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Abstract: Alzheimer’s disease is a memory-related neurodegenerative condition leading to cognitive
impairment. Cholinergic deficit, together with other underlying mechanisms, leads the to onset
and progression of the disease. Consequently, acetylcholinesterase inhibitors are used for the symp-
tomatic treatment of dementia, even if limited efficacy is observed. More recently, some specific
phosphodiesterase isoforms emerged as promising, alternative targets for developing inhibitors to
contrast neurodegeneration. Phosphodiesterase isoforms 4, 5 and 9 were found to be expressed in
brain regions that are relevant for cognition. Given the complex nature of Alzheimer’s disease and
the combination of involved biochemical mechanisms, the development of polypharmacological
agents acting on more than one pathway is desirable. This review provides an overview of recent
reports focused on natural and Nature-inspired small molecules, or plant extracts, acting as dual
cholinesterase and phosphodiesterase inhibitors. In the context of the multi-target directed ligand
approach, such molecules would pave the way for the development of novel agents against neurode-
generation. More precisely, according to the literature data, xanthines, other alkaloids, flavonoids,
coumarins and polyphenolic acids represent promising scaffolds for future optimization.

Keywords: Alzheimer’s disease; acetylcholinesterase; phosphodiesterase; multi-target directed
ligand; polypharmacology; natural compounds

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder linked to deficits of neuro-
transmission [1]. From the clinical point of view, AD is a memory-related disease that is
characterized by a progressive decline leading to cognitive impairment. Malfunctioning of
cholinergic transmission and glycation, formation of amyloid deposits and oxidative stress
have been proposed to be involved in pathogenesis and progression of the disease [2,3].
In this connection, drugs sustaining the cholinergic tone have been developed to contrast
the progressive cognitive decline that characterizes AD. In particular, acetylcholinesterase
(AChE) inhibitors such as donepezil (Figure 1a) are used for the symptomatic treatment of
dementia, even if only moderate efficacy is observed in AD patients [4,5].

On the other hand, phosphodiesterases (PDEs) are emerging as promising targets for
developing inhibitors to contrast neurodegeneration [6–8]. In particular, selective small
molecules targeting PDE4, PDE5 and PDE9 isoforms are being studied to explore alternative
strategies against AD in light of their brain localization and of their role, to different extents,
in cognitive processes [7,9–11]. More specifically, PDE4D is expressed in the frontal cortex
and it hydrolyzes cyclic adenosine monophosphate (cAMP) to its corresponding linear
metabolite. It is involved in memory consolidation, and in vivo studies demonstrated
that the use of the selective inhibitor rolipram ameliorates cognition [12,13]. In addition,
compound MK-0952, another PDE4 inhibitor, was also studied in clinical trials for the
improvement of cognitive impairment [14]. On the other hand, PDE5A, a cyclic guanosine
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monophosphate (cGMP)-selective isoform, is upregulated in the brains of AD patients, and
its functioning influences neuronal plasticity. Several PDE5 inhibitors, such as tadalafil
(Figure 1b), are being studied for their applications against dementia in the context of drug
repurposing [8,15].
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Figure 1. 3D structures of AChE in complex with donepezil (a, PDB ID: 4EY7) and of PDE5 in
complex with tadalafil (b, PDB ID: 1UDU). In the artworks, the residues interacting with the ligands
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Eventually, PDE9A, which selectively hydrolyzes cGMP, is expressed in brain regions
that are relevant for cognition and, thus, is recently receiving more attention [16,17]. The
efficacy of selective PDE9 inhibitors, such as BAY 736691, PF-04447943 and BI 409306,
was proved in preclinical and clinical studies [18–20]. Thus, since PDE4, PDE5 and PDE9
isoforms are involved in the nitric oxide (NO) signaling cascade, which includes NO-
sensitive guanylyl cyclase and protein kinase G, in improving neuronal plasticity via cAMP
responsive element binding (CREB) protein activation, in maintaining the efficiency of
neuronal vascularization and in glutamate release, the action of selective PDE inhibitors
could represent an alternative and complementary approach to contrast dementia [7,8].

As anticipated, given the complex nature of AD and the combination of multiple
biochemical mechanisms underlying onset and progression of this disease, the development
of polyfunctional therapeutic agents acting on more than one pathway is desirable, and
natural compounds are historically endowed with polypharmacological features [3,21,22].
In medicinal chemistry, the multi-target directed ligand (MTDL) approach is being pursued
with the same aim [15]. In this context, this review is focused on natural and Nature-
inspired small molecules, or plant extracts, acting at the same time as AChE and PDE
inhibitors, and thus with a potential application in contrasting neurodegeneration.

More than 70 research papers and reviews were screened for the preparation of the
current article. Scientific contributions were retrieved by searching PubMed (www.ncbi.
nlm.nih.gov/pubmed/ (accessed on 25 March 2021)) and Scopus (www.scopus.com (ac-
cessed on 25 March 2021)) databases using keywords such as “phosphodiesterase”, “PDE4”,
“PDE5”, “PDE9”, “acetylcholinesterase”, “butyrylcholinesterase”, “natural compounds”,
“neurodegeneration”, “Alzheimer’s disease” and their combinations. Papers published
in the 2000–2021 timeframe were considered. The 3D models of the studied protein and
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complexes were retrieved from the Protein Data Bank (PDB, www.rcsb.org (accessed on
25 March 2021)) and UCSF Chimera software was used to prepare the artworks [23].

2. Multi-Target Natural and Nature-Inspired Compounds

Clinical practice with AChE inhibitors highlights their limited efficacy and the onset
of tolerance that occurs after long-term use [24]. Thus, the search for alternative strate-
gies and combined therapies is wide open. An overview of the chemical classes of the
currently studied Nature-inspired dual cholinesterase-PDE inhibitors will be presented in
the following sections of the manuscript.

2.1. Xanthines and Other Alkaloids

Xanthines, including caffeine and caffeine-derived compounds, such as synthetic
derivatives, represent outstanding examples of alkaloids modulating many different bio-
chemical pathways in humans (Figure 2) [25,26]. Caffeine itself, found in Coffea arabica
and C. canephora, has been referred to as a multi-target compound for decades, in light of
its polypharmacological effects [26]. In fact, besides its primary activity on adenosine re-
ceptors, caffeine interferes with other neurotransmission systems, including the pathways
mediated by acetylcholine, epinephrine, serotonin, dopamine and glutamate [27–29]. More
specifically, in the context of the cholinergic system, caffeine acts as a non-competitive
AChE inhibitor (Ki = 175 µM). This mechanism may be involved in its neuroprotective
and anti-inflammatory effects [26]. On the other hand, it has also been reported that
caffeine can interfere with intracellular cAMP and cGMP levels by acting as a weak, non-
specific reversible PDE inhibitor (IC50 = 500–1000 µM) [25,30]. On this basis, caffeine
is defined as a “cognitive enhancer”, and a role for this alkaloid in the modulation of
cognitive decline in AD has been proposed. Nevertheless, it must be pointed out that the
anti-inflammatory effect on neuro-inflammation conditions may also play a role [31–33].
Moreover, it has been reported that caffeine has an effect on delaying onset and pro-
gression of Parkinson’s disease (PD), while it is interestingly negatively implicated in
Huntington’s disease (HD) [34,35]. On the side of synthetic derivatives of xanthines
being studied as potential tools against neurodegeneration, propentofylline (Figure 2)
received great attention. More specifically, this compound was reported to improve cog-
nition and dementia severity in mild-to-moderate AD in clinical trials. Propentofylline is
known to target biochemical pathways mediated by PDEs, but other mechanisms have
also been proposed. In particular, regulation of genes involved in the onset and progres-
sion of oxidative stress, lipid homeostasis, which may interfere with neuronal function,
appears to be involved [36,37]. Moreover, propentofylline inhibits AChE in the µM range
(IC50 = 6.40 µM) [38]. Pyrazolopyrimidinones, which are structurally related to naturally
occurring xanthines, were also studied as selective PDE9 inhibitors for the discovery of
novel compounds to contrast dementia. In these studies, compound showing inhibitory
activities against PDE9 in the nM range were identified (IC50 values < 200 nM) [39,40]. On
a similar basis, 3-isobutyl-1-methylxanthine (IBMX) was previously highlighted as a non-
selective inhibitor targeting PDE9 as well as other isoforms in the µM range (IC50 = 230 µM
for PDE9) [41]. Pyrazolopyridine is another xanthine-inspired scaffold that has been re-
cently considered for the development of dual cholinesterase-PDE inhibitors since such
compounds are known to target peripheral anionic binding sites (PAS) of AChE. Pan
et al. reported the synthesis of tacrine-pyrazolopyridine hybrid derivatives targeting
AChE, butyrylcholinesterase (BuChE), another enzyme involved in sustaining cholinergic
tone, and PDE4D. The compounds demonstrated µM and sub-µM inhibitory activity on
cholinesterases (IC50 = 0.125–0.412 µM for AChE and IC50 = 0.245–1.283 µM for BuChE)
and even better activity on the PDE (IC50 = 0.041–1.307 µM) [10].

www.rcsb.org
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Figure 2. Chemical structures of representative alkaloids and derivatives considered in the cited
studies: caffeine, theophylline, propentofylline, beta-carboline and vascinone.

Other alkaloids of natural origin have also been reported as dual inhibitors targeting
AChE and PDEs. In particular, natural compounds from camel artemisia (Peganum nigel-
lastrum) and their synthetic derivatives were tested in this context. Zhou et al. studied
beta-carboline and vasiscinone (Figure 2) as lead compounds using in silico tools and
prepared indoline-2,3-dione and quinazoline derivatives that were then tested in vitro
against both AChE and PDE5. The authors identified a small set of inhibitors acting on
the two enzymes in the nM and µM range. In particular, compounds inhibited AChE with
IC50 values between 44 and 298 nM, and PDE5 with IC50 values between 17 and 746 nM.
Moreover, no obvious toxicity was observed on A549 cells treated with these molecules,
suggesting that the compounds should be well-tolerated [15].

2.2. Flavonoids and Coumarins

Flavonoids are known for possessing a wide range of biological activities. Through
the years, the compounds belonging to this class have been studied as antioxidants, anti-
inflammatory agents and also as AChE inhibitors and, more in general, as promising
scaffolds for developing compounds to contrast neurodegeneration through different
mechanisms [42,43]. Singh et al. synthesized a set of drug-like flavonoid derivatives, based
on the chromen-4-one scaffold, inhibiting AChE at nM concentrations (IC50 = 5.87 nM for
the best performing compound) and endowed with antioxidant properties. Besides in vitro
results, the authors also observed that one of the synthesized compounds was effective
in restoring memory in vivo in a mouse model of scopolamine-induced amnesia [3]. On
the other hand, the activity of flavonoids as non-specific or specific PDE inhibitors is well-
documented. Icariin, icarisid II (Figures 3 and 4) and sophoflavescenol are cGMP-specific
inhibitors and isoflavones have been studied as PDE4, PDE5 and PDE9 inhibitors. In
particular, icariin inhibits PDE5 with an IC50 value of 5.9 µM [44–48]. Naringenin (Figure 4),
dioclein, epigallocatechin-3-gallate represent some other examples of compounds targeting
several PDE isoforms [11,49,50].
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Besides the several available examples of multi-target compounds from this class, it
must be pointed out that recent contributions are starting to investigate closely the dual
AChE-PDE inhibitory activity of flavonoids. More specifically, Adefegha et al. reported
that rutin and its aglycone quercetin (Figure 4) efficiently reduce AChE activity in rat
tissues (25 and 50 mg/kg) and, at the same time, inhibit PDE5. In particular, a more
marked inhibitory activity on PDE5 was observed for rutin over quercetin. Moreover, the
compounds showed antioxidant activity, as expected. Importantly, even if the focus of the
cited article was on the treatment of erectile dysfunction (ED), the results could be translated
into the field of central nervous system (CNS) diseases, for which the management of
oxidative status is of primary relevance. In neurodegeneration, in particular, antioxidant
activity often parallels AChE and PDE inhibition [51–54].

Coumarins are a family of naturally occurring small molecules with a wide range of
biological activities, including a role in contrasting CNS diseases. This is likely due to their
reported effect on enzymes such as AChE and monoamino oxidases (MAOs) [55,56]. Com-
pounds from this class were also studied both as PDE inhibitors and anti-AD agents [55,57].
Nevertheless, their dual inhibitory activity on cholinesterases and PDEs, as well as their
isoform selectivity, has not been investigated in detail to date. On the other hand, Jiang et al.
synthesized a set of drug-like, blood-brain barrier (BBB)-permeable coumarin-dithiocarbamate
hybrids that act through a combination of mechanisms. In particular, the authors studied
the activity of these compounds on AChE (IC50 = 0.21–36.85 µM), BuChE (6.21–37.24 %
enzyme inhibition) and Aβ aggregation [58].

2.3. Natural Extracts Containing Polyphenolic Acids

Several recent reports investigated the issue of dual cholinesterase-PDE inhibition
from a slightly different perspective [59–61]. Many authors, indeed, described the activity
on such enzymes, and in particular on AChE and on the PDE5 isoform, of whole aqueous or
ethanolic extracts of plants or plant parts. In such research works, these tests are generally
paired by analytical profiling, by means of HPLC or other chromatographic techniques,
providing a description of the content of the studied extracts. In this context, Oboh et al.
reported the in vitro activity of Nigerian plantain (Musa sapientum) extracts. In particular,
the authors prepared aqueous extracts of unripe and ripe plantain peels using distilled
water. The extracts were analyzed using HPLC-DAD, showing that rutin, caffeic acid and
quercetin were the most abundant components of phenolic fraction of ripe peel extract,
while unripe peel extract was rich in rutin, chlorogenic acid and catechin. Unripe peel
extract was found to be more efficient in inhibiting AChE (IC50 = 6.30 µg/mL) and PDE5
(IC50 = 3.10 µg/mL) isolated from rats [59]. Similarly, the same research group presented
a study focused on spice extracts. In particular, alligator pepper (Aframomum melegueta)
and bastered melegueta (Aframomum danieli) were considered. In this case, the authors
performed the extraction of alkaloids using a 10% acetic acid solution in ethanol. The
composition of such extracts was investigated by GC-FID and revealed that, among other
alkaloids, alligator pepper is particularly rich in theophylline (Figure 2), lupanine and
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emetine. On the other hand, high concentrations of ellipcine, gingerdione and senecio-
nine were detected in bastered melegueta extracts. Interestingly, alligator pepper extract
inhibited AChE more efficiently (IC50 = 5.42 µg/mL), while bastered melegueta extract
performed better towards PDE5 (IC50 = 7.24 µg/mL) [62]. African walnut (Tetracarpidium
conophorum) is another source of natural dual inhibitors. Aqueous extracts of pulverized
walnuts, with and without shell, were analyzed by HPLC-DAD, showing the presence
of gallic acid, caffeic acid (Figure 5) and quercetin (Figure 4) in similar concentrations.
Nevertheless, overall higher concentrations of bioactive components were observed in the
first extract, which was also the most efficient in inhibiting AChE (IC50 = 0.87 µg/mL) and
PDE5 (IC50 = 8.59 µg/mL) [63]. Similarly, Dada et al. reported that aqueous extracts of pul-
verized almond (Terminalia catappa) leaf and stem bark modulate the activity of AChE and
PDE5 in the cardiac tissue of rats (100–200 mg/kg) [61]. These parts of the plant are rich in
polyphenols and organic acids, such as ferulic, caffeic, coumaric (Figure 5) and 2-prenylated
benzoic acid, but also of catechin and ellagic acid derivatives [64]. Ojo et al. characterized
the leaves extract of Ocimum gratissimum, a perennial medicinal plant endowed with sev-
eral pharmacological properties. Aqueous extracts of O. gratissimum dose-dependently
inhibited AChE (IC50 = 43.19–44.67 µg/mL) and PDE5 (IC50 = 44.23–53.99 µg/mL) isolated
from rat. Moreover, the extracts were tested for radical scavenging activity showing an
antioxidant effect [65]. The authors connected the observed biological effects with the
phenolic content of the extract, that includes rutin, kaempferol, rosmarinic acid, caffeic acid
and cichoric acid [65,66].
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Taken together, the observations that can be retrieved from the reports overviewed in
this section confirm the potential of flavonoids and alkaloids as dual inhibitors of AChE and
PDEs, since these compounds are the most represented in the considered extracts. Similarly,
the role of polyphenolic acids cannot be ruled out. Moreover, it must be considered that,
in several contributions, the authors primarily studied these extracts as remedies against
ED, for which PDE5 traditionally represents the most studied pharmacological target.
Nevertheless, the information concerning dual AChE-PDE5 inhibition are valuable also
outside of this specific context and should be kept into account when translating these
results into the field of drug development against neurodegeneration.

3. Conclusions and Perspectives

AD is the most common single cause of dementia and has become a worldwide health
concern [67]. Thus, increasing efficacy and limiting side effects in managing AD is a priority.
Complex pathogenesis prompted medicinal chemists to search for dual or multiple target
drugs with the aim of generating a synergistic therapeutic effect, going beyond conventional
AChE inhibitors [9]. Compounds acting at the same time on other targets or mechanisms,
such as Aβ aggregation, BuChe and oxidative stress, were studied through the years. Most
importantly, reports in the literature demonstrated that the combined use of cholinesterase
and PDE inhibitors, in particular, could turn out to have a different, complementary effect
on early and late long-term potentiation (LTP) of cognitive function [7]. This strategy is also
recently being pursued in the field of synthetic medicinal chemistry, with the development
of drug-like small molecules targeting PDE5 and AChE [9] and in the context of drug
repurposing, as in the case of the well-known drug tadalafil [8,68,69]. The field of dual
cholinesterase-PDE inhibitors attracts great interest in developing novel tools against
dementia and has been previously investigated from the point of view of the underlying
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biochemical mechanisms and synergistic effects promoted by the inhibition of these two
enzymes. More specifically, Prickaerts et al. reported that AChE and PDE5 inhibitors affect
memory processes at different extents. In particular, PDE5 inhibitors improve consolidation
of object information, while AChE inhibitors induce a different outcome by improving
processes of acquisition of object information [70]. Moreover, PDE5 inhibitors can stimulate
the neurogenesis and, thus, dual inhibitors potentially produce synergistic effects on
AD [71].

From a chemical point of view, compounds acting on these two targets must be
endowed with some specific features which may be deduced from the available structures
of AChE and PDEs and of their complexes with ligands. As depicted in Figure 1b, tadalafil
interacts with PDE5 through a pool of hydrophobic residues (Ala767, Ile778, Ala779, Ala783,
Phe787, Phe786, Ile813, Phe820), but also via some polar amino acids, such as Gln775 and
Gln817. Interestingly, a similar interaction pattern with PDE5 is shared by icarisid II, which
binds the identical region of PDE5, mainly through the same hydrophobic residues (Leu725,
Ala783, Phe786, Phe820; Figure 3). Thus, the presence of an aromatic and hydrophobic
portion in the small molecule appears to be mandatory to target this enzyme. Similarly,
in the structure of the donepezil-AChE complex (Figure 1a), the ligand interacts with the
target via hydrophobic amino acids (Phe295, Phe297, Phe338). Nevertheless, a more polar
region can be also identified in the binding site (Tyr72, Asp74, Trp86, Glu202, His447).
Thus, even if the two binding sites share some structural similarities, AChE also requires
the presence of polar moieties. These features must be taken into account in the design and
optimization of dual inhibitors.

In the field of natural and Nature-inspired compounds, polypharmacology and syner-
gistic effects are two established milestones. This especially holds true when plant extracts
are considered, in which the entourage effect of different chemicals on several biological
targets and biochemical pathways often lays the basis for the observed therapeutic outcome.
Nevertheless, in the context of dementia, it must be pointed out that the macromolecular
targets of such small molecules are located in the CNS, beyond the BBB. This highlights the
primary relevance of the pharmacokinetic properties of the studied natural and Nature-
inspired compounds since drug-likeness requirements are even stricter in this case. Thus,
opportune physico-chemical features of such molecules are required to proceed from a
promising in vitro lead to an effective drug candidate for preclinical and clinical studies.
This is where rational synthetic optimization of the compounds may have its role, e.g., with
opportune derivations or the preparation of prodrugs.

Taken together, the information retrieved from the current literature suggests that
alkaloids, and xanthines in particular, flavonoids, coumarins and polyphenolic acids
represent promising scaffolds for developing dual cholinesterase-PDE inhibitors.
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