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Featured Application: This paper proposes an object detection and tracking system that can count
vehicles, estimate the velocity of vehicles, and provide traffic flow estimations for traffic monitor-
ing and control applications.

Abstract: This paper proposes a neural network that fuses the data received from a camera system
on a gantry to detect moving objects and calculate the relative position and velocity of the vehicles
traveling on a freeway. This information is used to estimate the traffic flow. To estimate the traffic
flows at both microscopic and macroscopic levels, this paper used YOLO v4 and DeepSORT for
vehicle detection and tracking. The number of vehicles passing on the freeway was then calculated by
drawing virtual lines and hot zones. The velocity of each vehicle was also recorded. The information
can be passed to the traffic control center in order to monitor and control the traffic flows on freeways
and analyze freeway conditions.

Keywords: traffic flow; object detection; object tracking; deep learning

1. Introduction

Self-driving cars are one of the most important areas of study in the field of artificial
intelligence. By combining the data from internal and external sensors, and accurately
detecting the surrounding objects, driving safety can be improved. In recent years, object
detection in computer vision has been developed, including detecting nearby vehicles,
pedestrians, and obstacles, and measuring the distances between them, recognizing traffic
signals and signs for self-driving cars, and counting the amounts of vehicles passing on a
highway. Fully-Connected Network (FCN) techniques to detect and localize objects in the
form of 3D boxes from range scan data have been developed.

This paper focuses on various methods of object detection and tracking for vehicles
on a highway. These were applied to estimate regional traffic flow, detect objects, and
measure their position and velocity. To achieve this, a neural network is proposed to
estimate surrounding traffic flow. It is combined with processes of moving object detection
and can calculate the relative position and velocity of moving objects. By individually
identifying three lanes in each direction (northbound and southbound), and classifying
and counting the vehicles, the vehicle density of each lane can be calculated correctly. This
newly proposed method can provide real-time accurate data for traffic control and analysis.

In Taiwan, traffic jams during commuting hours are a tremendous problem, especially
for such a highly populated and urbanized small island. The main purpose of this study
was to provide data to the Traffic Control Center to reduce the occurrence of traffic jams
by applying artificial intelligence techniques. Existing models for vehicle detection and
tracking sometimes have the problem of repeat counting due to inconsistencies in object
tracking. To solve this problem, our model introduced “virtual lines” and “hot zones”
(detailed in Section 3.3.2) to accurately count the number of vehicles passing in each lane of
the section of freeway. The benefit of adding a hot zone is that when a vehicle moves close
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to the virtual line, it can be tracked more accurately, and repeat counting is avoided. A
deep learning procedure using a neural network technique was designed for estimating the
velocity of vehicles. By providing the data obtained from our system to the Traffic Control
Center, each car, self-driving or not, can be recommended the optimal route and, thus, the
traffic situation can be improved.

This paper has three main features. First, the traffic flow counted by the Freeway Bu-
reau, the Ministry of Transportation and Communications (MOTC), Taiwan, uses Electronic
Toll Collection (ETC) sensors to count cars; however, this misses cars that do not have the
ETC installed. In this study, object detection and tracking were used to count vehicles and
estimate velocity, which not only solves the aforementioned problem, but also reduces
costs. Second, in this study, the traffic flow of each lane was calculated individually, rather
than simply in two directions. Third, our technique is able to represent different colors
in each lane according to the velocity level. These features are beneficial to traffic flow
monitoring and control by the Freeway Bureau, MOTC, Taiwan, especially in situations of
heavy traffic, such as those seen during commuting hours and holidays.

2. Related Works

Currently, deep learning is a popular academic and technological topic which is
applied in various AI techniques, including those associated with self-driving cars and
transportation. Traffic flow monitoring using video has been applied to different traffic
scenes, such as city roads, highways, and intersections [1,2]. Deep learning research applied
to solve traffic flow predictions has also developed in recent years. In the 21st century,
researchers proposed a deep learning-based traffic flow prediction method to identify
various cars running on the highway. For example, the software tools developed by Y. LV
et al. used the stack autoencoder (SAE) approach to represent traffic flow features maps
for predictions. The greedy layer-wise unsupervised learning algorithm was applied to
pretrain the network before the model’s parameters were updated using a fine-tuning
process to improve the prediction [3].

There are various other deep learning models that were developed to predict traffic
flow. For example, N.G. Polson et al. proposed a deep learning model to predict short-term
traffic flow [4]. W.S. McCulloch developed a model which is a combination of a linear
model with L1 regularization and some tanh layers [5]. V. Minh et al. designed a deep
learning predictor that takes an input vector and output via different layers [6]. They
developed a linear model using previous measurements to provide a forecast.

The techniques for object detection and object tracking are important for vehicle
counting. For object detection, there are object detectors such as YOLO, Faster R-CNN,
SSD, etc. YOLO is a state-of-the-art, real-time object detection system [7,8]. This object
detection method proposed by Joseph Redmon et al. used regression methods to calculate
the bounding box and the related classification probability of the detected objects. A single
neural network is used to predict the bounding box and classification probability directly
from the complete image in one evaluation. Since the entire detection is a single network,
the end-to-end detection performance can be directly optimized [7]. YOLO can solve the
special regression problem of object detection frames, and can identify the object and
predict the bounding box simultaneously. Therefore, YOLO is one of the most widely
used object detection tools, and is especially powerful in high real-time detection tasks.
Moreover, newer versions have been developed to improve detection performance. YOLO
v2 has a higher accuracy, has a higher efficiency (by adding a batch normalization layer
into the convolutional neural networks), and has a high-resolution classifier. YOLO v3
uses multi-label classification, in which an object may belong to multiple categories at the
same time. YOLO v3 replaces the softmax function with an independent logistic function
to calculate the probability that the input belongs to a specific label. In addition, instead
of using the mean square error to calculate the classification loss, YOLO v3 uses the two-
class cross-entropy loss for each category. This approach also reduces the computational
complexity brought about by the softmax function. YOLO v3 uses DarkNet-53 as the main
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backbone of the convolutional neural networks to extract features from the input image,
which has a better efficiency and detection performance than other backbones [9]. The
architecture of DarkNet-53 is shown in Table 1.

Table 1. The architecture of DarkNet-53 [9].

Type Filters Size Output

Convolutional 32 3 × 3 256 × 256
Convolutional 64 3 × 3/2 128 × 128

Convolutional 32 1 × 1
Convolutional 64 3 × 3 1 ×

Residual 128 × 128

Convolutional 128 3 × 3/2 64 × 64

Convolutional 64 1 × 1
Convolutional 128 3 × 3 2 ×

Residual 64 × 64

Convolutional 256 3 × 3/2 32 × 32

Convolutional 128 1 × 1
Convolutional 256 3 × 3 8 ×

Residual 32 × 32

Convolutional 512 3 × 3/2 16 × 16

Convolutional 256 1 × 1
Convolutional 512 3 × 3 8 ×

Residual 16 × 16

Convolutional 1024 3 × 3/2 8 × 8

Convolutional 512 1 × 1
Convolutional 1024 3 × 3 4 ×

Residual 8 × 8

Avgpool Global
Connected 1000

Softmax

YOLO v4 was released in April 2020 and has a higher accuracy and efficiency for
object detection, with reduced hardware requirements [10]. YOLO v4 established an
efficient and powerful object detection model, verified the influence of the state-of-the-art
Bag-of-Freebies and Bag-of-Specials object detection methods in the training process, and
improved the techniques of optimizing the network during training and testing. YOLO
v4 uses CSPDarknet53, a combination of Darknet53 and the Cross Stage Partial Network
(CSPNet), [11] as the main backbone of convolutional neural networks.

The procedure of object tracking generally includes the following steps [12]: first,
input the video and execute the object detectors, such as YOLO, Faster R-CNN, or SSD,
to detect the objects and obtain their detection frames. Then, obtain all the corresponding
targets from the detection frames and extract their features, including apparent features
and/or motion features. Thereafter, calculate the similarity between these objects in
adjacent frames. Finally, after linking the same objects together, assign different objects
with different IDs.

For object tracking, SORT (Simple Online and Realtime Tracking) is combined with
the Kalman filter and the Hungarian Algorithm, which enhances the efficiency of multiple
object tracking. The Kalman filter algorithm is divided into two processes: prediction and
update. The algorithm defines the motion state of the target as eight normally distributed
vectors. When the target moves, the target frame position and the speed of the current
frame are predicted based on the target frame and the speed of the previous frame. The
predicted value and the observed value are obtained, the two normal distribution states
are linearly weighted, and the current state of the system prediction is obtained. In the
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main multiple object tracking step, the similarity is calculated and the similarity matrix
of the two frames before and after is obtained. The Hungarian algorithm solves the real
matching goal of the two frames before and after solving this similarity matrix [13]. The
object tracking procedure of SORT is shown in Figure 1.

Figure 1. Object tracking procedure of SORT [14].

DeepSORT was developed from SORT. Information about the exterior of the objects
was added in order to match objects in adjacent frames. The procedure of DeepSORT is
as follows: first, the Kalman filter is used to predict the trajectory. Then, the Hungarian
algorithm is used to match the predicted trajectory with the detections in the current frame
(cascade matching and IOU matching). Thereafter, the Kalman filter is updated. DeepSORT
can be applied in Multiple Object Tracking (MOT), which can assign each vehicle with
different IDs. The object tracking procedure of DeepSORT is shown in Figure 2.

Figure 2. Object tracking procedure of DeepSORT [13].

Z. Wang et al. proposed a multiple object tracking system that has a detection model
for target localization and an appearance embedding model for data association [15]. A.
Fedorov et al. applied a faster R-CNN detector and a SORT tracker in traffic flow estimation
with data from a camera [16]. The application of YOLO and DeepSORT can be used in many
multiple object tracking scenarios other than just traffic [17], including crowd control [18]
and detecting and tracking moving obstacles [19].

This study applied artificial intelligence to improve traffic flow monitoring methods.
Traffic flow prediction is one of the most important topics for self-driving cars, and various
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methods and algorithms have been developed in the past decade to improve route guidance
for cars and assist traffic management and control. Neural network models have also been
developed for traffic flow prediction. By identifying vehicles from traffic videos with
artificial neural networks (ANNs), the methods proposed herein can help to improve
highway traffic jams in Taiwan.

3. Methods
3.1. Process and Flow Chart

The complete process is shown as a flow chart in Figure 3. After inputting the
video, our system detects the vehicles using YOLO v4, and then tracks the vehicles using
DeepSORT. Finally, the number of vehicles that passed through each lane and the velocity
of each vehicle are calculated.

Figure 3. Flow chart of the whole process.

3.2. Traffic Flow Calculation Model

Here are some fundamental quantities for traffic flow [20]: density ρ is defined as the
number of vehicles per unit length. The speed and positions of the n-th vehicle are denoted
as vn and rn, respectively. Flow rate f is the number of vehicles passing a fixed position per
unit time (for example, 1 h). Time mean speed is the average vehicle speeds in the fixed
position over time, and space mean speed is the average vehicle speeds over a hot zone in
a fixed time. Bulk velocity is defined as the ratio of flow rate to density, i.e., u = f

ρ .
The traffic flow can be described microscopically and macroscopically, as proposed by

B. Seibold [20]. The microscopic description of traffic flow was used to characterize each
vehicles’ behavior, was applied in many car-following models (e.g., the intelligent driving
model), and was used to facilitate a self-driving car’s decision of keeping in the same lane
or switching to other lanes, to avoid backing up.

For the microscopic description, there are individual trajectories: the vehicle posi-
tion equation:pa(t) = (paX(t), paY(t)), a = 1, 2, . . . , n, the vehicle velocity equation: v1(t),
v2(t), . . . , vn(t), and the acceleration equation: aa(t) =

•
va(t) =

dva(t)
dt [20].

For microscopic traffic models, two models are required: the “follow the leader”
model: accelerate/decelerate towards the velocity of the vehicle ahead of the self-driving
car itself. If the position and velocity of the vehicle ahead is p2 and v2, then according to
the “follow the leader” model [20] the acceleration is expressed as:

aF =
v2 − v
p2 − p

. (1)

The “optimal velocity” model: accelerate/decelerate towards an optimal velocity that
depends on your distance to the vehicle ahead. Then, the acceleration according to this
model should be:

aO = V(p2 − p)− v. (2)
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By combining both models, the acceleration of the self-driving car can be obtained in
the following equation:

a = αaF + βaO = α
v2 − v
p2 − p

+ β(V(p2 − p)− v). (3)

On the other hand, the macroscopic description of traffic flow is usually lane aggre-
gated; however, multi-lane models can also be formulated. The macroscopic description of
traffic flow is also good for estimation and prediction, and for the mathematical analysis of
emergent features. It can examine larger portions of highway, judge whether the traffic in
each section is convenient or heavy, and assist navigation and determine the path planning
for a car.

Macroscopic descriptions are based on field quantities, including the vehicle density
ρ(p, t), velocity field u(p, t), and flow-rate field f (p, t) = ρ(p, t)u(p, t), where p is the
position on the road and t is time [20].

To set up macroscopic traffic models, the following equations are needed: the num-
ber of vehicles in the section interval c to d can be obtained from vehicle density ρ(p, t)
as follows:

m(t) =
∫ d

c
ρ(p, t)dp. (4)

Traffic flow rate (flux):
f (p, t) = ρ(p, t)u(p, t). (5)

Change in the number of vehicles equals inflow f (c) minus outflow f (d) dynamically
as follows:

d
dt

m(t) =
∫ d

c
ρtdp = f (c)− f (d) = −

∫ d

c
fpdp. (6)

This equation holds for any choice of c and d:

ρt + (ρu)p = 0. (7)

The microscopic view of traffic flow was studied in this study, and the macroscopic
view of traffic flow will be studied in the future. Both descriptions have their own signifi-
cance and usage.

3.3. Object Identification and Vehicle Tracking
3.3.1. Pretrain and Retrain for Object Identification

Our inputs were obtained from the MP4 videos taken at several fixed points on the
National Freeway No.1 from the Freeway Bureau, MOTC in Taiwan. In the process of
object detection, we used YOLO v4 to identify objects in every frame (with approximately
2000 to 9000 frames per video). The model was pretrained using the Coco dataset, and
then retrained with our own picture data from classified vehicles, whose categories cor-
responded to the Coco dataset [9,21]. In each frame, the bounding boxes of all vehicles
were labelled and classified. In addition, the centers of each vehicle were identified and the
distances between them were measured. Through a visual inspection of the outcome, the
vehicles were correctly identified and correctly classified into cars, buses, and trucks: the
three relevant categories of vehicles for the Taiwanese freeway.

3.3.2. Object Tracking by Drawing Virtual Lines and Hot Zones

In this study, we used DeepSORT to track the objects (vehicles) identified by YOLO
v4. In brief, DeepSORT first uses the Kalman filter to predict the trajectories of objects from
previous frames. Then, it uses the Hungarian algorithm to match the predicted trajectories
with the detected objects in the current frame (using cascade matching and IOU matching).
Thereafter, it updates the Kalman filter for further predictions [13]. By executing DeepSORT,
we were able to calculate the similarities between the apparent features and/or motion
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features of objects in adjacent frames, link the same objects together, assign different IDs to
different objects, and track the objects throughout the video.

In order to calculate lane-specific traffic flows, we drew a virtual line in each direction
of the highway (Figure 4) in the images and counted the number of vehicles (as defined by
the centers of their bounding boxes) passing the lines in each lane. As a result, a vehicle
that changed lanes in the video would only be counted in one of the lanes, as determined
by its location while passing through the virtual line. There are six lanes on the sections
of National Freeway No.1 in which the videos were taken (Figure 5). The input video’s
resolution was 1920 × 1080 pixels, with 30 frames per second.

During object tracking, the system sometimes lost track of an object for a few frames
and then recaptured it; sometimes it was identified as a different object and reassigned
with a different ID. Such object tracking inconsistencies can cause the system to become
unreliable, as a result of repeated counting of vehicles and confusion in speed calculations
(in Section 3.3.3). Therefore, we modified the algorithm by adding hot zones in the vicinity
of virtual lines (Figure 4), and only performed object tracking when the center was within
the hot zones. The introduction of hot zones improved the accuracy of vehicle tracking
and the subsequent calculations.

Figure 4. Virtual lines and hot zones of the inner lanes of both directions (conceptualization).

Figure 5. Sample image of the video taken on National Freeway No.1.
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3.3.3. Estimation of Velocities of Each Vehicle

As shown in Figure 6, when drawing two virtual lines separated by a fixed distance
(e.g., 20 m) in a bigger hot zone and obtaining the two time points through which a vehicle
passes the two virtual lines (t1 and t2) using the aforementioned object tracking technique,
the velocity of the vehicle can be calculated as follows:

v =
d

t2 − t1
, (8)

where d is the fixed distance.

Figure 6. Two virtual lines and hot zone for the velocity calculation (conceptualization).

The parameters can be acquired as follows:
p1, p2, . . . , pn: the positions of vehicles;
v1, v2, . . . , vn: the velocities of vehicles.
After inputting these data, the velocities of vehicles could be classified into five levels

as defined by the Freeway Bureau, MOTC, Taiwan (Table 2):

Table 2. Levels of speed classification.

Levels Speed Range

Level 1 0 km/h ≤ va < 20 km/h, a = 1, 2, . . . , n
Level 2 20 km/h ≤ va < 40 km/h, a = 1, 2, . . . , n
Level 3 40 km/h ≤va < 60 km/h, a = 1, 2, . . . , n
Level 4 60 km/h ≤va < 80 km/h, a = 1, 2, . . . , n
Level 5 va = 80 km/h, a = 1, 2, . . . , n

Similarly, we were able to classify each lane into different speed levels from the
average speed of vehicles, and color-code the lanes for visualization.

4. Experiments

The results from digital image processing, object detection, and object tracking were
as follows: we obtained accurate vehicle counts for both the northbound and southbound
directions, and for each lane separately. Moreover, the velocities of all vehicles were estimated.
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4.1. Digital Image Processing

The video taken on National Freeway No.1 was processed into an MP4 video and was
used as the input for our system.

4.2. Object Detection Results

Our model using YOLO v4, trained with the Coco dataset and our own picture dataset,
was able to identify all the vehicles on the freeway and perform accurate classifications
(Figure 7).

Figure 7. Object detection results on the video taken on National Freeway No.1 (a–c). The identified
vehicles were wrapped with their respective bounding boxes. The colors of the bounding boxes
represent the categories of the vehicles: cars (magenta), trucks (blue), and buses (green).

4.3. Vehicle Counting in Both Northbound and Southbound Directions

By adding virtual lines and hot zones to both the northbound and southbound sides
of the freeway, the vehicles that entered into the hot zones could be tracked accurately and,
thus, we were able to correctly count the number of vehicles passing through the virtual
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line (Figure 8), which in turn yielded the flow rate (the number of vehicles passing through
per unit time) of the section of the freeway in any given time interval.

Figure 8. The results of vehicle counting in both the northbound and southbound lanes from the
video taken on National Freeway No.1 (a–c). The red line represents the virtual line in the northbound
direction, while the blue line represents the virtual line in the southbound direction. Note that only
the vehicles approaching the virtual lines were tracked (marked with green boxes).

4.4. Vehicle Counting in Each Lane in Both Northbound and Southbound Directions

The hot zones and virtual lines that we introduced also allowed us to calculate the
vehicle count and the flow rate for each lane individually (Figure 9). Each vehicle was only
counted once, in the lane in which it passed through the virtual line.
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Figure 9. The results of vehicle counting in both the northbound and southbound lanes from the
video taken on National Freeway No.1 (a,b). The red line represents the connected virtual lines in
the three northbound lanes, while the blue line represents the connected virtual lines in the three
southbound lanes. The green boxes mark the vehicles tracked in the hot zones.

The vehicle counting results were illustrated in Table 3. We compared the vehicle
counts in each lane using a visual inspection and the object detection of our system for
three min. The errors were caused by double-labeling large trucks (e.g., trailer trucks,
container cars), erroneously counting vehicles in the adjacent lane (Lane 2 to Lane 1; Lane 5
to Lane 6), and large trucks blocking small cars from the camera.

Table 3. Vehicle counting results (in three min).

Northbound (toward the camera)

Lane 1 Lane 2 Lane 3

Actual Detected Error Actual Detected Error Actual Detected Error
44 56 27.3% 60 59 1.7% 61 76 24.6%

Southbound (away from the camera)

Lane 4 Lane 5 Lane 6

Actual Detected Error Actual Detected Error Actual Detected Error
70 78 11.4% 70 68 2.9% 50 51 2%
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4.5. Velocity Estimation

The velocity of each vehicle on the freeway was calculated using Equation (8), the
results are shown in Figure 10.

Figure 10. Velocity estimation in the video taken on National Freeway No.1 (a,b).

4.6. Velocity Level

As the velocities of the vehicles passing through the lane were calculated, the color of
the virtual line changes to represent the velocity level of the lane according to Table 2, the
results are shown in Figure 11. The colors representing Level 1 to 5 are purple, red, orange,
yellow, and green, respectively.

Figure 11. The velocity level of each lane in the video taken on National Freeway No.1.
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5. Discussion

In this study, we trained a YOLO v4 model for object detection. It was able to
successfully identify all vehicles in the input video, and classify them into cars, buses, and
trucks. Thereafter, we used DeepSORT for multi-object tracking. It was able to track these
vehicles frame-to-frame and trace their individual trajectories.

Furthermore, we introduced virtual lines and hot zones into our DeepSORT-based
tracking system, which improved the accuracy of lane-specific vehicle counts (mostly as a
result of avoiding duplicates) and facilitated the calculation of individual vehicle velocities.
These improvements, in turn, enabled the accurate estimation of the lane-specific flow
rate and average speed. The visualization of the color-coded velocity level in each lane
indicated the condition of each lane.

There are several potential applications for our system. First of all, if our system
is linked to the Traffic Control Center, we can obtain real-time information, such as the
number of different types of vehicles, the lane-specific flow rate, the lane-specific average
speed, etc., which will be able to provide detailed real-time monitoring and analysis of
traffic conditions throughout the highway system, and play an important part in decision-
making or even law-enforcement processes for the authorities. In Taiwan, video cameras
are set at most sections in our National Highway System. Therefore, our system could
be implemented at a low cost and provide more accurate and detailed traffic monitoring
than the Freeway Bureau’s (MOTC) current ETC-based monitoring system, which can only
provide the overall flow rate for ETC-enabled vehicles. The Freeway Bureau, MOTC, spent
considerable funds on assembling ETC for vehicle counting; however, our object detection
and tracking system can be simply implemented using a camera, which will both save
funds for vehicle counting and enhance the system by adding the function of vehicle speed
estimation. Since our system is less costly and requires less maintenance than ETC-based or
induction-based traffic monitoring systems, it would also be more feasible for developing
countries that lack the adequate infrastructure.

In addition, the real-time information acquired from our system could be transmit-
ted to individual drivers or self-driving cars in order to help them make decisions, such
as staying in the same lane or switching to another lane if approaching a partially con-
gested section of the freeway. When integrated with navigation systems, it would aid in
recommending the optimal route to each vehicle.

Moreover, if our system were set up throughout the entire freeway, the abundant data
concerning individual vehicles obtained by our system, such as their type, speed, time in a
section, and the lanes used, would be helpful for the analysis of road occupants’ habits and
could be used to build traffic and prediction models.

In this study, we further simplified the classifications of detected objects to cars, buses,
and trucks (any other object would be classified as “others”), because these are the only
three types of vehicles that appear on a Taiwanese freeway. In fact, it is well within YOLO’s
ability to provide a more detailed and broader range of classifications. When coupled
with our real-time lane-specific traffic statistics, this extended system is capable of both
congestion detection and identifying the cause of congestion (e.g., if an animal appeared
on the freeway, or if a scooter illegally entered the freeway).

This paper is concerned with vehicle detection, vehicle tracking, and speed estimation.
The proposed approach improves upon existing approaches. For example, two papers in
our literature review concerning the applications of YOLO and DeepSORT [16–19] were
related to traffic flow estimation. In these, A. Federov et al. only counted vehicles passing
the crossroad in different directions, [16] and A. Santos et al. only counted vehicles on
Brazilian roads [17]. In this study, we not only counted vehicles passing on the freeway in
each lane, but also calculated the velocity of these vehicles, and the velocity level in each
lane. Therefore, our system has more functional applications for traffic monitoring and
control. In addition, our system used YOLO v4 for object detection, which has a higher
accuracy and efficiency than YOLO v3, which A. Santos et al. used. Our system used
DeepSORT for object tracking, which added the Deep Association Metric to SORT and
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enabled objects with different IDs to be assigned. Thus, our system can perform Multiple
Object Tracking (MOT) better than SORT, which A. Federov et al. used.

Because we defined the position of a vehicle as the center of its bounding box, if
the curvature of the road surface is too large or the size of the vehicle is too large, that
center point can sometimes fall in the adjacent lane, and the vehicle is erroneously counted.
This problem only affected the lane-specific estimations, but not the estimations of the
overall direction.

6. Conclusions and Future Work

In recent years, deep learning techniques for optimizing object detection and tracking
have developed rapidly and have been applied to human and vehicle traffic flows [17,18].
To our knowledge, this study was the first to introduce virtual lines and hot zones to a
deep learning object detection and tracking system for lane-specific vehicle counting and
velocity estimation.

Our contributions to traffic flow estimation are detailed in the third to fifth paragraph
of the Discussion Section. Briefly, the contributions are as follows: the system proposed
in this paper can provide detailed real-time information including the number of vehicles
passing in each lane of the section of freeway, the vehicle types, and the velocities of these
vehicles. Such information can be provided to the authorities for traffic monitoring and
control, shared with individual vehicles (including self-driving cars) for navigation, and
analyzed by official or academic institutions for traffic modeling and prediction. Since the
system proposed in this paper can be simply implemented using video cameras set on the
freeway, its efficiency, low cost, and high data quality are superior to ETC-based traffic
monitoring systems for traffic counting and analysis.

In the future, we will continue to improve the prediction accuracy, especially that
of lane-specific counting. We will also study techniques concerning the macro-view of
traffic flow, and we hope to develop an attention model that can automatically describe the
complete traffic situation on a larger scale.

The wireless sensor networks (WSNs) are widely applied, and security has become a
major concern for WSN protocol designers [22]. All detection schemes are subject to cyber-
security attacks. Main cyber vulnerabilities include internet exposition, interface/password
breaches, update lack, low segregation, weakness of Cyber Physical System (CPS) protocols,
weakness of CPS applications, and leak of sensitization [23]. Since our system is related
to traffic monitoring and control, it might face some potential cybersecurity attacks. The
attacks might occur during data transmission and database access, including interruption
interception and modification. The data used in this paper were sourced from an autho-
rized organization (MOTC, Taiwan), which we do not believe to be vulnerable. In the
future, this issue will be further investigated.
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