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Abstract: Effective detection of autism spectrum disorder (ASD) is a complicated procedure, due
to the hundreds of parameters suggested to be implicated in its etiology. As such, machine learn-
ing methods have been consistently applied to facilitate diagnosis, although the scarcity of potent
autism-related biomarkers is a bottleneck. More importantly, the variability of the imported attributes
among different sites (e.g., acquisition parameters) and different individuals (e.g., demographics,
movement, etc.) pose additional challenges, eluding adequate generalization and universal modeling.
The present study focuses on a data-driven approach for the identification of efficacious biomarkers
for the classification between typically developed (TD) and ASD individuals utilizing functional
magnetic resonance imaging (fMRI) data on the default mode network (DMN) and non-physiological
parameters. From the fMRI data, static and dynamic connectivity were calculated and fed to a feature
selection and classification framework along with the demographic, acquisition and motion informa-
tion to obtain the most prominent features in regard to autism discrimination. The acquired results
provided high classification accuracy of 76.63%, while revealing static and dynamic connectivity as
the most prominent indicators. Subsequent analysis illustrated the bilateral parahippocampal gyrus,
right precuneus, midline frontal, and paracingulate as the most significant brain regions, in addition
to an overall connectivity increment.

Keywords: ASD; fMRI; DMN; biomarker; dynamic functional connectivity; feature selection; classifi-
cation

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder described by
social interaction and communication deficiencies, as well as restricted repetitive behav-
iors [1]. ASD is predominantly diagnosed by an expert clinician via the observation of the
individual’s characteristics, specific questionnaires, and/or family members’ descriptions.
However, due to the large range of attibutes incorporated in ASD, as well as the clinician’s
subjective diagnostic criteria, ASD identification is prone to misdiagnosis [2,3]. To that
end, the main obstacle for accurate ASD detection is the lack of quantitative character-
istics/biomarkers clearly linked to autism-related attributes with any kind of imaging
modality, with the exception of a limited number of magnetic resonance imaging (MRI)
volumetric differences between ASD and typically developed (TD) individuals [4–6].

Towards identifying discriminative ASD patterns in a functional level, functional
connectivity (FC) is ideal to represent the statistical dependencies between the various brain
regions [7]. To that end, recent studies employing resting state functional MRI (fMRI) data
report FC differences in the default mode network (DMN) between ASD and TD subjects,
therefore suggesting it can serve as a possible ASD biomarker [8,9]. DMN is a widespread
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brain network implicated in mumerous cognitive conditions and states and consists of
the superior frontal gyrus, the medial prefrontal cortex, the precuneus, the posterior
cingulate cortex, the inferior parietal lobules, and the hippocampus [9]. In this regard, FC
analysis in the DMN has indicated the precuneus to be important for the identification
of ASD individuals [9]. Furthermore, Jung et al. [10] found statistically significant FC
alterations among the regions of the DMN and specifically an overall autism-related under-
connectivity pattern. On the contrary, Abbott et al. reported higher connectivity in specific
DMN regions of interest (ROIs) related to individuals with ASD [8]. Of note is that between
different studies, over- or under-connectivity patterns can vary relevant to several factors
such as the brain atlas selected, the FC design and methodological precedures. Despite
these facts, however, ROIs consisting the DMN have been found to improve the diagnosis,
due to the functionalities they have been linked to (such as the social interaction capabilities,
theory of mind, and the manner autistic people identify the world and themselves) [11–13].

Towards enhancing ASD identification, artificial intelligence techniques have become
a well-established tool for the development and application of decision support systems
as diagnostic aid [14,15]. In this direction, the majority of recent studies employ the
Autism Brain Imaging Data Exchange (ABIDE) dataset (or parts of it), which provides
multiple brain parcellation schemes of 17 clinics in the USA, including 1112 individuals in
total, along with a variety of machine learning methods, brain atlases, and pre-processing
pipelines [16]. For instance, Plitt et al. combined whole-brain FC and behavioral features
on 90 individuals from three sites of the ABIDE I dataset and achieved a classification
accuracy of 73.89% using an L2-regularized logistic regression and a stratified 10-fold
validation scheme [17]. In a similar manner, Chen et al. reached 66% accuracy by utilizing
a custom brain parcellation precedure on 20% of the initial ABIDE I dataset (based on age
and head motion criteria) paired with whole-brain FC and a support vector machine (SVM)
classifier [18]. More recently, Wang et al. used approximately 50% of the ABIDE I dataset to
calculate FC among 35 ROIs and attained SVM accuracy of 90.6% [19]. In ABIDE I subset
analogous studies, age-matched data and the Craddock brain parcellation atlas combined
with convolutional neural networks deep learning methods presented 72.73% [20] and
70.22% [21] classification performance.

A major limitation of related studies concerns the diversity of the dataset that they
utilize, since a small number of instances/subjects or a targeted group can result in low
sample heterogeneity and might fail to produce a universal model regarding distinct
autistic biomarkers [22]. This is further supported when classification architectures are
expanded in the whole ABIDE I dataset, usually leading to inferior results. Particulalry,
in Abraham et al., the entire ABIDE I dataset was employed using the Harvard–Oxford
(HO) brain atlas and FC features, attaining 66.9% accuracy in inter-site validation [22]. In
the same manner, the ABIDE I dataset with HO atlas was used to calculate FC features,
resulting in 70.4% mean accuracy when using graph convolutional network [23], whereas
in [24], whole-brain FC of the Craddock atlas (CC200) was fed to a deep neural network
achieving 70% accuracy. Moreover, an implementation of a multi-atlas classification scheme
employing FC along with a neural network obtained 78.7% accuracy [25]. In our previ-
ous work [26], static FC and image-related features were incorporated (i.e., the Haralick
texture features and the Kullback–Leibler divergence) to discriminate between ASD and
TD individulars resulting in 72.5% accuracy. Our results demonstrated that additional
characteristics, when applied to machine learning paradigms, can enhance classification
performance and provide additional indicators of the autism-regulated mechanisms that
govern brain functions.

Taking into account all the above, it can be inferred that the intoduction of new
biomarkers is essential for the effective detection of ASD in a global manner. As such, the
aim of this paper is to identify the neural substrates that contain autism-related information
fused with behavioral and experimental parameters to better support ASD diagnosis. To
that end, we employ the blood oxygenated level dependent (BOLD) time series, using
the CC200 brain parcellation scheme in all of the 17 sites of the ABIDE I pre-processed
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dataset (1034 individuals) to extract indicative attributes and assess their predicitve power.
Specifically, the FC of the DMN’s 18 brain regions is estimated (static and dynamic FC)
combined with features that are related to the dataset diversity (movement and acqui-
sition parameters), demographics (age and handedness) in a feature selection (FS) and
classification framework to evaluate the quality of the selected features and highlight pos-
sible ASD biomarkers. Our results demostrate the overall framework’s efficacy attaining
76.63% classification accuracy with a small number of discriminative features. Specifically,
the selected features analysis suggests static and dynamic connectivity as the predomi-
nant autism-related indicators especially in the paracingulate, midline frontal, bilateral
parahippocampal gyrus, and right precuneus brain regions. Furthermore, an increasing
ASD-related connectivity trend was observed on all the significant connections, illustrating
the potential of novel biomarkers inclusion as an objective and automated assistance to the
clinicians, enhancing their own observations.

2. Materials and Methods
2.1. fMRI Data Acquisition

Rs-fMRI data were retrieved from the publicly accessible ABIDE I dataset [16], in-
volving a total of 1112 participants from 17 sites (539 ASD and 573 sex-group matched TD
individuals) with age range 7–64 years. Data pre-processing has been applied and publicly
released by the ABIDE consortium as presented below.

2.2. Inclusion/Exclusion Criteria and Pre-Processing

In the present study, Craddock’s brain parcellation scheme (CC200) [27] was obtained
with inclusion criteria encompassing individuals who had moved on average less than
0.2 mm during the acquisition, resulting in 883 samples [28].

Pre-processing included structural and functional procedures performed on the fMRI
data acquired. Structural pre-processing followed the steps of brain extraction, normal-
ization to the MNI152 standard space (1 mm3 isotropic) with linear algorithms and seg-
mentation of the brain tissue with respect to the CC200 parcellation scheme. Functional
pre-processing involved brain extraction, slice timing correction, global mean intensity
normalization to 1000, motion correction, nuisance signal regression, band-pass filtering
in the range 0.01–0.1 Hz, and finally, registration to the MNI152 standard space. The
resulted data were then utilized to extract the BOLD time series of each region. The above-
mentioned procedure is described thoroughly in the ABIDE Pipeline for the Analysis of
Connectomes [29].

On the available data the BOLD time series of the 18 brain regions constituting the
DMN were further inspected to identify confounding elements [30,31]. As such, the
individuals’ data where one of the BOLD time series was zero (due to the calculation of the
correlation of a zero element) were removed from subsequent analysis, leading to the final
sample size of 871 individuals. Of note is that the portion between ASD and TD individuals
included was approximately 1.18, meaning the two groups were represented by almost
equal instances, avoiding the usage of imbalanced ASD and TD groups.

2.3. Feature Extraction

As stated in the introduction, the purpose of this study was to assess indicative ASD
biomarkers and illustrate their discriminative power. From this standpoint, features that
encompass exclusion criteria in previous works (such as demographic information and
patient movement information while in the MRI system) were also evaluated in the present
analysis. The rationale behind this was that by incorporating additional characteristics
(usually detrimental for the machine learning performance) in the feature set, the FS
procedure could rank the parameters involved, providing indications as to the degree
they affect the constructed classification model. However, subjective parameters, such as
intelligence quotient (IQ), were not included in an attempt of creating a model derived
from objective parameters only.
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In this context, feature extraction involved the FC calculation of DMN (as static and
dynamic FC), acquisition parameters of the magnets’ protocol, demographic features (age
and handedness), and information regarding the movement of the individuals during the
scanning period. Feature estimation for each parameter is presented in the following sec-
tions.

2.3.1. Static Functional Connectivity

Since whole-brain analysis requires resources with high computational power and
based on the fact that evidence form previous studies suggest that no significant changes
are found in whole-brain ASD FC patterns [32], FC was calculated only among the
18 DMN regions.

As such, static functional connectivity (sFC) assumes that there are no changes in
FC over time and is estimated by calculating the Pearson linear correlation using pairs of
BOLD time series from the entire scanning period [7], as shown in Equation (1).

sFC = ρ =
Cov(x, y)√

Var(x)Var(y)
(1)

where x and y are the BOLD time series, Cov(.) represents the covariance, and Var(.) the
variance operators. sFC is calculated for each pair of the 18 DMN regions, leading to
153 pairs.

2.3.2. Dynamic Functional Connectivity

Dynamic functional connectivity (dFC) has been recently introduced, suggesting that
brain regions may be associated to each other at different time scales, during the scanning
session [33]. Similar to sFC, the dFC was estimated in the DMN brain regions, using the
sliding window technique [34]. In this context, the time series are divided into segments of
equal length (window size), and a correlation metric is calculated between the data inside
these windows, followed by the calculation of the Fisher z-transformation:

dFC = FC(i) = 0.5∗ log
(

1 + ρ(i)
1 − ρ(i)

)
(2)

where ρ(i) is the Pearson’s correlation shown in Equation (2) in each sliding window.
Regarding the window size, window length of 65 s was employed, shifted by one

repetition time (TR) point, which can be several time points depending on the aggregate
acquisition time. As a result a windowed correlation time series (FC(i)) was calculated for
each DMN region pair, whose mean value and variance across the time axis are considered
as feature vectors in this study. In total, 153 features are derived for each parameter, leading
to 306 features.

2.3.3. Demographics

In order to consider the corresponding demographic inhomogeneity of the dataset,
two demographic features have been utilized, namely age and handedness. A numerical
conversion concerning the handedness data was employed to create a feature matrix as
follows: 1—left, 2—right, 3—ambidextrous. The demographic information for the data
included in this study is presented in Table 1.

Table 1. Demographic features.

ASD TD

Handedness 334 R/54 L/11 A 432 R/32 L/8 A
Age 16.4197 F/17.7835 M 17.3202 F/14.5929 M
Sex 49 F/350 M 93 F/379 M

Note: Age denotes the mean value of age for each subgroup; Hand: handedness, L: left handed, R: right handed,
A: ambidextrous, F: female, M: male.
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2.3.4. Acquisition Parameters

The employed fMRI data were obtained using a variety of data acquisition protocols
and scanners. In this regard, MRI system parameters are utilized as features for the
subsequent analysis (9 features in total). Specifically, acquisition parameters included
the field of view (FOV, 3 features—one for each dimension, x, y, and z), repetition time
(TR, 1 feature), echo time (TE, 1 feature), voxel size (3 features corresponding to space
dimensions), and number of slices (1 feature). For each clinic, the same parameters were
utilized for the acquisition process concerning ASD and TD individuals.

2.3.5. Motion Parameters

Despite the majority of relevant studies consider motion as part of exclusion criteria
(as stated in the introduction), we incorporate subject motion as a feature (for the indi-
viduals whose motion was on average less than 0.2 mm during acquisition) [28]. On this
premise, the movement parameters could be assessed based on their relevance in the FS and
classification precedures, while expanding the subject pool as much as possible. Motion
features were estimated by utilizing the framewise displacement (FD) provided from each
datacenter (2 features corresponding to FD mean value and percentage of slices with FD
over 0.2 mm). Additionally, the rate of change in the BOLD signal (DVARS), corresponding
to the temporal derivative of time courses and the variance over voxels of root mean square,
was also calculated and incorporated (1 feature).

2.4. Feature Selection and Biomarker Assessment

The feature extraction procedure resulted in a large feature vector set compared to
the number of instances. Specifically, the entire feature set comprised of 473 variables
estimated for the 871 participants, which is suggested to be prone to overfitting due to
the relevant feature size (optimal feature sets are required to incorporate approximately
1/3 ratio of features and instances) [35]. To address this and at the same time facilitate
the evaluation of the features based on their discriminative power, an FS framework was
adopted. FS can cope with the high-dimensional feature vector by characterizing the
parameters incorporated based on an objective function, excluding redundant or non-
informative features from the full feature set. As such, the resulted subset can alleviate
overfitting bias, enabling the construction of an efficient model and consequently to increase
classification accuracy. More importantly, the objective function employed can illustrate
the feature importance with regard to the classification performance, providing indications
as to the degree they relate to discrimination processes. A schematic of the framework
employed is presented in Figure 1.

On this premise, the recursive feature elimination with correlation bias reduction
(RFE-CBR) FS algorithm was employed that utilizes an internal linear SVM as an objec-
tive function estimation [36,37]. In detail, RFE-CBR is a sequential backward elimination
method, which utilizes a linear SVM’s weights to create a ranking criterion on the feature
set. As such, each iteration of the algorithm removes the least important feature from the
set until all are removed. In addition, highly correlated features are further removed by
the calculation of the correlation coefficient of each. The final RFE-CBR set consists of all
the features, ranked in the reverse order of elimination. Although the FS ranking might be
assessed due to the features’ ability to reduce unrelated noise and by extension increase
classification performance while not being associated with explicit autism biomarkers, the
internal procedure employed by the RFE-CBR (on the basis of a weight-related mathemat-
ical approach) allows for data-driven interpretations on the variance of the biomarkers
utilized. The FS procedure was part of a nested 10-fold cross-validation (CV) workflow,
ensuring that the subsequent classification processes would be more objective when se-
lecting distinct subsets of features [35]. Moreover, RFE-CBR parameter optimization was
performed using grid searching among the input FS parameters.
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2.5. Classification

Following the application of the FS algorithm, the most prominent features are fed
into a classifier to estimate the class (ASD vs. TD) of each individual/instance. Specifically,
a linear kernel SVM was employed to discriminate between the different classes, based on
the premise that linear models represent better the importance of the feature within the
model (compared to non-linear models such as neural networks) [38]. In detail, SVM is a
supervised binary classifier that utilizes known variables (training set; selected from all the
available data) to create a projection on a multi-dimensional space. Then, a hyperplane is
generated corresponding to the maximum distance from all the training instances of both
classes. The unknown data elements (testing set; the non-selected data) are then evaluated
as to the class they belong to and according to the side of the hyperplane separator they are
subsequently mapped.

The classification precedure utilized the RFE-CBR ranked set by adding one by one the
most common feature from all folds and evaluating the overall performance. Consequently,
in each iteration, the SVM classifier estimated the accuracy of the features set deriving
from the previous iterations with the inclusion of the next ranked feature in succession,
starting from a null feature subset. The overall process was performed until all features
were included in the classification subset, in order to investigate the optimal number of
features that would provide the highest performance, optimizing internal parameters with
a Bayesian procedure aiming at minimizing the error as shown in Equation (3) [39]:

error = 1 − AUC (3)

where AUC is the area under curve (Equation (4)):

AUC = 1 −
n

∑
k=1

(Xk − Xk−1)(Yk + Yk−1) (4)

with X denoting the false positive rate and Y the true positive rate.
Similar to the FS process, the classification framework employed a nested 10-fold

CV scheme. Specifically, in order to tune SVM’s hyperparameters and select the optimal
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classification model based on the selected features, the nine initial folds are further split
into training and validation sets using an inner new 10-fold CV scheme coupled with a
grid search approach. The maximum number of epochs for SVM training is 50 (determined
by varying the epoch number from 40 to 60 with a step of 1). The best model (optimal set of
hyper-parameters) according to the validation procedure is retrained on the whole 90% of
the initial dataset and is tested on the remaining 10%, evaluating the overall performance.
The process is repeated for all folds (10 × 10), and the average results on the testing data
are presented.

The performance of the classification process is assessed in terms of accuracy, sensitiv-
ity, and specificity using the equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Sensitivity =
TP

TP + FN
(6)

Specificity =
TN

TN + FP
(7)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

3. Results
3.1. Classification Performance Results

In this study, the ABIDE I pre-processed dataset was utilized within an FS and classifi-
cation framework aiming for the automatic classification of ASD and TD subjects, while
investigating potential discriminative biomarkers.

The optimal performance was obtained when employing 136 features yielding 76.63%
accuracy, 78.63% sensitivity, 74.27% specificity, and 82.74% AUC. The discrimination ability
of the classification model is presented by the receiver operating characteristic (ROC) curve
in Figure 2. The small number of discriminative features (comparatively to the number
of instances) included in the produced feature subset also suggests that overfitting was
avoided. Considering the 4:1 ratio among females and males, gender was also investigated
as a potential biomarker; however, it resulted in inferior performance compared to the
framework proposed in this study.
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From the selected 136 features, the majority included dFC characteristics (47 and
45 out of the 136 total features for mean dFC and variance dFC, respectively), with sFC
incorporating 43 (out of the 136) features (Figure 3). Interestingly, from the non-biological
attributes, only one was selected, namely the echo time (TE), while demographics, mo-
tion, and the rest of the acquisition features (FOV, voxel size, and repetition time) were
excluded from the optimal feature subset. In this regard, an additional analysis of FS
excluding the aforementioned features took place (the results and implications of which
are presented in the Supplementary Material), although it failed to produce any increment
to the overall performance.
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3.2. Analysis of Selected Biomarkers

As mentioned above, feature extraction included the calculation of dFC and sFC,
demographic information, acquisition, and movement parameter features, producing
the initial set that was subsequently fed to the FS and SVM classification framework.
According to the proposed approach, the feature subset (136 features) that attained the
optimal performance was composed almost entirely (135 out of 136 features) of FC features
(sFC, mean dFC and variance dFC) (Figure 3). From the overall 135 FC features, no clear
trend could be detected regarding inter- or intra-hemispheric connections.

Regarding the sFC from the total of 43 interconnected pairs, the DMN region that
appears to be mostly involved as a discriminative feature is the right angular (code re-
gion 166), involved in seven connections. In addition, the left frontal area (code region 95),
right parietal lobule (code region 163), right middle occipital gyrus (code region 170),
and middle frontal area (code region 91) are engaged in six connections, while the left
parahippocampal gyrus (code region 122) is included in five edges among the DMN areas.
In relation to the mean dFC (47 connections), the majority of the features implicate the
parietal lobule, with nine pairs including the right (code region 163) and eight its coun-
terpart left (code region 136) region. The right parahippocampal gyrus (code region 62)
and middle frontal (code region 109) also demonstrate a high inclusion rate with regard to
the optimal feature set, being incorporated in seven and six connections, respectively. The
selected variance dFC features (45 total connectivity edges) predominantly include the right
parahippocampal gyrus (code region 62) with 10 overall pairs and a smaller number of
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connections deriving from the bilateral parietal lobules (code regions 163/136), with eight
connections involving the right and six the left brain areas. Moreover, the inferior parietal
lobule (code region 197) also presents a significant inclusion ratio with eight connections
added to the optimal feature subset.

As to the features that correspond to common connections between the sFC, mean
dFC, and variance dFC, the subset exhibits five interconnected pairs: left middle occipital
gyrus–left parahippocampal gyrus (code regions 97–122), middle frontal–left parahip-
pocampal gyrus (code regions 106–122), precuneus–right angular (code regions 174–166),
right parietal lobule–right cingulum anterior (code regions 163–22), and right parietal
lobule–middle frontal area (code regions 163–106).

3.3. Functional Connectivity Features Validation

In order to further investigate the selected features in terms of feature value alterations,
a post hoc Wilcoxon test was performed to indicate significant deviations between the ASD
and TD groups (significance level set to 0.05). As such, 19 features presented significant
differences (p-value < 0.05). Interestingly, all the resulting features included sFC and mean
dFC, while no important distinction could be discerned in variance dFC values. These
included frontal and occipital areas, the paracingulate, and the precuneus region, as well
as the bilateral parahippocampal gyrus (Figure 4).
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In detail, sFC connections incorporated six pairs implicating frontal areas and one pair
involving the precuneus and the middle occipital gyrus. On the contrary, the Wilcoxon test
demonstrated mean dFC significant variations in eight connections in frontal areas, five in
the parahippocampal gyrus, two in the paracingulate region, and one pair involving the
right middle occipital gyrus. Although the importance of the common connections between
the FC features was additionally verified by the statistical test, it is noteworthy that in all
19 connections, the Pearson correlation coefficient exhibited a significant increment from
TD to ASD indicating autism-related over-connectivity patterns.

3.4. Evaluation of the Adopted Framework and Relationship to Prior Work

As indicated in the previous sections, in order to validate the discriminative ability of
the various biological and non-biological biomarkers, we applied an FS and classification
scheme and assessed the classification performance. From this standpoint, few recent
studies (after 2017) have employed the CC200 parcellation scheme in the ABIDE I dataset
along with an SVM classifier. In this context, a quantitative comparison of the proposed
approach with the highest (CC200 parcellation) SVM classification performance recent
works is provided in Table 2.
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Table 2. Classification results of previous studies utilizing the ABIDE I set and the CC200 brain parcellation scheme. The
proposed study outperformed the previously reported results and is indicated in bold. Notation: #—number.

Reference Classifier Data #Total
Features

#Selected
Features Accuracy (%)

Proposed Work RFE-CBR/SVM 472 TD/399 ASD 473 136 76.63
Karampasi et al. (2020) [26] RFE/SVM 472 TD/399 ASD 561 117 72.5
Heinsfeld et al. (2017) [24] SVM 530 TD 505 ASD 19,900 600 65

Eslami et al. (2019) [40] SVM 530 TD/505 ASD 19,900 9950 68.3
Kunda et al. (2020) [41] SVM 530 TD/505 ASD - - 71

Niu et al. (2020) [42] SVM 401 TD/408 ASD 19,905 19,902 69.3
Liu et al. (2020) [43] Extra-Trees/SVM 548 TD/506 ASD 19,900 1935 72.2

The proposed framework provided higher performance compared to related studies,
with the difference in classification accuracy ranging from 4.13% up to 11.65%. All the stud-
ies have utilized physiological FC features, with the exception of [42] that has also utilized
sex, age, and IQs. Furthermore, most works utilize only sFC features; although, in our
previous analysis [26], we additionally incorporated texture features to identify biological
variables that might affect ASD identification, in an image-related analysis of the BOLD sig-
nals. On the contrary, in the proposed approach, we employ a more sophisticated method,
by combining static and dynamic connectivity fused with non-physiological characteristics
to investigate their associations towards automated autism detection. Although the current
approach did in fact exclude non-physiological variables, it illustrates the potential for
acquisition parameters to be included as additional indicators in inhomogeneous groups
(i.e., data from different clinics, protocols, and experimental designs).

4. Discussion

In this study, we aim to assess the biological and non-biological biomarkers and utilize
them in a data-driven machine learning framework to differentiate between ASD and TD
individuals. On this premise, a diverse set of descriptive features was calculated employing
FC, demographics, acquisition, and motion-related features to identify possible biomarkers
by exploiting the FS and classification methodological characteristics, highlighting the
attributes that exhibited the most discriminative power. More importantly, the dataset in-
corporated a heterogeneous approach with no exclusion criteria (regarding the clinical site,
age, sex, handedness, or IQ scores), thus providing a more global and objective indication
of the features diagnostic quality. Our results suggest FC as a predominant autism-related
indicator, displaying over-connectivity properties in ASD, while the interpretation and
implications of the corresponding brain regions are discussed in detail below.

4.1. Classification Performance

Although various recent studies have utilized parts of the ABIDE I dataset in various
machine learning paradigms, the discrepancy between the data employed makes the
identification of the optimal methodological approach unclear. In this regard, comparison
and/or evaluation of classification performance works cannot be definitely quantified due
to the divergent information included in each study and it is beyond the scope of this
paper. However, the nature of the employed features in similar methodological procedures
enables an indicative comparison. As such, the framework that was employed in this
work utilized a linear SVM classifier as the base for both classification and FS (applied
as an internal procedure by the RFE-CBR) along with a 10-fold nested CV strategy and
Bayesian optimization, resulting in 76.63% accuracy, 78.42% sensitivity, 74.27% specificity
and 82.74% AUC.

To the best of our knowledge, this is the highest performance achieved so far when
incorporating the whole CC200 parcellation ABIDE I dataset with an SVM adaptation
(Table 2). Of note is that several other studies have achieved high accuracy levels with
other brain atlases (such as the AAL, HO, or Craddock CC400); however, our selection
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of brain parcellation scheme was based on the fact the CC200 atlas is deemed to provide
superior results, especially in whole-ABIDE/SVM applications [41,43,44]. In parallel, dif-
ferent machine learning methods have demonstrated exceptional performance (mostly
with deep learning structures) [45]. Nevertheless, since our goal was to obtain information
concerning important autism biomarkers, SVM models are considered ideal for compre-
hensive interpretation, effectively assessing the relation between class labels and features.
On the contrary, deep learning approaches (such as artificial neural networks) diffuse the
feature-contained information in a manner that is extremely difficult to define, sometimes
missing the global picture [46].

Another important aspect to be taken into consideration is the number of data inte-
grated in the machine learning initial set. By definition, excessive exclusion criteria can
not only provide a homogenous group for subsequent classification processes, but also
contribute to high performance leading to the effectiveness of the methods employed [47].
Howbeit, utilizing a small portion of the overall samples could disregard the inhomoge-
neous traits of autism-related attributes, thus overlooking the global aspects of ASD. On
the other hand, inclusion of all subjects might have an impact on feature calculation (i.e.,
inaccurate FC due to high noise levels from head movement) [28]. As such, the dataset
included in the proposed framework comprised of as much data as possible presuming
that samples from distinct clinics and acquisition protocols could be utilized in the same
training sample without issues (with exclusion criteria being individuals whose average
movement was less than 0.2 mm during acquisition). On this premise, the framework anal-
ysis incorporated data despite age and gender characteristics, creating an overall training
model under our hypothesis of the existance of universal ASD properties. In this regard,
obtaining a model from smaller datasets would provide us with a less divergent model,
which would undermine the detection of global biomarkers. Moreover, the fact that the
overall machine learning design obtained high classification accuracy by employing a small
feature subset implies that overfitting was avoided, while the overall procedures were able
to construct an objective and unbiased model [35].

4.2. Informative Biomarkers

The proposed framework incorporated multiple biological and non-biological at-
tributes in order to identify discriminative biomarkers containing autism-related informa-
tion in a global manner. As such, the selected 136 features included 43 interconnected pairs
of sFC, 47 mean dFC, 45 variance FC, and one acquisition parameter. This fact suggests
the effectiveness of FC in the context of ASD detection, while at the same time provides
indications of the small relevance of non-physiological measurements with regard to ASD
classification. However, the addition of the protocol’s attributes of each fMRI magnet ac-
quisition process in the form of the TE feature denotes the use of mixed datasets (with data
from various clinics) as an interesting possibility to decipher the global autism substrates
regardless of acquisition parameter deviations. From this standpoint, it can be inferred that
the employment of the fMRI setup specifications, when mapped to higher dimensions, can
augment classification performance with heterogeneous data deriving from different sites,
while increasing the sample size and, therefore, generalization.

In regard to the physiological features, FC was estimated for the DMN regions from
the CC200 brain parcellation scheme. Although whole-brain analysis would provide an
expanded number of FC to incorporate in the FS and classification framework offering
additional ASD information, evidence suggests that autism-related regulations are more
prominent in the DMN. For instance, in [32], the DMN FC patterns are identified as
differentiated in ASD individuals; nevertheless, when whole-brain analysis was conducted,
no significant changes could be discerned. This fact along with the higher computational
cost of calculating the FC for a plethora of brain regions further promotes the DMN
utilization over whole-brain analysis.

Pertaining to the selected FC features, dFC was involved in almost 2/3 (90 out of
136) of all the incorporated feature vectors, denoting distinct states as a relation of time-
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variable brain activation. In fact, several studies also demonstrate the efficiency of dynamic
connectivity in comparison to stationary brain dynamics, suggesting that dynamic analysis
can provide evidence about smaller nodes activation (concealed in the stationary analysis)
and revealing hidden information of the way the various illnesses can regulate brain-related
mechanisms [33,48].

Concerning specific connectivity notes, our results indicate several DMN areas as
potential biomarkers for autism detection. In detail, the frontal medial cortex has been
associated to the individuals’ emotional state [49,50], while the paracingulate is linked
to reality monitoring and emotion processing [51,52]. Since ASD individuals typically
demonstrate socio-emotional difficulties and/or social withdrawal [53], FC implicating
the aforementioned brain regions is expected. In a similar manner, ASD display atypical
relational memory processes [54], corroborating our findings with regard to FC edges
implicating the parahippocampal gyrus (related to relational encoding [55,56]) and the
precuneus (involved in environmental perception, cue reactivity, and episodic memory
retrieval [57]). Moreover, our results indicate the occipital areas as important biomarkers for
autism detection. This is supported by other relevant studies, linking occipital regions with
categorization/organization of various information, as well as with face recognition [58,59],
of which deficits are consistently reported in ASD [60]. Further analysis was performed
by employing a Wilcoxon test in the selected features. In this light, most features did not
display statistically significant differences between the ASD and TD groups, which can be
attributed to subject variability, acquisition protocol, etc.

From the overall of 136 features, 19 demonstrated significant divergence between
the two groups. Remarkably, all features consisted of sFC and mean dFC with a clear
overall trend of an increasing Pearson correlation coefficient from TD to ASD. This is in line
with several other autism-related studies, exhibiting over-connectivity in ASD [8,13,61,62],
although the deviations of the different relevant works suggest that ASD condition has
varying FC patterns [63,64]. On the same direction, both hyper- and hypo-synchrony
have been reported in ASD individuals relative to different frequency oscillations and
distinct brain regions. For instance, alpha band hypo-synchrony has been related to the
social processing brain areas, while hyper-synchrony has been observed in theta band,
particularly in temporal–occipital circuits [65] and right anterior brain region [66]. This
was also present in non-human subjects, with the relationship of imbalanced excitatory
(hyper-synchrony) and inhibitory (hypo-synchrony) behavior being indicated as part of
the pathophysiological mechanisms underlying in ASD [67,68].

Taking this into consideration, it can be inferred that the DMN functional connec-
tions provide an effective approach to assess the interactions among the different brain
areas in ASD. Moreover, the incorporation of dynamic connectivity patterns alludes to
non-stationary autism-related traits that can enhance ASD comprehension and diagnosis.
Towards this direction, we intend to extend this work in the future, investigating the multi-
ple dynamic (and stationary) characteristics of ASD (as well as age- and gender-related
subdivisions of the dataset) and their implications in neuroscience.

5. Conclusions

In this study, we employ a machine learning approach to discriminate between het-
erogeneous ASD and TD groups incorporating 871 individuals from the ABIDE I dataset.
On this premise, we utilize non-biological information (demographics, acquisition, and
motion-related features) combined with FC features calculated on the Craddock (CC200)
brain parcellation DMN regions. The feature selection and classification framework applied
was able to attain 76.63% classification accuracy (the highest to the best of our knowledge
with an SVM classifier) using a small number of informative characteristics. More im-
portantly, the subsequent analysis on the selected feature subset provides insights as to
the effectiveness of the biomarkers adopted, assessing their relevance to autism-related
aspects. Within this context, FC (static and dynamic) was indicated as the predominant
attribute, displaying higher discriminative power, while suggesting that the informational
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flow between the different brain regions has divergent stationary and dynamic properties
between the two groups. Moreover, the magnets’ acquisition parameters illustrate the
potential of inhomogeneous data sample incorporation (i.e., data from different sites with
different acquisition hardware), allowing for a more generalized and universal classification
model construction.

Supplementary Materials: Further exploration concerning the appropriate feature vector is provided
in the supplementary material, online at https://www.mdpi.com/article/10.3390/app11136216/s1.
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