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Featured Application: High resolution pansharpened images are used for detailed land use and
land cover mapping.

Abstract: Preservation of spectral and spatial information is an important requirement for most
quantitative remote sensing applications. In this study, we use image quality metrics to evaluate
the performance of several image fusion techniques to assess the spectral and spatial quality of
pansharpened images. We evaluated twelve pansharpening algorithms in this study; the Local Mean
and Variance Matching (IMVM) algorithm was the best in terms of spectral consistency and synthesis
followed by the ratio component substitution (RCS) algorithm. Whereas the IMVM and RCS image
fusion techniques showed better results compared to other pansharpening methods, it is pertinent to
highlight that our study also showed the credibility of other pansharpening algorithms in terms of
spatial and spectral consistency as shown by the high correlation coefficients achieved in all methods.
We noted that the algorithms that ranked higher in terms of spectral consistency and synthesis were
outperformed by other competing algorithms in terms of spatial consistency. The study, therefore,
concludes that the selection of image fusion techniques is driven by the requirements of remote
sensing application and a careful trade-off is necessary to account for the impact of scene radiometry,
image sharpness, spatial and spectral consistency, and computational overhead.

Keywords: pansharpening; image fusion; image quality; Satellite Pour l’Observation de la Terre (SPOT)
6; spectral consistency; spatial consistency; synthesis

1. Introduction

High spatial resolution satellite imagery is increasingly adopted globally to support spatial
planning and monitoring of the built-up environment as evidenced by the proliferation of
high-resolution commercial satellite sensors such as Pleiades, Worldview 1–4, Satellite Pour l’Observation
de la Terre (SPOT) 6 and 7, Superview, and a wide range of high-resolution services and products derived
from these sensors. Most modern satellite sensors carry onboard spectral bands of different spatial
resolutions and spectral frequencies. In most instances, satellite sensors have narrow multispectral
bands of relatively courser spatial resolution and a wide panchromatic band with higher spatial
resolution. To facilitate better image visualization, interpretation, feature extraction, and land cover
classification, an image fusion technique called pansharpening is used to merge the visible multispectral
bands (red, blue, and green bands) and the panchromatic band to produce color images with higher
spatial resolution [1–7]. The panchromatic band has wide spectral coverage in the visible and
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near-infrared wavelength regions. Pansharpening is aimed at producing a synthesized multispectral
image with an enhanced spatial resolution equivalent to that of a panchromatic band [8–13].

Remote sensing using high-resolution satellites is now accepted as a dispensable tool that has the
potential to support decision making in a wide range of social benefit areas, such as infrastructure and
transportation management, sustainable urban development, disaster resilience, sustainable precision
agriculture, and energy and water resources management. The demand for services and products that
require users to discern features at high spatial and spectral precision has led most Earth observation
service providers to develop geospatial products that use pansharpened satellite imagery that emerges
from the fusion of the high spatial resolution panchromatic band and lower resolution multispectral
bands [14–16].

Many studies have proved the value of pansharpened imagery in discerning geometric features
from satellite imagery, cartography, geometric rectification, change detection, and in improving land
cover classification accuracies [17–20]. Many pansharpening techniques have been developed over
time to enable users to fully exploit the spatial and spectral characteristics available on most satellite
systems. Pansharpening techniques aim to simultaneously increase spatial resolution while preserving
the spectral content of the multispectral bands [11,20–22].

Pansharpening methods are classified into three broad categories: component substitution
(CS)-based methods; multiresolution analysis (MRA)-based methods; and variational optimization
(VO)-based methods. A new generation of pansharpening methods based on deep learning has
been evolving in recent years. Component substitution methods rely on the application of a
color decorrelation transform to convert unsampled lower-resolution multispectral bands into a
new color system that differentiates the spatial and spectral details; fusion occurs by partially or
wholly substituting the component that contains the spatial geometry by the panchromatic band and
reversing the transformation [23]. Most studies report that while component substitution methods
produce pansharpened products of good spatial quality the products suffer spectral distortions.
Component substitution is considered more computationally efficient and robust in dealing with
mismatches between the multispectral and panchromatic bands [10,23,24]. Typical examples of
component substitution methods include principal component analysis (PCA) transform, Brovey’s
band-dependent spatial detail (BDSD), partial replacement adaptive CS (PRACS), Gram–Schmidt (GS)
orthonormalization, and intensity-hue-saturation (IHS) transform. Multiresolution analysis-based
methods fuse the high frequencies inherent in the panchromatic band into the unsampled multispectral
components through a multiresolution decomposition [23]. In contrast to component substitution
methods, pansharpened products generated from multiresolution analysis are considered to produce
superior spectral quality but are prone to spatial distortions, particularly when multispectral bands
are misaligned with the panchromatic band [9,10]. This is especially the case in multiresolution
analysis techniques that apply transformations that are not shift-invariant to engender multiresolution
analysis. Examples of multiresolution methods include high-pass modulation (HPM), Laplacian
pyramid, discrete wavelet transform, and contourlet transform [23]. Such a transformation converts
unsampled lower-resolution multispectral bands into a new color system that differentiates the spatial
and spectral details and fusion occurs by partially or wholly substituting the component that contains
the spatial geometry by the panchromatic band and reversing the transformation [23]. In recent
years, a plethora of novel pansharpening methods have been developed to address the deficiencies of
traditional image fusion algorithms. Most of the new pansharpening techniques are broadly clustered
into generic categories such as component substitution (CS), multiresolution analysis (MRA), Bayesian,
model-based optimization (MBO), sparse reconstruction (SR), and variational optimization (VO)-based
methods [8,9,23,25].

The spectral, radiometric, and spatial integrity of pansharpened imagery is critical for several
quantitative remote sensing applications. To ascertain the spectral and spatial quality of pansharpened
images, many quality metrics were developed. Preservation of spectral content is measured by
statistical indicators such as correlation coefficient (CC), root means square error (RMSE), relative-shift
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means (RM), the universal image quality index, structure similarity index (SSIM), and spectral angle
mapper (SAM). A few quantitative measures were also developed to assess the spatial consistency
of pansharpened imagery and these include the spatial correlation coefficient (SCC) and the spatial
RMSE [10].

Pansharpened SPOT 6/7 and SPOT 5 imagery distributed by South Africa National Space
Agency(SANSA) is extensively used by government departments, municipalities, and public entities in
South Africa to support spatial planning, crop, and natural resource monitoring. SANSA has distributed
pansharpened orthobundles and an annual wall-to-wall national 2.5 m mosaic for SPOT 5 from 2005
to 2012 and a biannual 1.5 m SPOT 6/7 mosaic from 2013 up to 2018. While these pansharpened
products were successfully exploited by users, quality assessment of the pansharpened products was
limited to visual inspections of the products. In most cases, users of pansharpened imagery require
pansharpened products that retain the spectral content of the multispectral image and enhance their
spatial detail. The objectives of this study are therefore to compare different pansharpening techniques
by using quantitative image quality metrics and recommend the most ideal method with minimum
spectral and spatial distortions for the operational production of the SPOT 6 mosaic.

2. Materials and Methods

The SPOT 6/7 multispectral and panchromatic dataset over Pretoria, South Africa was used for the
study. SPOT 6 and SPOT 7 are identical sun-synchronous optical satellites launched on 12 September
2012 and 30 June 2014, respectively that co-orbit in the constellation at an altitude of 694 km and are
phased at 180 degrees (Airbus, Toulouse, France, 2018). The spectral configuration of the satellites
consists of blue (450–520 nm), green (530–590 nm), red (625–695 nm) and near-infrared (760–890 nm)
multispectral bands with a spatial resolution of 6 m and a panchromatic (450–745 nm) band with a
spatial resolution of 1.5 m and dynamic range of 12 bits per pixel. SPOT 6/7 are capable of contiguous
image segments of more than 120 km × 120 km or 60 km × 180 km from a single pass along one orbit.

To meet the operational needs of generating a national wall-to-wall mosaic of South Africa,
we selected established pansharpening methods for quantitative quality assessment. The Bayesian
(BAY), Brovey transform (BRO), color normalized spectral (CNS) sharpening, Ehlers fusion technique
(EHLERS), Gram–Schmidt (GRS), local mean and variance matching (LMVM), modified intensity
hue saturation (MIHS), Pansharp algorithm (PANSHARP), principal component analysis (PCA), ratio
component substitution (RCS), and wavelet resolution merge (WAVELET) techniques were evaluated
in the study.

The PANSHARP algorithm available in the PCI Geomatica software is a statistics-based fusion
technique aimed at maximizing spatial detail while minimizing color distortions [26]. It attempts to
preserve the spectral characteristics of the data. Developed by Zhang [27], the algorithm uses the
least-squares method to approximate the grey value relationship between the original multispectral,
panchromatic, and fused images to achieve the best color representation. The modified intensity hue
saturation (MIHS) fusion technique merges high-resolution panchromatic data with lower resolution
multispectral data to produce a pansharpened image that retains sharp spatial detail and a realistic
resemblance of the original multispectral scene colors. This approach assesses the spectral overlap
between each multispectral band and the high-resolution panchromatic band and weighs the merge
based on these relative wavelengths. The MIHS method was developed to address a shortcoming of the
intensity-hue-saturation (IHS) transformation where color distortions occurred due to discrepancies in
spectral characteristics between panchromatic and multispectral bands. The IHS fusion transforms
the RGB (red, green, and blue) space into the IHS color space and subsequently replaces the intensity
band with a high-resolution pan image in the fusion before performing a reverse IHS transformation.
The Ehlers (EHLERS) fusion technique uses an IHS transform coupled with Fourier domain filtering
and aims to maintain the spectral characteristics of the fused image [22]. This is achieved by using the
high-resolution panchromatic image to sharpen the multispectral image while avoiding adding new
grey level information to its spectral components by first separating the color and spatial information.
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The spatial information content is then embedded as an adaptive enhancement to the images using a
combination of color and Fourier transforms [22]. The Brovey transform (BRO) algorithm applies a
ratio algorithm to combine the images. This is done by first multiplying each multispectral band by a
high-resolution pan band and subsequently dividing each product by the sum of the multispectral
bands. It is known to preserve the relative spectral contributions of each pixel but substitutes scene
brightness with the high-resolution panchromatic (PAN) image [28]. The principal component analysis
(PCA) transform converts intercorrelated Multispectral (MS) bands into a new set of uncorrelated
components. The first component that resembles a high-frequency band is replaced by a high-resolution
panchromatic band for the fusion. The panchromatic band is fused into low-resolution multispectral
channels by performing a reverse PCA transform. A high-resolution fused image is generated after
the reverse PCA transformation [29]. The color normalized spectral sharpening (CNS) algorithm
implemented in Environment for Visualizing Images (ENVI) software is employed to simultaneously
sharpen any defined number of bands and retain the characteristics of the original bands in terms
of data type and dynamic range. In this case, the higher resolution bands are used to sharpen the
lower resolution bands and in the ENVI implementation, the lower resolution multispectral bands
are expected to fall in the same spectral range with the high-resolution panchromatic channel [30,31].
The multispectral bands are clustered into spectral segments defined by the spectral range of the
high-resolution panchromatic sharpening band. The pansharpened image is generated by multiplying
the high-resolution panchromatic with each lower resolution multispectral band before normalizing
the computation by dividing the sum of the input spectral channels in each segment.

The wavelet resolution merge (WAVELET) fusion approach sharpens low-resolution multispectral
bands using a matching high-resolution panchromatic band by first decomposing the high-resolution
panchromatic band into a set of low-resolution multispectral bands with corresponding wavelet
coefficients (spatial details) for each level. This is done by infusing the high-resolution spatial into
each of the multispectral bands by performing a reverse wavelet transform on each MS band together
with the corresponding wavelet coefficients. In a sense, wavelet-based processing is akin to Fourier
transform analysis, except fast Fourier transform analysis uses long continuous (sine and cosine) waves,
whereas wavelet transform analysis applies short and discrete wavelets [32–35]. The Gram–Schmidt
(GRS) pansharpening algorithm available in the ENVI fuses the high-resolution panchromatic band to
the lower resolution multispectral bands by simulating the panchromatic band from the multispectral
band by averaging the multispectral bands. A Gram–Schmidt transformation is computed from
the simulated panchromatic band and the multispectral band, whereby the simulated panchromatic
band is used as the first band. Further, the high spatial resolution panchromatic band is substituted
with the first Gram–Schmidt band before applying an inverse Gram–Schmidt transformation to
generate the pansharpened multispectral bands [36,37]. The ratio component substitution (RCS)
pansharpening algorithm implemented in Orfeo ToolBox [38] fuses orthorectified panchromatic (PAN)
and multispectral (XS) images using a low pass sharpening filter as shown in the computation below
(OTB, 2019).

XS
Filtered (PAN)

PAN E (1)

where E is a vector of random errors that is considered to be stochastically independent of Z.
The Bayesian fusion (BAY) applies elementary calculus in the fusion of the panchromatic and

multispectral images to generate a pansharpened image [38]. This fusion approach uses the statistical
relationships amongst the spectral bands and the panchromatic band. Bayesian pansharpening
techniques use three images that include a panchromatic band and a multispectral image resampled
to the same spatial resolution as the panchromatic band. The panchromatic band is weighted
in comparison to the multispectral bands. A thorough mathematical description of the Bayesian
pansharpening algorithm implemented in Orfeo ToolBox is provided by [39]. This pansharpening



Appl. Sci. 2020, 10, 1881 5 of 13

technique is dependent on the notion that the variables of interest, expressed as vector Z, are not
directly observable and related to observable variable Y through an error-like equation.

Y = g(Z) + E (2)

where g(Z) is considered a set of functionals.
The LMVM pansharpening algorithm implemented in OTB software uses an LMVM filter that

applies a normalization function at a local scale within the images to equate the local mean and
variance values of the high spatial resolution panchromatic band with those of the lower resolution
multispectral image [38,40]. The resulting small residual differences are then considered to arise
from the high-resolution panchromatic band [40]. Rubiey [40] further notes that this form of filtering
improves the correlation between the pansharpened image and the original multispectral image. The
LMVM algorithm is highlighted below.

Fi,j =

(
Hi,j −Hi,j

)
·s(L)i,j(w,h)

s(H)i,j(w,h)
E (3)

where Fi,j refers to the fused image, Hi,j and Li,j denote high and low spatial resolution images
respectively at pixel coordinates i,j. (H)i,j(w,h) and (L)i,j(w,h) are local means calculated inside the
window of size (w, h). s denotes the local standard deviation.

Spectral and Spatial Quality Evaluation of Pansharpened Images

Using Ward’s three property criteria, we tested the spectral synthesis and consistency properties
of the pansharpened images using image quality indices. According to Wald [41], the first property
stipulates that the pansharpened image, once degraded from its original resolution, should be as
identical as possible to the original image. Secondly, the pansharpened image should be as identical
as possible to the image that a matching sensor would detect with the highest resolution. Last,
the multispectral pansharpened image should be as identical as possible to the multispectral set of
images that the matching sensor would detect with the highest resolution. For assessment purposes,
these three properties are further condensed into two properties: consistency and synthesis. The
Ward protocol for the quality assessment of pansharpened imagery stipulates that consistency can be
tested by downsampling the merged image from the higher spatial resolution to its original spatial
resolution. The nearest neighbor resampling method was used in the downsampling process to
ensure minimum transformation of the pixel values. To validate the synthesis property, the original
high spatial resolution panchromatic band and the lower spatial resolution multispectral bands were
downsampled to their lower resolutions.

To validate the synthesis property, we first degraded both the multispectral images and the
panchromatic band by a factor of 4. This downsampling procedure meant the spatial resolution of the
multispectral images changed from 6 m to 24 m while the panchromatic band changed from 1.5 m to
6 m. The degraded multispectral and pansharpened images were then fused and the pansharpened
image was then subsequently compared to the original multispectral images for quality assessment.
To verify the consistency property, we first pansharpened the native multispectral and panchromatic
images to create a fused image that we further downsampled by a factor of 4, thus changing its spatial
resolution of the pansharpened image from 1.5 m to 6 m. We subsequently compared the downsampled
pansharpened image to the original 6 m multispectral image. The process was applied for all eight
pansharpening techniques assessed in this paper.

To quantitatively assess the spectral consistency of the pansharpened results the following
statistical measures were used: correlation coefficient (CC), Erreur Relative Global Adimensionnelle de
Synthese (ERGAS), difference in variance (DIV), bias, root mean square error (RMSE), relative average
spectral error (RASE), and universal image quality index (UIQI). The quality of the synthesis in an
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important property in pansharpening and we used the ERGAS indices using the original multispectral
and panchromatic band as a reference to assess the quality of the synthesis. The ERGAS index, when
used in the spatial and spectral dimension, is indicative of the amount of spatial and spectral distortions,
respectively. The spatial consistency of the pansharpened results was assessed using a spatial metric
that computes the spatial correlation coefficient (SCC) between the high-frequency components of
the fusion product and the original PAN. In this case, we used a 3 × 3 Laplacian edge detection
convolution filter to filter the bands of the pansharpened images and the original panchromatic band
before computing the correlation coefficients between them.

The CC is one of the most widely used statistical measures of the strength and direction of the
linear relationship between two images [37]. It is used to determine the amount of preservation of
spectral content in two images. The CC between each band of the reference and the pansharpened
image indicates the spectral integrity of the pansharpened image. The best fusion will have a higher
value close to +1. RMSE measures the similarity between each band of the original and fused image.
It measures the changes in the radiance of the pixel values for each band of the input multispectral
image and pansharpened image. It is a very good indicator of the spectral quality when considered
along homogeneous regions in the image. The best fusion will have a lower value close to zero [42].
RASE characterizes the average performance of a method in the considered spectral bands. The value
is expressed in percentage and tends to decrease as the quality increases. UIQI measures the difference
in spectral information between each band of the merged and reference image to estimate the global
spectral quality of the merged images. It models distortion using three parameters: loss of correlation,
luminance distortion, and contrast. The best fusion will have a higher value close to +1. ERGAS is
indicative of the synthesizing quality of the pansharpened image. It is a global quality index that
is sensitive to mean shifting and dynamic range change. ERGAS measures the amount of spectral
distortion in the image. The best fusion will have a lower value, mostly when less than the number of
bands [43]. Bias reveals the error and spectral accuracy of the pansharpened image. Ideal values are
considered to be close to zero. The difference in variance (DIV) measures the quality of the image fusion
by calculating the mean difference in variances between the pansharpened image and the original
multispectral image. The quality of the pansharpening is considered ideal if the values are closer
to zero.

3. Results and Discussion

The results of this study are presented and discussed in this section. Spatial consistency, spectral
consistency, and spectral synthesis are presented in Tables 1–9.

3.1. Spatial Consistency Quality Assessment

The spatial consistency results are highlighted in Table 1 below.

Table 1. Spatial consistency: correlation coefficient (CC) Laplacian filtering. Abbreviations: Bayesian
fusion (BAY); Brovey transform(BRO); Color Normalized Spectral sharpening (CNS); Ehlers fusion
technique (EHLERS); Gram–Schmidt (GRS); Local Mean and Variance Matching (IMVM), Modified
Intensity Hue Saturation (MIHS), Pansharp algorithm (PANSHARP), Principal component analysis
(PCA); Ratio Component Substitution (RCS); WAVELET, Wavelet Resolution merge fusion (WAVELET).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.854 0.761 0.853 0.801 0.853 0.785 0.826 0.845 0.846 0.844 0.542
2 0.854 0.834 0.852 0.801 0.853 0.784 0.825 0.845 0.845 0.845 0.542
3 0.854 0.847 0.851 0.801 0.853 0.783 0.824 0.845 0.837 0.845 0.543

AVERAGE 0.854 0.814 0.852 0.801 0.853 0.784 0.825 0.845 0.843 0.844 0.542

Results are reflective of the correlation between the Laplacian filtered bands of the pan sharpened
image and the Laplacian filtered panchromatic band. The domain value range from −1 to +1 and ideal
values should be close to 1. The ideal value is 1. The results show the best spatial consistency results
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were produced by the Baysian pansharpening method with Gram–Schmidt in second place and CNS
in third place. The wavelet pansharpening technique produced the worst spatial consistency results.

3.2. Spectral Consistency

The results for the spectral consistency evaluation are outlined in Tables 2–8 below.

Table 2. Spectral consistency: correlation coefficient (CC).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.655 0.499 0.690 0.714 0.586 0.970 0.721 0.620 0.579 0.913 0.645
2 0.587 0.407 0.560 0.584 0.498 0.969 0.585 0.556 0.533 0.866 0.870
3 0.540 0.546 0.452 0.410 0.509 0.968 0.415 0.512 0.543 0.786 0.907

AVERAGE 0.594 0.484 0.567 0.570 0.531 0.969 0.574 0.562 0.552 0.855 0.808

The CC results are indicative of spectral similarity between the fused image and original
multispectral image. The values range from −1 to +1 and the ideal value is considered to be close to 1.
While this metric is quite popular, one of its disadvantages is that it is insensitive to a constant gain
and bias between two images and is not able to distinguish subtle fusion artifacts. The results indicate
that the IMVM method produced the best results followed by the RCS method. The worst results were
produced by the Brovey method.

Table 3. Spectral consistency: Erreur Relative Global Adimensionnelle de Synthese (ERGAS).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.788 27.518 25.830 6.591 7.322 1.332 5.638 6.808 41.299 2.361 12.158
2 6.737 26.775 24.689 10.511 6.204 1.025 5.448 5.744 34.792 2.288 3.406
3 5.089 25.571 23.650 9.370 4.454 0.736 5.239 4.328 24.757 2.220 2.614

AVERAGE 6.647 26.699 24.801 8.993 6.122 1.062 5.457 5.730 34.374 2.296 7.450

The ERGAS results are indicative of the spectral distortions in the fused image. This gives an
indication of the general quality of the fused image at a global level. Lower values are considered
more ideal and the domain values range from zero to infinity. The best results were produced by the
IMVM pansharpening method while RCS was second. The Brovey method performed poorly.

Table 4. Spectral consistency: universal image quality index (UIQI).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.610 0.008 0.049 0.719 0.569 0.973 0.721 0.614 0.307 0.921 0.548
2 0.524 0.004 0.046 0.532 0.472 0.972 0.569 0.539 0.278 0.869 0.786
3 0.473 0.009 0.046 0.345 0.475 0.972 0.375 0.491 0.308 0.776 0.866

AVERAGE 0.536 0.007 0.047 0.532 0.505 0.972 0.555 0.548 0.298 0.856 0.733

The UIQI results show the spectral and spatial distortions in the fused image. Results of this
similarity index point to correlation losses as well as distortions in luminance and contrast. The domain
values range from −1 to 1 and values close to 1 are considered ideal. The ideal value for UIQI is 1. The
IMVM pansharpening algorithm produced the best results while the RCS method took second place.
The worst results were produced by the Brovey method.

Table 5. Spectral consistency: relative average spectral error (RASE).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 28.002 96.989 91.462 22.001 26.309 4.681 19.458 24.632 156.307 8.240 52.354
2 24.484 97.909 90.393 38.481 22.539 3.587 19.456 20.789 132.507 8.229 11.533
3 18.752 96.851 89.575 34.914 16.500 2.599 19.432 15.842 94.849 8.214 9.395

AVERAGE 23.918 97.573 90.696 32.745 22.025 3.741 19.515 20.606 129.356 8.239 31.080
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RASE results show the average performance of the fusion algorithm in spectral bands and ideal
values should be as small as possible. The results show that the IMVM fusion method produced the
best results followed by the RCS method. The PCA method produced the worst results.

Table 6. Spectral consistency: root square mean error (RMSE).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 86.162 304.456 285.781 72.925 81.012 14.740 62.375 75.319 456.934 26.118 134.517
2 77.854 309.398 285.298 121.456 71.688 11.840 62.955 66.371 402.044 26.444 39.359
3 58.370 293.318 271.289 107.487 51.095 8.442 60.092 49.640 283.980 25.465 29.982

AVERAGE 74.129 302.390 280.789 100.623 67.932 11.674 61.807 63.776 380.986 26.009 67.953

The RMSE results are reflective of the average spectral distortion arising from the image fusion
and the results are indicative of spectral quality in homogeneous zones in the image. The domain
for RMSE value ranges from zero to infinity and lower values close to zero are considered ideal and
reflective of high quality. The best results were produced by the IMVM method followed by the RCS
method. The worst results were produced by PCA and the Brovey method.

Table 7. Spectral consistency: difference in variance (DIV).

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.538 1.286 1.475 2.983 6.768 0.676 4.921 5.468 13.377 1.053 7.142
2 6.743 1.120 1.342 2.892 5.500 0.660 4.737 4.612 10.110 1.439 2.243
3 5.604 1.114 1.479 3.438 5.125 0.506 5.371 4.037 9.236 1.319 2.494

AVERAGE 6.629 1.173 1.432 3.104 5.798 0.614 5.010 4.706 10.908 1.270 3.959

The results indicate the fusion quality over the whole image by showing difference in variances
relative to the original one. The metric reveals a decrease or increase of information content as a result
of the pansharpening process. The results are considered ideal positive when the information content
decreases and undesirable when the information content increases. The ideal value should be close to
0. The IMVM pansharpening method produced the best results. The Brovey transform method ranked
second and PCA had the worst performance.

Table 8. Spectral consistency: bias.

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 0.108 0.937 0.885 0.131 0.116 0.005 0.086 0.115 1.485 0.006 0.459
2 0.093 0.958 0.884 0.340 0.099 0.004 0.086 0.096 1.259 0.007 0.069
3 0.072 0.956 0.884 0.299 0.073 0.003 0.086 0.072 0.900 0.007 0.058

AVERAGE 0.091 0.950 0.884 0.257 0.096 0.004 0.086 0.094 1.215 0.007 0.195

The results are reflective of difference between the original image and fused image and the ideal
value should be as small as possible. The IMVM method showed the best results followed by the RCS
method. The Brovey transform method showed the worst performance.

3.3. Spectral Synthesis

The spectral synthesis results are shown in Table 9 below.

Table 9. Spectral synthesis: ERGAS.

BAND # BAY BRO CNS EHLERS GRS IMVM MIHS PANSHARP PCA RCS WAVELET

1 7.654 28.079 26.385 7.049 8.553 4.988 8.951 8.655 23.266 6.617 13.176
2 6.432 26.975 24.875 6.819 7.092 3.726 5.808 7.139 19.217 6.113 4.341
3 4.793 25.658 23.720 6.576 5.034 2.649 6.354 5.317 13.579 5.698 4.257

AVERAGE 6.426 27.034 25.122 6.846 7.069 3.921 7.202 7.196 19.177 6.180 8.398
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The best result is indicated by the smallest value. The results indicate that IMVM pansharpening
method produced the best spectral synthesis followed by the RCS method. The Brovey method
produced the worst synthesis.

The best spectral synthesis in IMVM was reflected by ERGAS 3.921, RCS 6.180, BAY 6.426, EHLERS
6.846, and GRS 7.069.

The IMVM algorithm produced the best pansharpening results in terms of spectral consistency
and synthesis as revealed by the CC, bias, DIV, ERGAS, UIQI, RASE, and RMSE results. In terms of
spectral consistency, one of the properties tested under Ward’s criteria, the results of this study also
show that the IMVM pansharpening technique had an average high correlation coefficient of 0.969 in
the visible bands, the highest among the fusion algorithms tested in the study. The performance of
the IMVM algorithm is further shown by the fact that it had the lowest bias and DIV values of 0.004
and 0.616, respectively. The superiority of the IMVM algorithm is further attested to by a very high
UIQI value of 0.972. Such a high UIQI value demonstrates high spectral consistency as it considers
factors such as loss of correlation, luminance, and contrast distortion. The IMVM algorithm had the
best RMSE, RASE, and ERGAS values of 11.674, 3.741, and 1.062, respectively, the lowest amongst
the tested pansharpened methods. The pansharpened image maintains almost the same natural color
as the original multispectral images and the same level of spatial detail as the original panchromatic
images. Results of the assessment also revealed that the IMVM algorithm had the best synthesis as
shown by an ERGAS of 3.921, the lowest in the analysis, indicating that the fused image had minimum
distortions and is quite similar to the reference image.

The RCS algorithm ranked second in the assessment and showed good results in terms of spectral
consistency and synthesis. The ability of the algorithm to retain spectral information is shown by a
correlation coefficient of 0.855, bias of 0.007, DIV of 1.270, ERGAS of 2.296, UIQI of 0.856, RASE of 8.239,
and RMSE of 26.009. The other pansharpening methods that performed comparatively well in terms of
spectral consistency were the wavelet principal components, MIHS, and PANSHARP methods. The
PCA and Brovey methods produced consistently poor results in terms of spectral consistency as shown
by the CC, bias, DIV, ERGAS, UIQI, RASE, and RMSE results.

Spectral synthesis is one of the properties that needs to be analyzed under Ward’s three property
criteria. As pointed out earlier, our results indicate that the IMVM algorithm produces the best spectral
synthesis as shown by a very low ERGAS value of 3.921. Once again, the RCS algorithm ranked second
with an ERGAS value of 6.180. Good spectral synthesis results were also obtained by the BAY, EHLERS,
GRS, PANSHARP, and MIHS fusion techniques. The spectral synthesis results also revealed the poor
performance of the Brovey, CNS, and PCA methods as shown by ERGAS values of 27.034, 25.122, and
19.177, respectively.

The third property evaluated in this study in terms of Ward’s three property criteria related to
spatial consistency. The correlation coefficient results ranked BAY, GRS, CNS, PANSHARP, RCS, PCA,
and MIHS algorithms among the top-performing fusion techniques in terms of spatial consistency.
While the Bayer algorithm was considered the best in terms of spectral consistency, most of the
algorithms showed high spatial correlation with a correlation coefficient above 0.8 and the wavelet
principal component method having the lowest value of 0.542. In contrast to the spectral consistency
and synthesis results, the IMVM algorithm did not feature among the top-performing algorithms
although it still had a high correlation coefficient of 0.784. This result seems to suggest there is a
trade-off between spectral consistency and synthesis with spatial consistency.

While the IMVM and RCS pansharpening methods showed superior performance compared
to the other fusion methods such as the PANSHARP, MIHS, GRS, wavelet transform, Bayesian, and
EHLERS pansharpening techniques, the results of this study clearly show the credibility of these
methods in terms of preservation of spectral and spatial information. When selecting the most ideal
pansharpening method to use for practical applications, a trade-off is required in terms of factors such
as the need for retention of scene radiometry, image sharpness, spatial and spectral consistency, and
computational overhead.
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Color distortion due to pansharpening could be attributed to the broadening of the panchromatic
band into the near-infrared wavelength region in some modern sensors [26]. In the case of SPOT 6/7,
the panchromatic bands have a spectral range of 450 nm to 745 nm, clearly overshooting the bands in
the visible spectrum and encroaching into the near-infrared region that starts from the nominal red
edge at 700 nm. This spectral coverage essentially spans over the visible spectrum that contains the
blue (450–450 nm), green (530–590 nm), and red (625–695 nm) spectral channels. The extension of the
panchromatic band affects the grey values of the panchromatic channel rendering some traditional
pansharpening techniques less effective. The PANSHARP algorithm, for instance, is resilient to this
challenge in that it is a statistics-based technique that uses the least-squares method to determine the
best fit between the grey level values of the spectral bands being merged and adjusts the contribution
of each band to the pansharpening result to minimize color distortions. Zhang [26,27] also highlights
that the statistics-based approach utilized in the PANSHARP algorithm lessens the influence of dataset
discrepancy and automates the pansharpening process. This assertion is supported in this study as
shown by the superior performance of the IMVM, RCS, and Bayer’s fusion techniques. The high
performance of the IMVM image fusion algorithm was confirmed in similar studies. Witharana [44]
reported that the IMVM algorithm produced some of the best fusion results when compared to a
range of pansharpening algorithms when evaluated using CC, RMSE, Deviation Index (DI), SD, and
DIV metrics. Nikolakopoulos and Oikonomidis [43] compared fusion techniques and confirmed
that the LMVM algorithm produced the best spectral consistency and synthesis when applied to
Worldview-2 data. As in our case, other techniques that produced favorable spectral consistency and
synthesis results included PANSHARP, MIHS, EHLERS, GRM, and wavelet principal components
techniques [44,45].

The shortcomings of traditional fusion techniques such as PCA, Brovey transform, and wavelet
fusion are well described by Zhang [26]. To improve the quality of pansharpening results of traditional
pansharpening methods some propositions recommended include stretching the principal components
in PCA pansharpening to give them a spherical distribution. Alternatively, the first principal component
could be cast-off. Modifications of traditional pansharpening techniques are necessary to deal with
some of the limitations confronted in dealing with new satellite sensors. In a general sense, the quality
of image geometric and radiometric rectifications done before the pansharpening directly impacts on
the quality of all pansharpening results for all the image fusion techniques.

Lastly, the spectral integrity of pansharpened images is an important requirement for most
quantitative remote sensing applications. While this study used an array of reference-based metrics
to assess the image quality of various pansharpened images in terms of spectral consistency, spatial
consistency, and image synthesis, the information content within the images was not quantified. The
use of image information metrics such as Shannon entropy and Boltzmann entropy [46–50] enables
the quantification of the average amount of information in the fused images and could be used to
effectively assess the efficacy of various pansharpening methods in terms of the ability to retain or
enhance both spectral and spatial information.

4. Conclusions

Pansharpening in increasingly becoming an important procedure critical in meeting the
ever-increasing demands for high-resolution satellite imagery. Preservation of spectral and spatial
information is an important requirement for most quantitative remote sensing applications. In this
study, image quality metrics were used to evaluate the performance of twelve image fusion techniques.
Twelve pansharpening algorithms were presented in this study and the IMVM algorithm was the best
in terms of spectral consistency and synthesis followed by the RCS algorithm. Although the IMVM and
RCS image fusion techniques showed better results compared to the other pansharpening methods,
it is pertinent to highlight that our study also showed the credibility of the other pansharpening
algorithms in terms of spatial and spectral consistency as shown by the high correlation coefficients
achieved in all methods. The spatial and spectral quality of the pansharpening could, therefore, be
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improved by implementing some modifications to the traditional pansharpening techniques to deal
with the discrepancy that arises due to the broadened panchromatic band that extends to the near-red
region. The use of statistics-based techniques such as the IMVM, PANSHARP, and Bayers algorithms
used in this study could address this shortcoming. In terms of spatial consistency, BAY, GRS, CNS,
PANSHARP, RCS, PCA, and MIHS algorithms showed very good spatial consistency as shown by the
high spatial correlation coefficients. The study noted that the algorithms that ranked higher in terms of
spectral consistency were outperformed by other competing algorithms in terms of spatial consistency.
We, therefore, conclude that the selection of image fusion techniques is driven by the requirements
of remote sensing application and a careful trade-off is necessary to account for the impact of scene
radiometry, image sharpness, spatial and spectral consistency, and computational overhead.
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