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Abstract: Topology optimization (TO) of engineering products is an important design task to maxi-
mize performance and efficiency, which can be divided into two main categories of gradient-based
and non-gradient-based methods. In recent years, significant attention has been brought to the
non-gradient-based methods, mainly because they do not demand access to the derivatives of the
objective functions. This property makes them well compatible to the structure of knowledge in the
digital design and simulation domains, particularly in Computer Aided Design and Engineering
(CAD/CAE) environments. These methods allow for the generation and evaluation of new evo-
lutionary solutions without using the sensitivity information. In this work, a new non-gradient
TO methodology using a variation of Simulated Annealing (SA) is presented. This methodology
adaptively adjusts newly-generated candidates based on the history of the current solutions and uses
the crystallization heuristic to smartly control the convergence of the TO problem. If the changes in
the previous solutions of an element and its neighborhood improve the results, the crystallization
factor increases the changes in the newly random generated solutions. Otherwise, it decreases
the value of changes in the recently generated solutions. This methodology wisely improves the
random exploration and convergence of the solutions in TO. In order to study the role of the various
parameters in the algorithm, a variety of experiments are conducted and results are analyzed. In
multiple case studies, it is shown that the final results are well comparable to the results obtained
from the classic gradient-based methods. As an additional feature, a density filter is added to the
algorithm to remove discontinuities and gray areas in the final solution resulting in robust outcomes
in adjustable resolutions.

Keywords: smart design and manufacturing; topology optimization; Simulated Annealing; crystal-
lization factor; adaptive neighborhood; non-gradient to; density filter

1. Introduction

Topology Optimization (TO) is a mathematical method to determine the distribution
of material in a design domain in order to maximize the performance of a system [1]. The
performance of each system to be optimized includes a wide range of specifications that
depend on the application of each system and restrictions. The optimization process could
be subjected to some constraints and the final solution must satisfy them. Depending on the
TO problem physics, various methodologies have been developed in TO [2,3]. To formulate
a TO problem, the design domain is discretized into Finite Elements (FE). The FE should
be fine enough to describe the design domain in a reasonable resolution however it should
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not be too fine that it increase the computational cost without improving the results. The
variables are the material density inside each element. Using the intermediate density for
elements can improve some common problems: The checkerboard and the discontinuity
of the design. The Solid Isotropic Material with Penalization (SIMP) method is one of the
most applicable approaches to solving TO problems with less complexity. SIMP models the
density of each element with a continuous value between a non-zero minimum and one.
This method models the properties of material through a power law approach to penalize
unfavorable intermediate densities [4].

The TO algorithm includes generating new solutions and evaluates them based on
defined criteria [5]. A variety of methods have been proposed to generate new solutions
and evaluate them [2]. From an optimizer point of view, TO methods can be divided into
two main types: Gradient-based and non-gradient-based.

The gradient-based methods such as Optimal Criteria (OC) and the Method of Moving
Asymptotes (MMA) use sensitivity information of the objective functions (that is, its first
order derivatives). In order to obtain the sensitivity information, the derivation of the
objective function is required. These methods have a fast convergence to the final results.
The gradient-based methods are widely used for TO problems [6–8]. Aside from the good
performance of these methods in TO, they are limited in the sensitivity information of the
objective functions.

However, finding the sensitivity of the objective function is not easy [9]. In such
cases, where the objective function derivative is difficult to obtain, the non-gradient-based
methods are more advantageous. Non-gradient based methods work only with the value
of the objective functions [10,11]. Genetic Algorithm (GA) and Simulated Annealing (SA)
are two popular meta-heuristics that have been used in non-gradient-based TO. The main
advantage of these non-gradient-based methods is that, unlike gradient-based methods,
they do not need the sensitivity information of the objective function.

GA uses the theory of natural selection for heuristic search [12]. Despite GA being
used in TO and having represented good results [13], it has high computational costs
even for simple problems. The determination of some parameters is also a challenge in
GA-based TO which can notably change the results. These parameters are the probability
of crossover, probability of mutation, fitness scaling coefficient, population size, selection
algorithm, and crossover operator [12].

SA is the other meta-heuristic for non-gradient-based TO. SA uses the concept of
metal annealing for the optimization process. The SA generates new candidates randomly
and accepts the one which improves the objective function. Additionally, SA also accepts
the worst candidates (which do not improve the objective function) under certain condi-
tions [14,15]. This fact allows SA to escape from local minima [16]. The Multi-Resolution
Design Variable (MRDV) is used in the literature to enhance search performance [17]. Nev-
ertheless, this approach still has high computational costs and the checkerboard pattern
problem still remains. Combining SIMP with SA in structural TO is also used to obtain
better results and less gray areas [18]. However, SIMP with SA is not efficient enough due
to the high computational costs. Using SA in TO is almost new and needs more research to
improve its convergence and computational cost which is the main objective of this work.
The proposed algorithm uses the concept of SA with a crystallization factor to improve the
performance of TO.

SA with crystallization heuristic controls the probability distribution of the random
search [19]. A closed loop is created considering the acceptance or rejection of the new
candidate. This closed loop increases the acceptance ratio of new candidates. The SA
with crystallization heuristic has been successfully applied in different fields: Cutting and
packing [20,21], electrical impedance tomography [22–30], curve fitting [31–33], etc. The
formulation of this method and its application in TO are explained in the next section.

In this paper, the SA with crystallization heuristic has been used for TO as a non-
gradient-based method. The two cases of compliance minimization in the classic beam
and heat transfer problem have been used to implement this method and verify the results.
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Analysis of the results has also been done in order to select the input parameters such as
the number of iterations and maximum temperature. The problem formulation for the
optimization, SA with crystallization heuristic, and TO algorithm will be described in the
next section. Then, the results from the proposed method are compared with the results
from the literature.

2. Simulated Annealing

The SA is a probabilistic meta-heuristic inspired by the metal annealing process. SA
was proposed in the early 80s based on the Metropolis algorithm [14,34,35]. The process
starts with an initial solution and in each step, it generates new candidates randomly. The
new candidate will be accepted if it improves the objective function or if its Boltzman
probability is greater than a random number. The Boltzman probability is calculated by:

P(T) = e−
∆E
T (1)

where ∆E is the energy variation, which is the difference between the objective functions
for the current solution and the newly generated candidate. T is the current temperature
that starts from a high value and decreases in each step until reaching the frozen state. The
maximum temperature should be high enough to ensure the domain exploration. Since SA
can accept worst candidates, it avoids being stuck in local minima. The generation of new
candidates can be performed in different ways. The crystallization heuristic proposed by
Martins and Tsuzuki [36] adjusts the probability density to increase the acceptance of new
solutions. The SA with crystallization heuristic determines the new candidate xnew by:

xnew = xcurrent +
1
Ci

Ci

∑
1

random(−1/2, 1/2) · ∆ri · ei (2)

where xcurrent is the current solution, ∆ri is the fixed step size associated with the i-th
variable, ei is the direction of the i-th variable, and Ci is the crystallization factor. Usually,
∆ri = (maxi −mini)/4 where [mini, maxi] is the range domain for the i-th variable. The
new candidate xnew is determined by summing random numbers Ci times (Bates distri-
bution). The crystallization factor Ci varies from 1 and a maximum value. When a new
candidate is accepted, the SA considers that it is refining the solution. The SA creates a
feedback action which increases exploration, resulting in the reduction of the crystallization
factor (this is the negative feedback). On the other hand, when a new candidate is rejected,
the SA considers that it is exploring the domain. The SA creates a feedback action which
increases refining, resulting in the increase of the crystallization factor (this is the positive
feedback).

3. Topology Optimization

Application of TO includes a wide range of problems with different physics. The prob-
lems of compliance TO in beams have been used in several research works [6,17,37]. The
optimized topologies based on compliance are a good starting point for other TO problems,
such as maximum stress, maximum deflection, etc. [3]. Minimizing the compliance of a
structure is equal to minimizing the strain energy S which is the external work performed
by the external force F with elastic deformation U from an unstressed state as shown in:

min S = UTKU

Subjected to KU = F
. (3)

For a discretized domain with N elements, the density of each element xe are the
TO variables. The total strain energy can be calculated as a strain energy summation
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in each element with penalized design variable p. According to the SIMP method, it is
calculated as:

S =
N

∑
e=1

(xe)
puT

e keue (4)

where ue is the element displacement vector and ke is the element stiffness matrix. The
volume fraction constraint determines the final volume regarding the design domain. The
optimization process includes the generation of new candidates and objective function
evaluation. The SA with crystallization heuristic is used as an optimizer for TO. The
algorithm is presented in detail in the next section.

4. SA in TO

In TO with SA meta-heuristic, the optimization starts by assigning an initial random
solution and the initial temperature. At each step, a new candidate is generated. The new
candidate is the new material density and is calculated according to (2). Then, the objective
function is evaluated using FEM with the just determined material density. If the new
candidate improves the objective function in comparison with the current solution, the new
candidate is directly accepted. Otherwise, the Boltzman probability is calculated using (1).
If the Boltzman probability is larger than a random number, the new candidate is accepted.

In both situations, if the new candidate is accepted, the crystallization factor receives
negative feedback. It should be noted that the crystallization factor has 1 as the minimum
value. In case the new candidate is rejected, the crystallization factor receives positive
feedback. The crystallization factor has a maximum value, usually equal to 20 [38,39]. This
maximum crystallization factor value ensures a minimum standard deviation value for
the probability density distribution. For each temperature, the process of new candidate
generation and objective function evaluation is repeated for a predefined number of
iterations before going to the next temperature. The SA must reach the thermal equilibrium
in the current temperature before going to the next temperature. The thermal equilibrium
is reached by evaluating the objective function m times or accepting new candidates m/2
times. The value of m must be defined for each TO problem, is usually larger than 40
times the number of variables. A larger m increases the design domain exploration. On the
other hand, very large m increases the computational cost, and perhaps less exploration is
required. The value of m for each TO must be determined based on the number of elements
(variables) and some trial runs. After reaching the thermal equilibrium, the temperature
decreases by cooling factor alpha. The cooling factor is another parameter to be determined,
and a value between 0.8 and 0.95 is normally used. The SA converges when the frozen state
is reached, this happens when no new candidate is accepted for a specific temperature.

Since this optimization method works based on a probabilistic search, the results come
with some discontinuity and gray areas. To reduce discontinuity in borders, a density
filter is applied for each element. According to this filter, the density of each element is
calculated by:

x f ilter =
∑N

j=1 w(xj)xj

∑N
j=1 w(xj)

(5)

based on the weighted density of neighboring elements, where w(xj) is the weighting
function and represents the distance of neighboring elements subtracted from the filter
radius. At higher temperatures, most of the new candidates are accepted as the SA stays in
an exploration phase. It is not reasonable to apply the density filter in this situation. The
density filter will improve the convergence at lower temperatures, where the SA is already
in the refinement phase. The transition from the exploration phase to the refinement phase
is not clear. For criteria to start applying the density filter, it considered the situation where
80% or more of rejections happens to be in this transition. After reaching the convergence,
a post-processing happens and the density filter is applied again to smoothen the borders
and also to turn gray areas into black and white elements.
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5. Results

In this section, three study cases are shown. The cantilever and MBB problems in 2D.
These two problems allow a comparison of the obtained results with literature results. A
practical 3D problem in heat conduction is also shown .

5.1. Cantilever Problem

To verify the proposed method, the classic problem of TO for the cantilever and MBB
beam was selected. The cantilever beam is a design domain fixed on one end and a force
applied on the other end as shown in Figure 1.

Figure 1. Schematic of design domain and loading condition for cantilever beam.

The TO was applied to the cantilever beam with 60 × 30 elements with a constraint on
the volume fraction. The number of elements to discrete the design domain should be high
enough to give a good resolution of the final design. In this case, the number of elements
was selected based on the similar cases in literature [2]. In other cases, this could be selected
simply by considering the minimum required resolution of the final design which depends
on the complexity of the expected final design. In order to determine the proper value for
m, the optimization process for the cantilever beam problem started with m = 10. This is
a very small value, the motivation was to find a value smaller than 60 × 30× 40 = 72,000,
where 30 × 60 is the number of variables and 40 is the commonly used multiplier. Figure 2
shows the plot of the SA converged objective function value for the optimum solution of a
0.5-volume fraction versus the value of m.
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Figure 2. SA converged objective function value versus value of m for the cantilever beam prob-
lem with volume fraction 0.5 (m is the number of objective function evaluations to reach thermal
equilibrium in a specific temperature).

As shown in Figure 2, the objective function (compliance) starts to converge to the
optimum when m = 100. By increasing the value of m until 1000, the converged objective
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function value will not have any considerable changes and it is already very close to the
optimum solution. Similarly, for other volume fractions, the convergence has the same
behavior. Since the computational cost for this problem is not too high, m = 1000 was
used in the simulations. In more complicated problems, a reasonable value of m can be
determined using a similar approach.

The frozen state is defined as the temperature where no new candidate is accepted.
It is necessary to determine the initial temperature value. In an attempt to stop the SA
before reaching the frozen state and to define the initial temperature, the following study
was executed. The number of rejected and accepted new candidates per temperature were
computed. It resulted in the graph shown in Figure 3. In the SA, the number of accepted
solutions must be as high as possible in the exploration phase. From Figure 3, at a tempera-
ture near 100, SA has an acceptance ratio of about 60%. The initial temperature T0 = 100 is
reasonable, and allows the SA to have enough domain exploration. The final temperature
was selected as Tend = 0.001 in which the number of accepted solutions is already small.
The real frozen state cannot be reached, because of the checker board problem.

Figure 3. Number of accepted and rejected new candidates versus temperature. This graph shows
that a reasonable initial temperature is T0 = 100 where 60% of the new candidates are accepted.

The problem of minimizing compliance in the cantilever beam of Figure 1 is solved
with the gradient-based method from the literature [6] and the method proposed herein.
The results are presented in Table 1 for different volume fractions. The parameters used for
the SA in the proposed method are T0 = 100 and Tend = 0.001 for initial and final tempera-
tures, m = 1000 to reach the thermal equilibrium, and α = 0.85 for the cooling factor.

Table 1. Cantilever beam compliance for different volume fractions from the literature and the
method proposed herein

Volume Fraction Compliance from [6] Compliance from the Method Proposed Herein

0.5 70.41 73.71
0.6 60.43 61.42
0.7 53.95 54.97
0.8 49.68 50.21
0.9 46.84 47.10

The compliance of optimized cantilever beam using the proposed method agrees
very well with the values from the literature. Figure 4 shows the optimized topology of
cantilever beam for different volume fractions. The shapes from the method proposed
herein are similar to the results from the literature.
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(a) (b)

Figure 4. The results for optimized topology of cantilever beam in different volume fractions of 0.5,
0.6, 0.7, 0.8, and 0.9. (a) Results from the literature. (b) Results from the method proposed herein.

Each variable has its crystallization factor and their value shows the crystallization of
the variable as the temperature decreases. The value of the crystallization factor indicates
if the variable is in an exploratory or refinement phase. Crystallization factors with higher
values indicate that the variables are in the refinement phase. Crystallization factors with
smaller values indicate that the variables are in the exploration phase. Four different
variables were selected as shown in Figure 5a. The graph average of the crystallization
factors for the four points per temperature is presented in Figure 5b.
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(a) (b)

Figure 5. (a) Four arbitrary variables in the design domain of the cantilever beam were selected.
(b) The average crystallization factor for each of these variables per temperature is plotted.

As shown in Figure 5, the variable C1 started randomly as void or solid, its crystal-
lization factor is shown in blue and it quickly reaches the maximum value. C3 is another
variable, its crystallization factor is shown in yellow. It takes more iterations to get to the
frozen state. Near the temperature of 0.01, all four crystallization factors associated with
the four selected variables reach the frozen state (its maximum value).

5.2. MBB Problem

The second studied problem is the Messerschmitt–Bolkow–Blohm (MBB) beam. The
design domain is a simply supported beam with a vertical force in the middle. Since the
design domain is symmetric, half of it considered here as showed in Figure 6. Since the
design domain is completely symmetric, only half of the design domain is considered
in TO. A similar procedure, as described for the previous example (see Figure 6), was
performed to determine the value of m. The graph shown in Figure 7 shows the graph of
the converged objective function value versus the value of m.

Figure 6. Schematic of design domain and loading condition for the half-MBB beam.

As shown in Figure 7, with more than m = 100, the converged objective function value
is near the optimum. It can be noticed from Figures 2 and 7 that the minimum required
value of m depends on the number of variables, and it is almost independent of the loading
and boundary conditions. The same input parameters of the cantilever beam problem
are used to solve the half-MBB TO problem in Figure 6. The results for the compliance of
optimized topology in different volume fractions are presented in Table 2. The results for
the half-MBB problem also agrees very well with the results from the literature. The final
shape for the half-MBB problem is shown in Figure 8.
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Figure 7. SA converged objective function value versus value of m for the MBB beam problem with a
0.5-volume fraction (m is the number of objective function evaluations to reach thermal equilibrium
in a specific temperature).

(a) (b)

Figure 8. The results for optimized topology of a half-MBB beam in different volume fractions of 0.5,
0.6, 0.7, 0.8, and 0.9. (a) Results from the literature. (b) Results from the proposed method.
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Table 2. Half-MBB beam compliance for different volume fractions from the literature and the
proposed method.

Volume Fraction Compliance from [6] Compliance from the Method Proposed Herein

0.5 77.42 80.87
0.6 66.73 68.55
0.7 59.69 60.72
0.8 54.55 55.60
0.9 51.31 51.95

5.3. Heat Conduction Problem

The results for the TO of the cantilever and half-MBB beam shows that the proposed
method is as efficient as the gradient-based TO methods. It should be noted that the main
significance of the proposed method is the inclusion of sensitivity information without
using any gradient information. Since this method works based on a probabilistic search,
the final shapes are not as smooth as the other methods. However, the use of finer mesh or
the application of some post processing can improve the final results.

In order to show the usefulness of this method in practical problems, a 3D heat
conduction problem was also studied. The schematic of the design domain is shown in
Figure 9. In the heat transfer problem, the heat sink is at a different temperature and the
heat flows throw the design domain. The formulation of the heat transfer in the FE format
is similar to (3). The difference is that in the heat transfer problem U is the finite global
nodal temperature vector, F is the global thermal load vector, and K is the global thermal
conductivity. The thermal conductivity matrix or stiffness matrix for the heat conduction
problem can be obtained by the assembly of element thermal conductivity matrices. The
SIMP method gives the thermal conductivity matrix of each element by interpolating the
density of each element. The design domain in Figure 9 is in 3D and all the nodes and
matrices should be in 3D as well. For isotropic material, the thermal properties are equal in
all directions. The objective function of this heat conduction problem to be minimized is
the heat transfer compliance.

Figure 9. Schematic of the design domain for the heat conduction problem.

According to the literature [8], a 40 × 40 element in x and y directions can define the
problem efficiently. To ease the results comparison, just one element is considered in the
z direction. To determine the proper number of iterations, the optimization process has
been performed with different values of m and the results are shown in Figure 10. From
Figure 10, the converged objective function approximated the optimum solution for values
of m greater than 300. The higher the m, the slightly better the results will be, and since
the computational costs are low, the value of m = 5000 was chosen. The final optimum
solution values of heat transfer compliance from the literature [8] and the proposed method
are presented in Table 3.
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Figure 10. SA converged objective function value versus value of m for the heat conduction problem
with a 0.5-volume fraction (m is the number of objective function evaluations to reach thermal
equilibrium in a specific temperature).

The final shape of optimized topologies from the literature [8] and the proposed
method are presented in Figure 11 for a 40 × 40 × 1 element design domain.

(a) (b)

Figure 11. The results for optimized topology of heat conduction in different volume fractions of 0.5,
0.6, 0.7, 0.8, and 0.9.(a) Results from the literature. (b) Results from the proposed method.
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As shown in Figure 11 and Table 3, the results from the proposed method and the
literature for the heat transfer problem are almost the same. The value of the minimum
compliance has also slightly improved.

Table 3. Minimized heat transfer compliance for different volume fractions from the literature and
the method proposed herein.

Volume Fraction Compliance from [8] Compliance from the Proposed Method

0.5 250.75 224.56
0.6 211.83 196.44
0.7 189.88 182.27
0.8 180.18 173.51
0.9 170.89 169.11

6. Conclusions

A new method for TO of mechanical structures is proposed in this work. The proposed
method uses the concept of SA with crystallization heuristic to determine the optimal shape.
The crystallization heuristic improved the search in the generation of the new candidate.
Although this algorithm is non-gradient based and derivatives of the objective functions
are not required, the algorithm uses a feedback action, depending on whether the new
candidate is accepted or rejected, the crystallization factor is modified accordingly. A
density filter is also applied when the thermal equilibrium is reached to smoothen the
borders. Applying the proposed method to the classic problem of compliance minimization
in the cantilever beam and MBB beam showed good agreement with the results from the
literature. Similarly, the proposed method for the problem of minimizing heat transfer com-
pliance showed good agreement with results from the literature. It shows that this method
can be used for any type of problem regardless of the existence of sensitivity information.

Since this method is new, a considerable amount of research and developments are
required to improve and prepare it for commercial use. Future work could reduce the
computational costs by the calculation of the objective function in different ways. This
method could also be applied to multi-objective TO problems.
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