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Abstract: The influence of geometrical parameters (pore radii and porosity) on ion transport through
two almost ideal nanoporous alumina membranes (NPAMs) coated with a thin TiO2 layer by the
atomic layer deposition technique (Sf-NPAM/TiO2 and Ox-NPAM/TiO2 samples) was analyzed
by membrane potential and electrochemical impedance spectroscopy measurements. The results
showed the significant effect of pore radii (10 nm for Sf-NPAM/TiO2 and 13 nm for Ox-NPAM/TiO2)
when compared with porosity (9% and 6%, respectively). Both electrochemical techniques were also
used for estimation of protein (bovine serum albumin or BSA) static fouling, and the results seem to
indicate deposition of a BSA layer on the Sf-NPAM/TiO2 fouled membrane surface but pore-wall
deposition in the case of the fouled Ox-NPAM/TiO2 sample. Moreover, a typical and simple optical
technique such as light transmission/reflection (wavelength ranging between 0 and 2000 nm) was
also used for membrane analysis, showing only slight transmittance differences in the visible region
when both clean membranes were compared. However, a rather significant transmittance reduction
(~18%) was observed for the fouled Sf-NPAM/TiO2 sample compared to the fouled Ox-NPAM/TiO2

sample, and was associated with BSA deposition on the membrane surface, thus supporting the
electrochemical analysis results.

Keywords: nanoporous TiO2-covered alumina membranes; BSA fouling, membrane potential;
impedance spectroscopy; light transmission/reflection

1. Introduction

Nanoporous alumina structures obtained by electrochemical anodization of aluminum
foils (two-step method), with pore radius between 10–200 nm and inter-pore distance be-
tween 65 and 500 nm (depending on anodization conditions such as electrolyte and voltage),
consisting of self-ordered cylindrical aligned channels with narrow pore radius distribution
and without tortuosity [1–3], were initially considered as nanofilters for the transport of
solutions containing heavy metals ions or as templates for nanotubes and nanowires due
to their well-defined structure and high regularity, but other applications such as magnetic
storage, solar cells, or photonic crystals have also being studied [4–8]. Besides the high
structural regularity of these samples, their strong chemical and thermal resistance are also
of great interest when they are used as membranes for controlled release of pharmacologic
agents or in food processing due to their stability under the cleaning protocols commonly
used to reduce membrane fouling (adsorption/deposition of transported molecules or par-
ticles on the membrane structure), which commonly involves the use of chemicals covering
a wide range of pH values or high/medium temperature [9–13] and is the main membrane
problem in such applications. Moreover, these nanoporous alumina membranes (NPAMs)
can also be used in microfluids or as platforms for biochemical/biological sensors and
medical devices [14–17], although specific properties such as surface hydrophilic character
and biocompatibility or electrical nature are also significant depending on the particular
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application. Consequently, possible easy membrane surface modification able to confer
the membrane optimal geometrical and material characteristics for a specific application
is of great interest. Different techniques such as dip coating, grafting, chemical vapor
deposition, plasma polymerization, or atomic layer deposition have already been proposed
for NPAM surface functionalization/modification [18–20]. In particular, the atomic layer
deposition (ALD) technique is a suitable manner of modifying both membrane pore size
and surface physicochemical characteristics (charge, hydrophilicity, or biocompatibility) by
covering external and internal (pore-wall) surfaces of NPAMs with a homogeneous layer
of a selected material (nitrides, sulfides, or metal oxides such as SiO2, ZnO, TiO2, Fe2O3,
or even Al2O3, when only geometrical parameters have to be modified), providing to
these nanoporous alumina-based membranes (NPA-bMs) desired geometrical and material
properties [20,21]. In fact, the ALD technique is especially appropriate for modification of
membranes with high aspect ratios (that is, pore length/pore diameter > 2000), and it also
allows surface modification with two or more layers from different materials [22].

As indicated above, a significant problem associated with the use of planar NPA-
bMs in the separation/transport of solutions containing proteins or macromolecules is
membrane fouling, because it can significantly reduce the effectiveness of the process,
necessitating the development of efficient cleaning procedures [9]. Streaming potential
measurements have traditionally been performed for determination and analysis of mem-
brane fouling, although the pressure difference needed for such measurements could
not be appropriate for fragile samples as is the case with the NPA-bMs indicated above.
Other kinds of electrochemical experiments such as membrane potential (∆Φmbr) or elec-
trochemical impedance spectroscopy (EIS) have also been used for membrane fouling
estimation [23–27], but different and specific optical techniques (ellipsometry spectroscopy
or optical coherence tomography) have also been proposed [28,29]. On the other hand,
it was already reported that modification with TiO2 nanoparticles of different types of
membranes for diverse applications (membrane bioreactors, oily emulsion filtration, etc.)
seems to reduce the fouling effect independently of membrane material and TiO2 particle
immobilization procedure (entrapped, deposited, or deep coating) [30–32]. In this context,
the increase in the hydrophilic character of TiO2-modified membranes (polymeric and
ceramic) has been indicated as one of the key factors for membrane fouling reduction
caused by filtration of oily wastewater or BSA static fouling, although other factors such
as TiO2 surface charge, which depends on solution pH and salt concentration, have also
been considered [33–35]. Moreover, the biocompatibility and corrosion resistance of TiO2,
of great importance for its use in dental implants, has already been reported [21].

In this work, we considered the influence of geometrical parameters on both ion
transport and static protein (bovine serum-albumin or BSA) fouling for two nanoporous
alumina-based membranes obtained by TiO2-layer coverage using the ALD technique,
with similar thickness but different pore size and porosity, by analyzing and comparing
membrane potentials and EIS diagrams determined for clean and fouled membranes in
order to obtain qualitative and quantitative information on the BSA fouling process. Ac-
cording to the results, the fouling mechanism seems to be strongly dependent on pore
radius when compared to the porosity effect, although interfacial effects might affect par-
ticular quantification. However, due to the high transparency of the studied membranes,
optical analysis using a typical and simple characterization technique such as light trans-
mission/reflection was also used to confirm the membrane fouling mechanism established
from electrochemical measurements.

2. Materials and Methods
2.1. Materials

The nanoporous alumina membranes (NPAMs) used as supports in this study were
synthesized by the electrochemical two-step anodization method using high purity alu-
minum discs (Al 99.999%, Goodfellow (UK); 0.5 mm thickness). Two different aqueous
electrolyte solutions and anodization voltages were used in order to have membranes
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with different pore size and interpore distance: 0.3 M solution of sulfuric acid and applied
voltage of 25 V for the Sf-NPAM sample, and 0.3 M solution of oxalic acid and 40 V in
the case of the Ox-NPAM sample; detailed information on this process is given in the
literature [1,3,35]. In Supplementary Information, scanning electron microscope (SEM)
pictures of both membrane surfaces are presented as Figure S1.

Modification of Sf-NPAM and Ox-NPAM surfaces, both external and internal (pore-
wall), with a thin TiO2 layer coated by the atomic layer deposition (ALD) technique was
performed in a Savannah 100 thermal ALD reactor from Cambridge Nanotech (Waltham,
MA, USA), using high purity argon as carrier gas. Two precursors, titanium tetraiso-
propoxide (metal precursor) at 75 ◦C and water (for substrate functionalization and as
oxidant agent) at 60 ◦C, were used for deposition of the conformal coating, as explained
in a previous work [20]. These nanoporous alumina-based membranes will hereafter
be called Sf-NPAM/TiO2 and Ox-NPAM/TiO2, respectively. Almost total TiO2 cover-
age of both alumina supports was already determined in a previous paper [36] by the
XPS technique, and the atomic concentration percentage (A.C. %) of the different ele-
ments found on the surfaces of each membrane is shown in Supplementary Information
(Table S1); only superficial slight differences associated with manufacture/environmental
contamination (sulfur detection for Sf-NPAM/TiO2 or excess carbon in the case of the
Ox-NPAM/TiO2 sample) were determined. The thickness of the TiO2 layer was also
determined (from depth-profile XPS analysis [36]), obtaining a value of ~6 nm, which
agrees quite well with published results [21]. Figure 1 shows SEM surface micrographs
of both NPAM/TiO2 samples. The following values for average pore-radii (rp), interpore
distance (Dint) and porosity (Θ = (2π/

√
3)(rp/Dint)2) [1]), were determined by surface

analysis of SEM micrographs [36]: <rp> = 10 nm, <Dint> = 65 nm, and <Θ> = 9% for
the Sf-NPAM/TiO2 sample, and <rp> = 13 nm, <Dint> = 105 nm, and <Θ> = 6% for the
Ox-NPAM/TiO2 sample, with both membranes having a thickness of ~65 µm. Taking into
account geometrical parameter values, rather similar theoretical hydraulic permeability was
determined for both TiO2-covered membranes [9]: LH

Sf-NPAM/TiO2 = 1.92 × 10−12 m/s.Pa
and LH

Ox-NPAM/TiO2 = 2.17×10−12 m/s.Pa. It should be mentioned that both NPAMs and
NPAM/TiO2 samples were obtained in the Unidad de Membranas Nanoporosas, Universi-
dad de Oviedo (Spain) and kindly submitted by Prof. V. de la Prida and Dr. V. Vega.
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dead-end electrochemical cell shown in Supplementary Information (Figure S2), filling 

Figure 1. SEM micrograph of: (a) Sf-NPAM/TiO2 membrane surface and (b) Ox-NPAM/TiO2

membrane surface (values and reference in text).

Membranes were statically fouled with the protein bovine serum albumin (BSA),
which had the following characteristic parameters: 66.5 kDa molecular weight and Stokes
radius of 3.48 nm. Membrane fouling was performed by mounting each sample in the
dead-end electrochemical cell shown in Supplementary Information (Figure S2), filling
one half-cell with a BSA aqueous solution of 5 g/L and the other half-cell with distilled
water for 24 h, after which the cell was emptied and the membrane surface softly cleaned
with distilled water. These samples will hereafter be called Sf-NPAM/TiO2(f) and Ox-
NPAM/TiO2(f).
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2.2. Electrochemical Characterization

Membrane potentials (∆Φmbr) and equilibrium electrical potential differences between
the 2 NaCl solutions of different concentrations (Cf = 0.01 M and Cv ranging between
0.002 M and 0.1 M) at both membrane sides were determined by measurements performed
in the dead-end test cell already indicated (Supplementary Information, Figure S2), with
the 2 Ag/AgCl reversible electrodes (to Cl− ion) connected to a digital voltmeter (Yoko-
hama 7552, 1 GΩ input resistance) and magnetic stirrers placed in the bottom of each
cell working at a stirring rate of 540 rpm (to minimize concentration polarization at the
membrane surfaces [37]). Because measured values (∆E) included two different contribu-
tions, electrode potential (∆Φelect) and membrane potentials (∆Φmbr), the latter values were
obtained by subtracting from each ∆E value the corresponding ∆Φelect (which depended
on electrolyte concentration, ∆Φelect = (RT/zF)ln(Cv/Cf), where R and F are gas and Fara-
day constants, respectively, while T represents the temperature of the system); hence:
∆Φmbr = ∆E − ∆Φelect [38]. Measurements were performed at standard pH (5.8 ± 0.3) and
room temperature (25 ± 2) ◦C.

Electrochemical impedance spectroscopy (EIS) is an alternating current (a.c.) technique
used for electrical characterization of membranes in “working condition”, that is, in contact
with electrolyte solutions. EIS allows, under certain conditions, the estimation of different
contributions: membrane, electrolyte solution, and membrane/solution interface, by using
equivalent circuits as models [39,40]. The impedance (Z) is a complex number, with real
(Zreal) and imaginary (Zimg) parts (Z = Zreal + j Zimg) that are related to both the transport
of charge across the membrane and charge storage, through its electrical resistance (R)
and capacitance (C) [39]. The analysis of the impedance data was performed by using
the Nyquist plot in the complex plane (−Zimg versus Zreal) [39]. EIS measurements were
carried out with the membranes in the electrochemical test cell by connecting the electrodes
to a Frequency Response Analyzer (FRA, Solartron 1260, Hamshire, UK) using a maximum
voltage of 0.01 V and an interval of frequency ranging between 1 Hz and 107 Hz, in open
circuit mode. The ZView 2 data analysis program (Scribner, Southern Pines, NC, USA)
was used for determination of electrical parameters, and EIS data were corrected by the
influence of connecting cables and other parasite capacitances.

2.3. Optical Measurements

Optical characterization of clean and fouled samples was performed by analyzing
transmittance and reflectance spectra, which were recorded with a Varian Cary 5000 spec-
trophotometer (Agilent Technologies, Santa Clara, CA, USA) provided with an integrating
sphere of Spectralon for a wavelength interval of 0–2000 nm.

3. Results and Discussion
3.1. Electrochemical Characterizations

Ion diffusive transport across membranes, which depends on membrane material
electrical characteristics and pore size, as well as the electrolyte and solution concentra-
tions, can be studied by analyzing membranes’ potential values. This analysis allows
the estimation of membrane effective fixed charge concentration (Xef) and ion transport
numbers (ti), or fraction of the total current transported through the membrane by one
ion (ti = Ii/IT) [38]; for an ideal positively charged membrane (anion exchanger), t− = 1
and t+ = 0, that is, only negative charges can pass through the membrane, while for cation
exchangers or ideal negatively charged membranes, t+ = 1 and t− = 0. Effective fixed
charge controls Donnan (or interfacial) potential (∆øDon), while values of ion transport
numbers in the membrane also depend on pore size and are directly related to diffusion
potential (∆ϕdif ). The expressions for Donnan and diffusion potentials are [38]:

Donnan potential, ∆øDon = (RT/F)ln[(wXef/2C) + [(wXef/2C)2 + 1)1/2]] (1)

Diffusion potential, ∆ϕdif = − (RT/F)[(t− − t+)]ln(Cv/Cf) = (RT/F)[(1 − 2t−)]ln(Cv/Cf) (2)
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with w = −1/+1 for negatively/positively charged membranes, while Ci indicates
solution concentration (i = v for variable solution concentration and i = f for fixed solu-
tion concentration), and R, F, and T have been previously identified. According to the
Teorell-Meyer-Sievers model [41,42], membrane potential consists of the sum of two Don-
nan potentials (one for each membrane/solution interface) and the diffusion potential in
the membrane.

Figure 2 shows a scheme of ion transport through two porous membranes of the same
material (similar positive charge) but different pore size and porosity, as is the case for the Sf-
NPAM/TiO2 and Ox-NPAM/TiO2 samples. Figure 2a shows a membrane with small pore
size, which behaves as an almost ideal anion-exchanger, avoiding the pass of practically all
cations (membrane co-ions), but the increase of pore size favors the inclusion of electrolyte
solution into the pores as shown in Figure 2b, which raises the transport of cations and
increases t+ value. Because ion transport numbers depend not only on membrane charge
but also electrolyte electrochemical parameters, membrane ionic permselectivity (PSi),
which represents the relative variation of counter ions in the membrane with respect to
their values in solution, is usually considered; then, for positively charged membranes
and NaCl solutions, PSCl

−, is expressed as [43]: PSCl
− = (tCl

− − to
Cl)/to

Na
+, where tCl

− is
the transport number of the counter-anion in the membrane pores, while to

Cl
− and to

Na
+

represent the transport numbers of the anion and cation, respectively, in the NaCl solution.
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Figure 2. Scheme of ion transport through two positively charged nanoporous membranes with the
same thickness and material but different pore size and porosity. (a) Pore charge practically rejects all
co-ion favoring counter-ion transport in membranes with reduced pore radii; (b) higher pore size
favors co-ion inclusion, increasing co-ion transport number.

Figure 3a shows the dependence of membrane potential values on solution concentra-
tion ratio for clean Sf-NPAM/TiO2 and Ox-NPAM/TiO2 membranes, but concentration
dependence for solution diffusion potential (dashed line) obtained using solution transport
numbers in Equation (2) (tNa+o and tCl−o [44], dashed line]; theoretical ∆Φmbr values for
an ideal anion-exchanger membrane (t− = 1, solid line) are also represented for compari-
son. As can be observed, membrane potential values for the sample with lower pore radii,
Sf-NPAM/TiO2, hardly differ from those corresponding to the ideal positively charged
membrane, but reduced ∆Φmbr values were obtained for the Ox-NPAM/TiO2 membrane
(according to Figure 2 explanations), as the difference is more significant at high concen-
tration ratio values as the result of a fixed charge screening effect. On the other hand,
dependence of ∆Φmbr values on the electrolyte solution can be observed in Figure 3b,
where a comparison of data points for the Sf-NPAM/TiO2 membrane using KCl and CaCl2
is shown. The combination of both membrane geometry and surface material can be
observed in Supplementary Information (Figure S3), where a comparison of membrane



Appl. Sci. 2021, 11, 5687 6 of 16

potential values measured with KCl solutions for Sf-NPAM, Ox-NPAM, Sf-NPAM/TiO2,
and Ox-NPAM/TiO2 samples is presented [36], while the effect of pore size, porosity, and
structure asymmetry for NPAMs has already been reported [35,45].
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(solid line) ideal positively charged membrane (t− = 1); (b) Sf-NPAM/TiO2 membrane and KCl
solutions (∆), CaCl2 solutions (5).

The fit of the experimental values can be performed taking into account both Don-
nan and diffusion potentials as well as membrane electroneutrality, and it allows the
determination of the effective membrane fixed charge concentration (Xef), anion/cation
diffusion coefficient ratio (DCl−/DNa+, because (tCl−/tNa+) = (DCl−/DNa+) [44]) or anion
permselectivity, as has already been explained in previous papers [46–48]. The following
values were determined: Xef = + 0.015 M, DCl−/DNa+ = 3.74, and PCl− = 45.2% for Sf-
NPAM/TiO2 membrane, but Xef = + 0.012 M, DCl-/DNa+ = 2.47, and PCl− = 25.3% for
Ox-NPAM/TiO2 membrane. These results show the reduction in pore size increases for
ionic diffusion coefficient ratio, which tends to a value more similar to that for NaCl solu-
tion, (DCl−/DNa+)o = 1.60), and logically for anionic permselectivity, with a reduction of
44%, both associated with higher electrolyte content into the pores of the Ox-NPAM/TiO2
membrane. Figure 4 shows a comparison of experimental and fitted values as well as
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the separate contribution of Donnan and diffusion potentials as a function of variable
concentration Cv for Sf-NPAM/TiO2 and Ox-NPAM/TiO2 membranes, where the agree-
ment between experimental and theoretical values support the suitability of these results.
On the other hand, a correlation between effective fixed charge concentration (Xef) and
surface charge density (σs) for cylindrical pores was already proposed by the following
expression [49]: σs = (Xef.F.rp/2), where F represents Faraday constant. Surface charge
density values for the studied membranes were 7.2 mC/m2 for the Sf-NPAM/TiO2 sample
and 7.5 mC/m2 for the Ox-NPAM/TiO2 sample. Because the electrical charge exhibited
by most membranes in contact with aqueous solutions (polar medium) corresponds to
the adsorption of charged species from solution on the pore walls and/or dissociation
of specific ionic groups, the similarity obtained for surface charge density values seems
to be in concordance with the similitude in membrane surface material determined from
XPS analysis.
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clean Sf-NPAM/TiO2 and Ox-NPAM/TiO2 membranes measured in the system: elec-
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Figure 4. Membrane potential as a function of variable solution Cv. (a) Sf-NPAM/TiO2 membrane
(�) experimental values and (b) Ox-NPAM/TiO2 membrane (♦) experimental values, fitted values
(solid line), diffusion potential contribution (dashed line) and Donnan potential contribution (dashed
dot line). Fitted values: (a) Xef = +0.015 M, tCl−/tNa+ = 3.74; (b) Xef = +0.012 M, tCl−/tNa+ = 2.47.
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Another electrochemical technique used for characterization of membranes in work-
ing conditions is electrochemical impedance spectroscopy (EIS). This technique gives
quantitative and/or qualitative information related to charge movement or charge ad-
sorption by means of the electrical resistance or capacitance (equivalent capacitance in
case of non-homogeneous systems [39]) respectively, which can be significantly affected
by membrane structure and material characteristics [50,51]. Qualitative information is
obtained by comparing impedance diagrams for membranes from the same material but
different geometry, while characteristic parameter values are estimated by the fitting of
experimental data to adequate equivalent circuits [39,40]. A comparison of impedance
diagrams for clean Sf-NPAM/TiO2 and Ox-NPAM/TiO2 membranes measured in the sys-
tem: electrode//electrolyte solution (C)/membrane/electrolyte solution (C)//electrode,
with C = 0.002 M NaCl, is shown in Figure 5. The Nyquist plot (−Zimg vs. Zreal) shows
significant differences between both membranes, because the impedance diagram for
Sf-NPAM/TiO2 sample exhibits two differentiated relaxations that correspond to the sep-
arated contributions of membrane (m) and electrolyte solution (e) (see insert in Figure 5
where this part of the diagram is enlarged), while a unique relaxation process is observed
in the diagram for the Ox-NPAM/TiO2 sample, which corresponds to the “membrane plus
electrolyte” contribution. As already reported, differences in impedance diagrams can
depend on both membrane structure/geometry and material hydrophilic/hydrophobic
character, because membrane and electrolyte separated impedance contributions have
been obtained for composite reverse osmosis and even nanofiltration membranes with
a two-layer structure (a denser thin active layer and a porous support) [48,52,53], while
only a relaxation process was observed for wider pore size ultrafiltration/microfiltration
membranes [54,55] and also for nanoporous regenerated cellulose membranes (2 kDa cut
off, which should correspond to a pore size ~ 3.0 nm) associated with high water (aqueous
solution) adsorption due to the hydrophilic character of this membrane material [48]. On
the other hand, the analysis of impedance diagrams allows us to obtain the following
values for the electrical resistance of Sf-NPAM/TiO2 and Ox-NPAM/TiO2 membranes:
RSf-NPAM/TiO2 = 4510 ohm and ROx-NPAM/TiO2 = 1665 ohm, although this latter value was
determined by subtraction of electrolyte electrical resistance (Re) from that determined
for the Ox-NPAM/TO2 membrane plus electrolyte system (Rme); hence: (Rm = Rme − Re),
that is, Rm was obtained from two different measurements that may slightly affect the real
value. In any case, due to the similar material of both NPAM+TO2 samples, EIS analysis
for clean membranes is concordant with that previously performed by membrane potential
results with respect to pore radii influence.
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The BSA fouling effect on membrane potentials for the Ox-NPAM/TiO2(f) sample is
shown in Figure 6a where, for comparison, ∆Φmbr values for the clean Ox-NPAM/TiO2
are also indicated. Both membranes show rather similar values at low concentrations
(interfacial or Donnan potential contribution) but differ at high concentrations, which is
an indication of differences in ion diffusion between both samples that might be caused
by pore size reduction due to BSA deposition on pore walls (although surface deposi-
tion might also exist). Fitted values of characteristic parameters were Xef = +0.014 M,
DCl−/DNa− = 5.4, and PCl− = 58.2%, as these two latter values were much higher than
those determined for the clean membrane. Figure 6b shows the comparison between
experimental and fitted values depending on variable solution Cv, as well as the separate
contributions of diffusion and Donnan potentials; this second contribution does not differ
significantly from that in Figure 3b for clean membrane at high Cv values.
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butions for Ox-NPAM/TiO2(f) membrane.
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However, the protein fouling effect or mechanism exhibited by the Sf-NPAM/TiO2(f)
membrane seems to be different according to results shown in Figure 7a, where a similar
concentration ratio dependence for fouled and clean samples can be observed, but the
results obtained for the Sf-NPAM/TiO2(f) membrane present an almost constant shift
to lower ∆Φmbr values. This result could indicate the presence of a BSA layer on the
membrane surface, rather than pore-wall deposition (which could be related with a “static”
fouling nature because any hydrostatic pressure is applied to the BSA solution), giving rise
to a kind of “composite” or two-layer membrane, as can be deduced from results shown in
Figure 6b, where ∆Φmbr values for the fouled sample after subtraction of that determined
at Cv = Cf = 0.01 M are compared with those determined for the clean Sf-NPAM/TiO2
membrane, and only small differences exist between them. Figure 7b also shows the data
points obtained when ∆Φmbr values for the clean membrane are subtracted from those
corresponding to the fouled sample. In this context, the difficulty of obtaining quantitative
information from these results should be pointed out because they do not correspond to
similar interfacial situations, and a compact BSA layer on membrane surface may also
affect the concentration gradients.
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EIS measurements have also been used in the study of porous membrane fouling by
comparing impedance plots obtained with clean and fouled samples [56,57], as shown
in Figure 8 for Ox-NPAM/TiO2 and Ox-NPAM/TiO2(f) membranes. Analysis of these
results has permitted the estimation of around 10% increase in the electrical resistance
of the fouled sample. However, EIS measurements of the Sf-NPAM/TiO2(f) membrane
have not been performed due to enormous data fluctuations, which were attributed to BSA
deposited layer instability associated with a cyclic alternating current effect.
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Figure 8. Comparison of Nyquist plot for: (♦) Ox-NPAM/TiO2 membrane and (©) Ox-NPAM/TiO2(f)
membrane (C = 0.002 M NaCl).

3.2. Optical Characterization

Optical techniques (light transmission and spectroscopic ellipsometry), which are of
great interest due to their non-destructive character, have already demonstrated their suit-
ability for characterization of nanoporous alumina membranes with different pore sizes and
porosity (or even asymmetric structure) or human serum albumin adsorption on alumina
supports [35,58]. In this context, depending on geometrical parameters (pore-size/porosity)
or surface material, differences in light transmission through nanoporous alumina-based
membranes are expected. In fact, differences in transmission spectra through membranes
obtained by coating Sf-NPAM or Ox-NPAM samples with a layer of different metal ox-
ides have already been analyzed [20,22]. Figure 9a shows a comparison of transmission
spectra for two samples obtained by coating the Sf-NPAM support with a layer of Fe2O3
or Al2O3 (Sf-NPAM/Fe2O3 or Sf-NPAM/Al2O3 samples, with similar pore-size, porosity,
and thickness values than Sf-NPAM/TiO2), and clear differences in the visible region can
be observed due to the different surface material (although both membranes show high
and similar transparency in the near infrared region); moreover, transmission for another
membrane, obtained by coating the Ox-NPAM support with a SiO2 layer (Ox-NPAM/SiO2
sample), of different pore-size, porosity, and surface material than the Sf-NPAM/Fe2O3
and Sf-NPAM/Al2O3 samples, was also measured, and transmission differences in both
visible and near infrared regions were obtained. These previous results seem to support
the possibility of using light transmission spectra for changes associated with membrane
fouling for this kind of sample.
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Ox-NPAM/SiO2 (solid blue line) samples; (b) Sf-NPAM/TiO2 (solid black line) and Ox-NPAM/TiO2 (dashed black
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Then, optical characterization of both clean membranes was firstly considered and
Figure 9b shows a comparison of the transmittance spectra, where the high transparency
of both membranes (>70% in the visible region) and around 88% for near infrared region
(NIR) can be seen. The similarity in light transmission exhibited by both membranes
is significant, taking into account that they have different geometrical parameters. This
may be due to a kind of pore-size/porosity compensation, as the sample with lower pore
radii presents higher porosity and the free volume of both membranes is rather similar
(Ox-NPAM/TiO2/Sf-NPAM/TiO2 free volume ratio = 1.13), as indirectly established by
the similarity of hydraulic permeability values already indicated. On the other hand,
transmittance analysis also provides an indirect confirmation of the adequate TiO2-coverage
of the nanoporous alumina support by the estimation of membrane band gap values, which
are between 310 nm and 323 nm and agree with reported values for TiO2 [59], differing
significantly from the band gap for Al2O3 materials (around 200 nm [60], and logically from
Fe2O3 as can be seen in Figure 9a); this point agrees with the almost total TiO2-coverage of
the alumina support determined by the XPS technique [36] already mentioned (Table S1 in
Supplementary Information).

The effect of membrane BSA fouling on light transmission spectra can be observed
in Figure 10. In the case of the Ox-NPAM/TiO2(f) membrane (Figure 10a), a certain
wavelength-dependent reduction in the visible region was determined (9.0% at 600 nm),
but almost no change is observed in the near infrared region. This small effect of BSA
fouling on light transmission might support protein deposition on pore walls as the main
fouling mechanism determined from electrochemical measurements, due to the reduced
free volume of studied membranes and taking into account the high transparency exhibited
by their solid structure. However, an important reduction in light transmission for the
whole wavelength range can be observed in Figure 10b for the Sf-NPAM/TiO2(f) sample
when compared with the Sf-NPAM/TiO2 sample; in particular, a reduction of around
18.0% at 600 nm and of 7.0% in the NIR (at 1600 nm) were obtained. This reduction in
transmission through the fouled membrane could be an indication of the presence of
a BSA layer on the membrane surface, which would modify the high transparency of
membrane material indicated above; this fact would be in agreement with membrane
potential analysis previously performed. Consequently, light transmission measurements
for membranes made of highly transparent materials could be used as a way to determine
fouling mechanisms by comparing spectra for clean and fouled samples.
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Reflection spectra (R%) for clean and fouled membranes were also measured, and the
corresponding absorption curve (A%) was obtained: A (%) = 100− T (%)− R (%). Figure 11
shows a comparison of wavelength dependence of absorption spectra for both BSA fouled
samples; for comparison, absorption spectra for both clean samples are shown in the inlet
(for wavelengths between 500 nm and 2000 nm). Differences between both fouled samples
can be observed in the visible region, with a significant adsorption reduction, but more
closely similar and constant values were obtained for both clean samples.
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4. Conclusions

The influence of pore radius on ion transport through nanoporous alumina-based
membranes with almost ideal porous structure (TiO2-coated alumina nanoporous sup-
ports with different pore radii and porosity) was analyzed by membrane potential and
electrochemical impedance spectroscopy measurements. These results show the signifi-
cant effect of pore size. Moreover, both electrochemical techniques can also be used for
quantitative/qualitative information on membrane fouling dependent on pore size: a
BSA layer on the membrane surface for the sample with lower pore radii, but pore-wall
deposition in the case of the membrane with wider pore size. On the other hand, the
high transparency of a membrane material enables the use of a common optical technique,
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light transmission/reflection, to obtain information on the fouling effect or mechanism.
Optical results appear to confirm the findings of electrochemical analysis and also provide
information on other membrane material characteristics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app11125687/s1. Figure S1: SEM micrograph of: (a) Sf-NPAM membrane surface and (b)
Ox-NPAM membrane surface. Figure S2: Scheme of electrochemical test-cell. Figure S3: Membrane
potential vs. KCl solutions concentration ratio for samples: Sf-NPAM, Ox-NPAM, Sf-NPAM+TiO2
and Ox-NPAM + TiO2 membranes, ideal anion-exchange membrane (solid line, tCl− = 1). Table S1:
Atomic concentration percentages of the elements found on both surfaces of the studied samples
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