated zones
in the map: one of them tends to respond to rest statuses, while the other best matches
activation statuses. After labeling the SOM with a majority-voting scheme, we correctly
classified 85% of MCA data blocks, as compared to 90% by k-means clustering with SFFS.
SOM activation maps show that misclassification occurred next the border between the
two groups. It is expected that using fuzzy labeling schemes along with extended training
and testing data can lead to performance improvement.

A significant aspect of SOMs that is relevant for applications is their ability to discover
and represent the internal structure of large clusters. In particular, each map unit can be
viewed as a prototype (or code) of the individual’s status. In this view, activation (or rest)
of a person is naturally represented by a structured family of codes. Investigation of the
structure of such codes is our current focus of research. It will drive the acquisition of novel
data and implementation of alternative SOM labeling.
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