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Abstract: Audio equalization is an active research topic aiming at improving the audio quality of a
loudspeaker system by correcting the overall frequency response using linear filters. The estimation
of their coefficients is not an easy task, especially in binaural and multipoint scenarios, due to
the contribution of multiple impulse responses to each listening point. This paper presents a
deep learning approach for tuning filter coefficients employing three different neural networks
architectures—the Multilayer Perceptron, the Convolutional Neural Network, and the Convolutional
Autoencoder. Suitable loss functions are proposed for each architecture, and are formulated
in terms of spectral Euclidean distance. The experiments were conducted in the automotive
scenario, considering several loudspeakers and microphones. The obtained results show that deep
learning techniques give superior performance compared to baseline methods, achieving almost flat
magnitude frequency response.

Keywords: deep neural networks; FIR filter design; audio equalization; automotive audio

1. Introduction

Listening environments are characterized by reflections and reverberations that can adversely
affect listening [1] and attention [2], adding unwanted artifacts to the sound produced by an acoustic
source. For this reason, audio equalization is needed in order to improve sound quality reproduction.
Of particular interest is the car scenario, where people daily listen to music, radio programs or take
hands-free phone calls. The audio quality in such an environment is very important, but is adversely
affected by several factors, including the loudspeakers quality and the reflective materials inside the
cabin. The impulse response at the listening position is characterized by the sum of multiple signals:
those coming from the loudspeakers and their reflections. Furthermore, the loudspeakers impose their
frequency response on the signal. The frequency response is thus colored and usually results in deep
notches and peaks, that reduce the audio quality.

These issues are generally addressed by the design of linear filters [3] that are applied to the signal
before being transduced by the loudspeakers. The filters are designed to improve the audio quality at
specific listening positions by inverting the car impulse response. However, the task is challenging,
as the existence of the inverse may not be guaranteed, and the complexity increases with the number
of sources and microphones. A plethora of design techniques have been proposed in the past for room
equalization [1], and some have been proposed, more specifically, for the car scenario. These are,
generally, based on linear optimization and inversion algorithms. Considering the complexity of this
task, however, novel design techniques may be applied in this context, relying on nonlinear methods
such as evolutionary algorithms, machine learning and neural networks.
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Since digital communication systems are subject to the multipath problem, that is, the sum of
multiple reflections in a linear channel with multiple sources and receivers, it is worth investigating the
literature for equalization techniques applied to this application field. Indeed, several novel techniques
have been proposed for the design of equalizing filters for digital communications, relying on nonlinear
methods. In Reference [4], the authors use Particle Swarm Optimization (PSO) to equalize the impulse
response of an optical fiber communication. This is shown to provide better results than Least Mean
Square (LMS) and Recursive Least Square (RLS) techniques. Another interesting PSO approach is
reported in Reference [5], where the PSO particles are used to obtain optimal poles and zeros of an
IIR filter. In Reference [6] Genetic Algorithms (GA) are exploited for Adaptive Channel Equalization,
in order to reduce the Inter Symbol Interference (ISI) present in the trasmission channel.

Although inspiring, these algorithms cannot be employed in the audio equalization scenario,
as the two tasks differ in several aspects. While in communication systems equalizers are implemented
at the receiving end, in the audio case they can only be implemented at the sound source. This can
represent an issue, as the equalizing filters must provide satisfying results at several listening positions,
while with telecommunication devices, each one can adapt its equalizing filter depending on the
incoming signal. In communication systems the main goal is reducing symbol error rate, thus, allowing
a robust classification of the symbols constellation, while in the audio field the goal is to achieve
near-perfect audio quality taking psychoacoustic factors into consideration. Finally, the communication
scenario may or may not consider time-varying environmental conditions (e.g., mobile receiving
stations), while in the audio field time-invariance is often assumed, thus, room impulse responses are
measured and treated statically.

A first attempt at the use of deep learning for audio equalization is found in Reference [7], where
the authors use a Time Delay Neural Network (TDNN) to solve the problem of equalization, using the
input sequence, delayed by a time unit, as input and the signal recorded by the microphone as output:
the error between the input signal and the output of the network is used for the back-propagation
algorithm. The forward approach is also employed using a delayed copy of the input signal
as input and the difference between the output given from the loudspeaker and the network as
error. In References [8,9], the authors describe a system that maps the gain of each frequency band
with the user’s preferred equalizer settings as training data. A similar approach is undertaken in
Reference [10], where k-Nearest Neighbour (KNN) is used to implement a timbre equalizer based on
user preference in terms of brightness, darkness and smoothness. Specifically, sound professionals
and music students were asked to manually equalize 41 audio segments. Equalization for music
production were performed in Reference [11], where a Dilated Residual Network (DRN) was used
to automate the resonance equalization in music, predicting the optimal attenuation factor, while
an end-to-end equalization was used in Reference [12], substituting filter banks with Convolutional
Neural Network (CNN) and without prior knowledge of filter parameters, like gains, cut-off frequency
and quality factor.

Recent works addressing the design of IIR filters using PSO can be found in References [13–15].
In particular, Foresi et al. [15] use PSO with fractional derivative constraints to design a quasi-linear
phase IIR filter for Audio Crossover Systems. The algorithm gives the parameters of the desired
filter (like cut-off frequency) with a flat magnitude response and a linear phase. In Reference [16],
the authors use Gravitational Search Algorithm (GSA) to model an IIR filter and a nonlinear rational
filter, then they compare the technique with PSO and GA. In this case, the algorithms provide filter
coefficients as outputs. Another approach is used in Reference [17], where the authors achieved an
IIR filter using the Artificial Immune Algorithm and compared the results with GA, the Touring Ant
Colony Optimization (TACO) and Tabu Search (TS).

Neural networks have been also proposed for the filter design task. In Reference [18] a neural
network is devised to design an IIR filter with the error calculated as the difference in magnitude
response between the desired and the generated filter. Kumari et al. [19] provide a performance
comparison of some neural network architectures to design a low pass Finite Impulse Response
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(FIR)filter, including Radial Basis Function (RBF), General Regression Neural Networks (GRNN),
Radial Basis Exact (RBE), Back-Propagation Neural Network (BPNN) and the Multilayer Perceptron
(MLP). Wang et al. [20] proposes a two step optimization Frequency-Response Masking (FRM)
technique based on the design of a FRM filter optimizing the subfilters, further optimized by
decomposing it into several linear neural networks.

In previous work from the same authors [21], evolutionary algorithms were employed for binaural
audio equalization in the car cabin. PSO and GSA were tested, leading to an improvement with respect
to baseline techniques. In this work we introduce a different approach, based on deep neural networks,
with the aim of improving previous results and broadening the scope to multipoint equalization.
To the best of our knowledge, no deep learning technique has been proposed in the literature to obtain
filter coefficients for multipoint audio equalization. In this work we conduct the offline design of the
filters coefficients exploiting deep neural networks trained according to a set of frequency-domain
constraints. Three architectures are proposed and several experiments are conducted in two car cabins
characterized by multiple impulse responses, comparing the results of the proposed method to the
state of the art methods. The car scenario introduces different issues with respect to room equalization
as the impact of early reflections and standing waves, caused by the peculiar geometry and the small
size of the environment, are prominent [22,23].

The work is organized as follows: in Section 2 the problem is introduced. In Section 3 the
proposed solution is explained, while in Section 4 the baseline methods are briefly described. Section 5
reports experimental conditions and Section 6 provides the results. Finally, in Section 7 conclusions
are reported.

2. Problem Statement

Multi-point audio equalization is a very complex task: considering an environment with several
sound sources and microphones, as depicted in Figure 1, a large number of impulse responses must be
equalized, and the complexity of this problem increases with the number of sources S and microphones
M. Several optimization algorithms can be employed to generate filter coefficients able to obtain the
desired frequency response at the microphone positions in a specific frequency range. In this work we
compare our approach with state of the art methods to design the FIR filters offline. We assume, as in
those works, that the listening environment is linear and time-invariant.

The generated FIR filters gs, one for each sound source s, are employed for pre-processing the
input signal x. The signal recorded at the m-th microphone is [24,25]:

ym =
S
∑
s=1

hm,s ∗ (gs ∗ x) m = 1...,M. (1)

The frequency response at the microphone is given by:

Ym(ω) = |F (ym)| m = 1...,M, (2)

where F is the Fourier transform operator.
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Figure 1. Multi-point equalization problem: S loudspeakers are displaced in an environment together
with M microhones. The equalizing filters gs are designed to invert the environment impulse
responses hm,s.

3. Proposed Method

The rationale behind the proposed approach stems from the following reflection—the training
of a deep neural network is, in fact, an optimization problem, where a loss term is minimized
by the back-propagation of the error through the neural network. This idea is not completely
new and shallow neural network have been previously proposed for optimization (see, e.g.,
References [26,27]). Deep neural networks, however, were shown in Reference [28] to perform better
in optimization tasks, possibly due to their parameter redundancy. In this work thus we propose to
exploit deep neural networks for the optimization of equalizing filter coefficients.

Our approach consists of training a neural network by backpropagation in order to obtain,
as output, optimal coefficients that minimize a frequency-domain loss. Each set of impulse responses
requires a different training, meaning that the network is not expected to generalize, but rather perform
optimization by fitting its weights, differently to common Deep Learning classification and regression
tasks. We test a shallow network, that is, a Multilayer Perceptron (MLP), and two deep network
architectures: a CNN and a convolutional Autoencoder (AE). In the absence of prior art, we feed the
networks with the only available data, that is, the measured impulse responses. The neural networks,
in turn, provide filter coefficients that are iteratively optimized to minimize a loss function. In the
following we describe the architectures and the respective loss functions. In all cases the loss function
contains at least one term based on the distance between the achieved frequency response and the
desired curve. In our case, for simplicity, the desired curve is flat and the distance is computed in the
frequency range ωl : ωh, to be defined according to the use case. In our work we use the Euclidean
distance [29,30] to compute the distance, which was found to converge faster than the L1-norm [31].

3.1. Multilayer Perceptron

The MLP is a shallow network composed of several fully-connected layers: one input, one or
more hidden layers, and an output layer. The input is constrained to the number of samples in the
impulse responses, that are concatenated in a long vector. Considering S ×M impulse responses of
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length L, the input will have length S ×M× L. The network produces a vector concatenating all the
FIR coefficients, thus has size S × T , where T is the number of taps for each filter. The architecture is
shown in Figure 2.

Measured
Impulse

Responses

S
×
M
×
L

Dense layers

Filter
Coefficients

S
×
T

Figure 2. Scheme of the proposed method using an Multilayer Perceptron (MLP). The impulse
responses are all concatenated into a vector and fed to the first layer, which must have size S ×M× L.

The loss function for the MLP is defined as the Euclidean distance between the given response at
each iteration |Ỹm(ω)|, computed according to (2), and the desired frequency response:

J =

(
M
∑

m=1

∥∥|Ỹm(ω)| − |Ydes(ω)|
∥∥

2

)
. (3)

3.2. Convolutional Neural Networks

CNN are composed of a series of convolutional layers and a stack of fully connected layers [32].
The convolutional layers help reducing the dimensionality of the input and extract useful features
for the fully connected layers. The input consists of a 3D matrix that stacks all the measured impulse
responses, as shown in Figure 3. It is a tensor of size S ×M× L. The last fully connected layer
provides the filters coefficients and has, thus, length S × T , as in the MLP. The loss function is the
same as the one in (3).

L

S

M

Measured Impulse Responses

Convolutional layers

Dense layers

S
×
T

Filter
Coefficients

Figure 3. Scheme of the proposed method using a Convolutional Neural Network (CNN).

3.3. Autoencoder

An Autoencoder is a generative model [32] based on an encoder, a decoder and an internal
representation that interconnects the two, often called latent space.

In our case, the encoder is composed of convolutional and fully connected layers, similar to the
CNN of Section 3.2. The decoder performs the inverse mapping, thus, it is based on fully connected
layers and de-convolutional layers. Filters coefficients are sampled from the internal representation,
that has, thus, a size of S × T . Impulse responses are used as input to the encoder, as shown in
Figure 4.
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Figure 4. Scheme of the proposed method using Autoencoder.

The loss function for the autoencoder is defined as the sum of the Euclidean distance of
Equation (3), and the reconstruction loss. The latter is expressed as the Euclidean distance between the
input impulse response and the reconstructed one. Overall the loss for the autoencoder is:

JAE =

(
α ·

M
∑

m=1

∥∥|Ỹm(ω)| − |Ydes(ω)|
∥∥

2 + (1 − α) ·
M
∑

m=1

S
∑
s=1

∥∥h̃m,s(n)− hm,s(n)
∥∥

2

)
. (4)

The term α allows to weight the two losses, but for the rest of the paper it is kept equal to 0.5.

4. Baseline Methods

To compare the proposed approach, we have selected two methods from the literature, namely
the Fast Deconvolution (FD) from Kirkeby et al. [33] and the Steepest Descent inverse filter design
(SD) [24]. These approaches are described and motivated in the following.

4.1. Frequency Deconvolution Method

The fast deconvolution method is described in Reference [33], where deconvolution is performed
in the frequency domain and made fast by taking advantage of the Fast Fourier Transform (FFT)
algorithm. A matrix of optimal filters is computed in the frequency domain according to the following

G(k) = [HH(k)H(k) + βI]−1HH(k)A(k), (5)

where k is the FFT bin, I is the identity matrix, H is the Hermitian operator, H(k) contains the FFT
of the impulse responses, A(k) contains the target frequency responses. The term β is an empirical
regularization term that is necessary to avoid extreme peaks in the inverse filters, that would result in
an excessive length of the filters in the frequency domain. Once G(k) is computed, its inverse FFT is
computed and a circular shift of K/2 samples is performed, where K is the FFT size. This method is
used to design S different filters, one per loudspeaker, for a fair comparison with our approach.

The FD method is expressed as a least-squares optimization problem in the frequency domain.
The loss is:

J = eHe + βvHv, (6)

where e is the error and βvHv is a regularization term meant as an effort penalty proportional to the
total energy of the filtered input signals to the sources v. The problem is, thus expressed as a convex
optimization problem, where the squared error is minimized by a unique solution that is analytically
found in Reference [33] by imposing the gradient of the loss function to zero.

There are important differences between the proposed method and FD. In our framework there
are no assumptions on the convexity of the error surface. The gradient of the loss J in the proposed
method is a nonlinear function. Specifically, our loss can be expressed as a function f of the magnitude
frequency response of the impulse responses h and of the network output g. The network output, that
is, the filter coefficients g, in turn, is a nonlinear function of the network weights θ and the network
input u (i.e., the impulse responses, when not specified differently). In more rigorous terms:
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J = f (|F (g)|, |F (h)|). (7)

g = φ(θ, u). (8)

4.2. Steepest Descent Method

FIR filters can be obtained by applying the Steepest Descent algorithm to audio equalization [24,25].
The first step of the algorithm consists in defining a target impulse response:

d = [0 . . . 0 1 0 · · · 0︸ ︷︷ ︸
L+T −1

]T , (9)

where L is the length of the impulse response, T denotes the transpose operator, and T is the number
of taps of the FIR filters. The filters are adapted to match the target impulse response:

ym = hm,1 ∗ g1 + hm,2 ∗ g2 + · · ·+ hm,S ∗ gS =
S
∑
s=1

hm,s ∗ gs ≈ d, (10)

where gs are the FIR filters, hm,s are the impulse responses and ym is the output at the m-th microphone.
The optimization goal is achieved by minimizing the cost function:

J = ||dM − y||2, (11)

where y is the vector containing the output impulse response y = [y1, y2, . . . , yM] and dM is the vector
containingM times the target impulse response. The inverse system g can be obtained by:

g = H+dM, (12)

where H+ is the pseudo inverse of the system matrix H =

 H1,1 H1,2 · · · H1,S
...

...
...

...
HM,1 HM,2 · · · HM,S

 and its

elements Hm,s are (L + T − 1)× T circular matrices composed by the impulse responses hm,s [24]:

Hm,s =



hm,s(0) 0 · · · 0
hm,s(1) hm,s(0) · · · 0

...
. . . . . .

...

hm,s(L− 1) · · · ...
...

0 hm,s(L− 1)
. . .

...
0 · · · 0 hm,s(L− 1).


(13)

If H is full rank, then H+ = H−1.
The FIR filters are calculated adaptively: the gradient of the cost function ∇J is given by:

∇J = −2HTdM + 2HT Hg (14)

and the inverse system can be obtained by:

G(k + 1) = G(k)− µ∇J, (15)

where µ is the step-size.



Appl. Sci. 2020, 10, 2483 8 of 21

5. Experiments

The performance of the proposed and the baseline methods have been assessed by computer
experiments using impulse responses measured inside real car cabins. Two car models have been
considered, an Alfa Romeo Giulia and a Jeep Renegade. The Giulia was first taken for binaural
equalization experiments (M = 2). The impulse responses were obtained using the sine sweep
method [34] as implemented by the Aurora plugins (http://pcfarina.eng.unipr.it/Aurora_XP/index.
htm). Sampling was done at 28.8 kHz with a Roland Octa-Capture audio interface, then the impulse
responses were resampled to 48 kHz. A Kemar 45BA mannequin was placed on the driver’s seat;
the distance between its ears is d = 18 cm. The Giulia provides S = 7 loudspeakers—four door
woofers, one subwoofer in the trunk, one speaker in the center of the dashboard and one speaker in
the driver’s headrest, as shown in Figure 5a.

S1

S7

S3

S6

S2 S4
S5

D

(a)

S1

S7

S3

S6

S2

S4

S5

M1

M2 M4

M3D

1 2

3

(b)
Figure 5. Top view of the Alfa Romeo Giulia (a) and the Jeep Renegade (b) showing the placement of
the S loudspeakers and theMmicrophones. D indicates the dummy head. The three yellow labels
around M2 are the proximity test microphone PM1, PM2, PM3.

To assess the equalization performance of the proposed approach in a different environment
we have measured the impulse responses of another car, a Jeep Renegade and measured the
impulse responses at multiple listening points. Its cabin response has been measured usingM = 4
omnidirectional microphone, one per seat. Three additional microphones have been mounted around
microphone M2 for proximity tests, to assess the effect of head movements on the equalization
performance. These microphones, labeled as PM1, PM2 and PM3 are placed at a distance of 6.5 cm
(forward), 6.5 cm (backward) and 22.5 cm (lateral), respectively. For a one-ot-one comparison with the
binaural tests done on the Giulia, a binaural mannequin was also mounted at the driver seat to capture
binaural impulse responses. The sine sweep method has been used as well, in this case sampling at
48 kHz using an Audio Precision APX-586 analyzer and a Crown D-75A power amplifier to drive the
loudspeakers. The Renegade loudspeakers are located in the car dashboard, on the four doors and a
subwoofer is placed in the trunk.

The baseline methods have been implemented in Matlab (https://mathworks.com/products/
matlab.html), while the proposed methods have been implemented in Python using Keras (https:
//keras.io/) with Tensorflow (https://www.tensorflow.org/) as backend. They have been executed on
a machine with Intel Core i7-4930K 3.40 GHz clock processor, 32 GB of RAM and Nvidia GTX-Titan
GPU with 12 GB of dedicated RAM.

The results are provided in terms of the mean square error (MSE) and average standard deviation
σ. The MSE of the magnitude response is calculated bin-by-bin for each microphone between the
desired frequency response and the measured magnitude frequency response. The results are averaged
between all microphones, that is,:

MSE =
1
M

M
∑

m=1

(
∑ωh

ω=ωl

(
|Ym(ω)| − |Ydes(ω)|

)2

ωh −ωl

)
. (16)

The average standard deviation σ is calculated as:

http://pcfarina.eng.unipr.it/Aurora_XP/index.htm)
http://pcfarina.eng.unipr.it/Aurora_XP/index.htm)
https://mathworks.com/products/matlab.html
https://mathworks.com/products/matlab.html
https://keras.io/
https://keras.io/
https://www.tensorflow.org/
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σ =
1
M

M
∑

m=1
σm, (17)

where σm is the standard deviation of m-th microphone:

σm =

√√√√ 1
ωh −ωl + 1

ωh

∑
ω=ωl

(10 · log10|Fm(ω)| − D)2 (18)

D =
1

ωh −ωl + 1

ωh

∑
ω=ωl

(10 · log10|Fm(ω)|). (19)

Fm is the sum of the frequency responses on the m-th microphone without equalization filters or with
equalization filters, following Reference [35].

Since the Giulia impulse responses have been originally sampled at 28.8 kHz, we set the upper
frequency bound ωh to 14.4 kHz. The lower frequency bound ωl is set to 20 Hz to avoid unnecessary
equalization below the human hearing range.

We desire the FIR filters to have linear phase, that is, be symmetric. Following the frequency
deconvolution approach, we impose an odd number of taps for all methods.

Preliminary experiments were conducted to determine the values for the training
hyperparameters. During these experiments we observed that a sufficiently high number of iterations
allows the networks to converge to very low errors. The learning rate was set to 1 · 10−3 for all the
proposed approaches. w was set to 100.0 and the batch size is set to 1. The Adam optimizer [36] was
used, with decay equal to 3 · 10−8 for all architectures. The number of iterations of the SD was set to
250,000, as in Reference [21]. A similar number of iterations, 200,000, was set for the proposed methods.
This leaves enough time for convergence and allows direct comparison to the evolutionary algorithms
in Reference [21], where the number of iterations times the agents gives approximately 200,000.

Four convolutional layers configurations were generated randomly. These were applied to the
convolutional networks used in the CNN and AE architectures. The first convolutional layer has
kernels of size M × 1 while the second, if present, has kernels of size 1× S. The fully connected
layers following the convolutional ones have been varied in their number (1, 2) and size. Four MLP
architectures were derived from the convolutional ones by retaining the size of the fully connected
layers. Three additional configurations have been added to achieve a number of trainable parameters
similar to those of the CNN, as reported in Table 1.
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Table 1. The CNN and MLP configurations used in the experiments. The number of parameters are referred to filters of 1024-th order.

CNN MLP
Configuration Number of Kernels Number of Units Trainable Parameters Configuration Number of Units Trainable Parameters

Conv #1 [48, 24] [10] 7,481,943 MLP #1 [10] 6,798,935
Conv #2 [10, 5] [100, 10] 3,826,153 MLP #2 [100, 10] 67,280,035
Conv #3 [100, 25] [100, 100] 12,483,433 MLP #3 [100, 100] 67,934,875
Conv #4 [10] [1000] 3,825,863 MLP #4 [1000] 679,183,175

MLP #5 [100] 67,924,775
MLP #6 [100, 100, 100] 67,944,975
MLP #7 [5] 36,003,713
MLP #8 [10, 1000, 1000] 14,914,185
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6. Results

6.1. Alfa Romeo Giulia

Binaural equalization results are shown in Table 2 for the Alfa Romeo Giulia. The two proposed
methods based on deep neural networks outperform significantly any other method in the test,
while the MLP does not reach the same performance as the FD and the SD. The CNN achieves slightly
better results compared to the convolutional AE despite being simpler in terms of implementation
and computational cost. Best overall results have been achieved using the CNN with FIR filters of
order 1024. Their magnitude frequency response is shown in Figure 6. Shorter filters designed by the
convolutional methods are subject to a slight performance degradation, however, their MSE remains
very low.
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(S7)
Figure 6. Magnitude frequency response of the 1024-th order FIR filters designed by the CNN for each
one of the Alfa Romeo Giulia loudspeakers S1-S7 shown in Figure 5a.

In Figure 7, we compare the non-equalized (green) and equalized (blue) magnitude frequency
response at the dummy head left and right microphone obtained from the filters designed with the
CNN and the baseline approaches. The CNN filters correct the frequency responses obtaining an
exceptionally flat magnitude. No relevant peaks or notches are present in the equalized frequency
response. The FD method achieves a rather flat spectrum, but peaks and notches are still visible.
The SD presents the higher MSE, while its σ is lower than the FD. Indeed, the frequency responses
have less peaks, but the magnitude response is biased and sits below 0 dB. The same happens for other
FIR filter orders.
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Table 2. Audio equalization results for the Alfa Romeo Giulia with binaural microphones. Please note that the MSE in the absence of equalization is 2.19, with σ 3.52.
Best results for each column are highlighted in bold.

Filter Order MLP AE CNN FD (β = 0.1) SD

Conf. MSE σ Conf. MSE σ Conf. MSE σ MSE σ MSE σ

512 MLP #5 0.32 2.877 Conv #1 9.72·10−4 0.136 Conv #2 7.90·10−4 0.122 0.18 2.52 0.40 1.95
640 MLP #8 0.36 2.730 Conv #1 3.80·10−4 0.085 Conv #2 3.74·10−4 0.084 0.15 2.34 0.35 1.72
768 MLP #5 0.46 2.796 Conv #1 1.66·10−4 0.056 Conv #2 1.79·10−4 0.058 0.14 2.23 0.33 1.60
896 MLP #2 0.45 2.799 Conv #1 1.07·10−4 0.045 Conv #1 1.02·10−4 0.044 0.12 2.07 0.31 1.54

1024 MLP #7 0.32 2.746 Conv #1 6.85·10−5 0.036 Conv #1 6.31·10−5 0.034 0.10 1.93 0.30 1.50
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Figure 7. Magnitude frequency responses at the left and right microphones of the dummy head in the
Alfa Romeo Giulia after applying filters obtained from the CNN (a,b), Frequency Deconvolution (c,d)
and Steepest Descent (e,f) methods. The original magnitude frequency response is shown in green
while the equalized frequency response is shown in blue. The target magnitude response is shown
in black.

The performance of the FD method is known to be dependent on the β parameter, which can
be adjusted as a fixed constant or a frequency-dependent parameter, usually having dominance in
the denominator for very low and high frequencies, to avoid excessive gain in the inverse filter in
those ranges or to avoid equalization at all. We have tested different configurations of β to search
for the best performance of the FD method for a given filter order. Table 3 reports the MSE and
sigma for several values of β and for two frequency-dependent β with filter order 1024. Although,
theoretically, with lower β the inversion should get closer to ideal, thus reaching a lower MSE, the filter
order constraints the performance by truncating the very long ideal impulse response. A sweet
spot is obtained for β in the range 10−2 < β < 10−1. With larger β the performance decreases,
as expected. Some frequency-dependent configurations for β have been selected that obtain good
results. The V-shaped one is able to reduce the MSE by a tiny amount, however, no significant
improvement can be found by using a frequency-dependent β. Overall, the MSE values do not change
much from those of Table 2, thus confirming that the choice of β in the experiments above is not
adversely affecting the performance.
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Table 3. Effect of the parameter β on the performance. The V-shaped configuration refers to a
frequency-dependent β with a minimum of 10−4 at 1 kHz and maxima of 10−1 at DC and Nyquist,
varying linearly on a dB scale. The U-shaped configuration takes a value of 10−4 in the range
100 Hz–10 kHz and one elsewhere. Best results for each column are highlighted in bold.

β MSE σ

10−4 0.123 1.83
10−3 0.118 1.82
10−2 0.108 1.81
10−1 0.108 1.93

1 0.281 2.71
10 0.686 4.2

100 0.937 5.09
V-shaped 0.101 1.829
U-shaped 0.124 1.86

As seen above, even though the elimination of the regularization term β should lead to an almost
perfect inversion, the ideal inverse response is limited by the filter order, thus increasing the MSE
for very low β. On the contrary, the proposed approach seems to achieve a very low error even with
short filters.

6.2. Jeep Renegade

Taking the CNN as the best of the proposed methods and the FD as the best among the baseline
methods, we continue our experiments in a different cabin, increasing the complexity of the problem
by increasing the number of microphones, that is, listening points, to equalize and by increasing their
distance. We also conduct a binaural experimental case, as a one-to-one comparison to the Giulia case.

Table 4 reports the results for filters of order 1024. As can be seen, the CNN achieves approximately
the same results as in the Giulia on the binaural equalization scenario (6.19 · 10−5 vs. 6.31 · 10−5).
As expected, there is a performance decrease with the 4-seats equalization, however, the MSE is still
extremely low (5.7 · 10−4). With respect to the Giulia, the FD method achieves a reduction of the MSE
in the binaural case. A slight degradation of the performance is found for the 4-seats equalization as
well. In conclusion, despite the degradation of the performance, results are still far superior than the
state of the art method even in the 4-point scenario.

Table 4. Audio equalization results for the Jeep Renegade with binaural microphones and four
microphones (one per seat). The FIR order is 1024.

Setup CNN FD β = 0.1

Conf MSE σ MSE σ

Binaural #1 6.19 · 10−5 0.035 0.05 1.21
4 seats #1 5.7 · 10−4 0.106 0.15 1.95

6.3. Sensitivity to Head Movements

Small head movements may result in a degradation of the equalization performance. For this
reason, we assessed the validity of the proposed approach in response to small and large head
movements. We analyzed the frequency response at three additional points: PM1 and PM2 (small head
movement) and PM3 (large head movement). Their frequency response is shown in Figure 8, while their
MSE and σ are presented in Table 5, and compared to the one at the M2 microphone, for reference.
In line with theory, the error tends to rise for high frequencies, for which the wavelength is shorter or
of the same order of magnitude as the distance between microphone M2, however, in the low end the
response is almost flat.
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Figure 8. Frequency response at microphone M2 (a); microphones PM1 and PM2 (b,c), corresponding
to small forward and backward head movements; microphones PM3 (d), corresponding to a large
lateral head movement.

Table 5. Audio equalization results for microphone M2 and microphones PM1, PM2 and PM3.
The evaluation is achieved by the experiments performed using the Jeep Renegade with four
microphones (see Table 4).

Mic. CNN FD

MSE σ MSE σ

M2 5.07 · 10−4 0.10 0.14 1.82
PM1 0.61 2.88 1.2 2.9
PM2 0.50 3.31 0.57 3.07
PM3 0.80 3.09 0.84 3.12

This issue is common to many widely used offline equalization algorithms, including that in
Reference [33]. These algorithms can be complemented with adaptive solutions to tune the filters in
real-time. Several solutions have been previously proposed, based, for example, on Kalman filtering
and Steepest Descent to adaptively track the frequency response [25] or on the virtual microphone
technique [37]. The proposed method could also be expanded to equalize a broader area using multiple
microphones concentrated around a volume of space surrounding the listener’s head.

6.4. Sensitivity to the Input

Finding the best input features and dimensions is an issue in audio tasks that usually has no
clear answer, and requires, thus, experimentation. In this work, furthermore, we exploit deep neural
networks as optimizing algorithms, which is rather uncommon in the signal processing literature.
Up to our knowledge, there is no prior experience in the application of neural networks in such
a configuration for the goal of generating audio filters, thus the choice of the input is not trivial.
To improve our understanding of this task, we have performed a new batch of experiments to observe
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the role of the input features in the optimization task. Specifically, we want to assess the role of the
input in driving the optimization process.

For these experiments the input matrix is filled with either: (a) random values changing at each
iteration, (b) random values constant for all the training, (c) all ones, (d) all zeros. We kept the same
matrix size used in previous experiments, in order to leave the input layers and the number of trainable
parameters unchanged. We conducted these experiments with all the four CNN configurations and all
four kinds of inputs, and generated FIR filters of order 1024 for the Alfa Romeo Giulia case. Results are
shown in Table 6. In case (a), results are comparable to the FD method, but worse than the ones
achieved by the proposed method in Table 2. The fixed random input and a unitary matrix get much
closer to the results seen in Table 2, but are still not on par with the best result of the test. Finally,
with the null matrix, all filters coefficients are zero, making this method unsuitable to the optimization
process. Overall, it seems that our method can gain some advantage from the use of the measured
impulse responses as input features, however, the network is able to design suitable filters even with
non-informative input content, gaining information about the problem setup from the loss, where the
impulse responses are employed to calculate the distance.

Table 6. Effect of the input type on the results of the CNN (filter order 1024). For each case, the best
result and the related configuration is reported.

Input MSE σ Conf.

Impulse Responses 6.31 · 10−5 0.034 Conv #1
Random Iteration 0.14 2.152 Conv #1

Random Fixed 1.35 · 10−4 0.052 Conv #1
All 1s 1.17 · 10−4 0.049 Conv #1
All 0s ill-conditioned

6.5. Over-Determined Case

In the selected use cases, the number of filters is larger than the number of microphones.
To assess the validity of the method in single-channel configurations and in the over-determined
case (M > S) we have conducted further experiments selecting a subset of the available impulse
responses, thus simulating the presence of a lower number of speakers. The results are reported in
Table 7. As can be seen, the CNN scores better than the FD, meaning that the optimal solution in the
least-squares sense can be further improved by non-convex optimization techniques. The performance
degradation from the 1× 1 case to the 2× 1 case is extremely low. This suggests that the two impulse
responses are quite similar. On the other hand, the performance improvement achieved by the CNN
with the 2× 7 or the 4× 7 cases (Tables 2 and 4) with respect to the 1× 1 cases suggests that the
proposed method is able to efficiently exploit a large number of filters to greatly reduce the error at
all microphones.

Table 7. Audio equalization in the single-channel and over-determined cases. Setup isM×S .

Car Setup CNN FD

MSE σ MSE σ

Giulia 1× 1 0.52 8.57 0.62 9.84

2× 1 0.57 7.81 0.64 9.19

Renegade 1× 1 0.03 1.34 0.12 2.01

4× 1 0.22 2.76 0.44 3.62
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6.6. Remarks

One concern related to the proposed filter design technique is the computational cost, since the
design procedure requires a complete training of the network. However, despite the very large number
of iterations set for the experiments, the loss decays exponentially as it is typical of neural networks.
As an example, in the Alfa Romeo Giulia 1024-th order CNN experiments, the MSE decays below
1 · 10−4 after 4200 iterations. It is thus possible to set a desired error threshold and stop the training as
soon as it is reached.

For what concerns the filters, we have concentrated our attention on the frequency response,
without considering the phase. The Frequency Deconvolution method provides symmetrical, thus
linear, phase frequency responses, while the Steepest Descent algorithm does not. We would expect an
arbitrary phase response from the proposed approach, since we do not constrain the phase in any way.
However, from all our experiments we observe an almost linear phase response, as seen in Figure 9,
where this is compared with a linear phase response, showing a close match. As an example, the mean
squared phase error compared against a perfectly linear phase response and averaged over all the
filters generated in the 1024th-order CNN case from Table 2, is 0.8 rad.
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Figure 9. Phase response of one of the filters achieved with the CNN method (FIR order 1024) and a
linear fitting. Frequency is normalized according to Nyquist.

Another important issue to consider is the group delay introduced by the filters. As shown by
the results, the most performing ones in terms of frequency response equalization are 1024-th order.
This filter length, however, may not be acceptable in some applications due to computational cost
and the introduction of a group delay of 513 taps (approximately 1.1 ms at a 44,100 Hz sampling
rate). Experimental tests have proven that FIR filters of 512-th order present very good equalization
capabilities, inferior by 1 order of magnitude compared to the 1024-th order case, but still largely
superior than baseline techniques.

6.7. Results Summary

To conclude this section, we report a brief summary of the experiments. We have performed
binaural equalization experiments in two environments, the cabin of an Alfa Romeo Giulia and a Jeep
Renegade. In Figure 10 we report the best results obtained for the best proposed architecture, a CNN
and the best of the comparative methods, the FD method, a widely used approach for inversion of the
impulse response in single and multipoint scenarios. As shown, the CNN architecture outperforms FD
by several orders of magnitude (see Section 6.1), highlighted by the logarithmic-scaled plot, in both
the mean squared error MSE and the standard deviation σ. The best result achieved by the CNN in
the binaural case has been obtained for the Jeep Renegade (6.19 · 10−5MSE in Section 6.2).

With the Jeep Renegade, we also conducted tests with four equalization points, leaving all other
parameters identical. The results are slightly lower, but still remarkable: 5.7 · 10−4MSE, meaning
that it is still feasible to obtain an almost flat equalization profile for four passengers at the same
time. Furthermore, in Section 6.3 we have tested for performance degradation for head movements
using three additional microphones around one of the reference microphones used for the 4-points
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equalization. The results show, in line with theory, a slight degradation of the performance at high
frequency (see Figure 8), as with other multipoint equalization approaches.

Finally, we have analyzed the loss decay with the CNN and concluded that the number of training
epochs can be reduced significantly, for example, from 200,000 to 4200 with a reasonable degradation
of performance (MSE < 10−4).

CNN FD
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1 101
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(b)
Figure 10. The MSE and σ of the best among the proposed approaches (CNN) and the best among
the comparative methods (FD), from the Alfa Romeo Giulia experiments (a), and the Jeep Renegade
experiments (b). Refer to Tables 2 and 4 for more details.

7. Conclusions

In this work, we have shown a binaural and a multipoint audio equalization system based
on a deep neural network approach to tune FIR filter coefficients. We proposed the use of the
back-propagation algorithm as an optimization method in order to train a neural network to produce
FIR coefficients able to satisfy specific criteria provided as loss function.

Three neural network architectures—MLP, CNN, and AE—are compared with state-of-the-art
methods. Results show that deep learning approaches outperform other techniques by several orders
of magnitude, yielding extremely flat magnitude frequency responses with a quasi linear phase.
Among the networks, the CNN provided best results. Additional experiments highlighted the ability
of the CNN to converge to a solution that is slightly superior to the least-squares one even when the
system to solve is over-determined, motivating further studies on non-convex optimization methods
for audio equalization. Finally, the effect of head movements has been studied using additional
microphones. The proposed technique cannot be used in a real-time context, thus other techniques
can be envisioned to tune the filters adaptively by tracking the head movements, as suggested in
Section 6.3. Another possibility is the extension of the current work to a broader area by using multiple
microphones in the vicinity of the head.

Although the training stage can be heavy in computational cost, the convergence speed is quite
fast, allowing a user to set a desired error threshold to stop the iterations as soon as the objective
is reached.

Since the deep neural network approach has shown to be capable in the design of audio filters
meeting the expected goals, this research topic may be expanded in the future to different applications
and constraints.

Several topics have been left for future works and need to be addressed, such as a subjective
evaluation and the design of IIR filters. Given their lower computational cost, compared to FIR filters,
they may be suitable for real-time implementation. The use of psychoacoustically oriented metrics,
such as 1/3 octave band smoothed frequency responses, may drive the optimization to a frequency
response that better represents the human auditory perception. Finally, a thorough exploration of the
hyperparameters, the input features and their size, may lead to smaller neural networks with the same
performance, improving the filter design speed.
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