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Abstract: Obstructive sleep apnea-hypopnea syndrome (OSAHS) affects more than 936 million
people worldwide and is the most common sleep-related breathing disorder; almost 80% of potential
patients remain undiagnosed. To treat moderate to severe OSAHS as early as possible, the use of
fewer sensing channels is recommended to screen for OSAHS and shorten waiting lists for the gold
standard polysomnography (PSG). Hence, an effective out-of-clinic detection method may provide a
solution to hospital overburden and associated health care costs. Applying single-channel signals to
simultaneously detect apnea and hypopnea remains challenging. Among the various physiological
signals used for sleep apnea-hypopnea detection, respiratory signals are relatively easy to apply.
In this study, a fusion method using fuzzy logic and two single-channel respiratory indexes was
proposed. A total of 12,391 apnea or hypopnea episodes were included. The proposed algorithm
successfully fused standard deviation of airflow signals (SDA) and amplitude changes of peaks
(ACP) indexes to detect apnea-hypopnea events, with overall sensitivity of 74%, specificity of 100%,
and accuracy of 80% for mild to moderate OSAHS. For different apnea-hypopnea severity levels,
the results indicated that the algorithm is superior to other methods; it also provides risk scores as
percentages, which are especially accurate for mild hypopnea. The algorithm may provide rapid
screening for early diagnosis and treatment.

Keywords: obstructive sleep apnea-hypopnea syndrome; amplitude changes of peaks (ACP)
algorithm; fuzzy logic fusion; single channel detection

1. Introduction

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a major public health concern
characterized by recurrence of airflow reduction (hypopnea) or cessation (apnea) due to upper
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airway collapse during sleep, resulting in oxygen desaturation and fragmented sleep [1–3]. In clinical
practice, the severity of OSAHS is categorized as mild, moderate, or severe, with apnea-hypopnea
index (AHI) thresholds of 5, 15, or 30, respectively, following gold standard polysomnography (PSG)
diagnosis [4].

The prevalence of OSAHS for the general population ranges from 9% to 38% [5]. Global estimates
suggest that 936 million people worldwide are affected by mild to severe OSAHS, and 425 million people
aged between 30 and 69 years worldwide have moderate to severe OSAHS [6]. It is associated with
systemic hypertension and chronic inflammation and leads to impaired quality of life [7–9]. Studies have
reported that OSAHS severity increases patient morbidity and mortality from cardiovascular diseases,
end-stage renal disease (ESRD), and hypertension [10–12]. Due to the fact that OSAHS causes excessive
daytime sleepiness and decreased alertness, it increases the risk of automobile accidents [13]. To treat
moderate to severe OSAHS as early as possible, portable monitoring (PM) using level 3 or 4 PSG with
fewer sensing channels is recommended to screen for OSAHS and shorten waiting lists for the gold
standard PSG [14].

Airflow is an essential indicator used for scoring apnea and hypopnea [14–16]. It is measured
using a thermistor/thermocouple (Th) or nasal pressure (Np) [17]. Digital biomarkers provide a novel
approach for risk management. Digital biomarkers in health and disease management are collected
using digital health technologies to explain, influence, or predict health-related outcomes [18]. Due to
the fact that the dynamic response of a Th is slow and the relationship between electrical signal and
airflow is nonlinear, a single channel airflow biomarker is used to detect apnea [15,17]. By contrast,
Np exhibits an excellent dynamic response and is suitable for accurately quantifying the magnitude
of flow, and thereby detecting hypopnea. Unattended PM with Np in conjunction with a Th is more
sensitive than a Th or Np alone in detecting sleep-disordered breathing [19,20]. Moreover, studies have
found that PM with Np alone significantly improves apnea and hypopnea detection and classification
over PM with a Th [21,22]. However, one study concluded that if only an Np sensor was used to detect
apnea and hypopnea, apnea index and AHI were overestimated. Hence, an algorithm with a Th is
potential to produce results that conform precisely to guidelines [19].

Positive airway pressure (PAP) is recommended for the treatment of moderate to severe OSAHS [23].
To determine optimal pressure, PAP titration is manually performed with standard overnight PSG.
According to the clinical signs of apnea or hypopnea, PAP may be increased to eliminate these
obstructive respiratory events and to identify optimal pressure for an AHI of <5. However, when the
titration reference is based on the airflow measured by the device or by the pressure difference between
the mask and the outlet of the machine, as measured by a pressure transducer, the optimal titration
point is overestimated [24]. In this case, the use of a Th may affect titration reference choice, because its
electrical characteristics depend on temperature change caused by breathing, and a small Th may be
placed under the mask with less leakage when PAP is being conducted.

Due to the use of manual scoring, apnea and hypopnea duration time within a subject can vary
markedly by from 10 to 120 s [15]. Accordingly, time domain features for the detection of apnea and
hypopnea are now fully accepted by physicians. The time domain algorithm with amplitude changes
of peaks (ACP) of Np has been reported in [25,26]. The sensitivity (Sn) and specificity (Sp) were 78.47%
and 79.86%, respectively, for detecting severe OSAHS [25]; however, the algorithm’s accuracy for
detecting mild to moderate OSAHS was not reported. In addition, the detection performance in a
subject with more apnea or hypopnea episodes determined using the same filter remains unknown.
Adjusting the filtering of the ACP of airflow may more reliably detect an apnea-hypopnea episode
than the Th used in the study [25]. This may improve the reference accuracy for titration and provide a
more sensitive PM for OSAHS screening.

Though PM with an oronasal thermal sensor is necessary for OSAHS, the accuracy of detection
remains low. We hypothesized that applying single-channel signals could have a good performance
for simultaneous detection of apnea and hypopnea. Thus, the study aimed to develop a screening
method by using single-channel airflow indexes derived from the Th for OSAHS detection.
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2. Materials and Methods

2.1. Participants

A total of 60 participants with snoring or suspected OSAHS who were arranged for PSG diagnosis
between January 2017 and December 2018 were retrospectively enrolled. Enrolment criteria were as
follows: age of 20–80 years, conscious, and literate. Subjects were excluded if they had a diagnosis
of tuberculosis or major mental illness. Other vulnerable groups (i.e., minors, pregnant women,
and indigenous people) were also excluded. Participants were therefore stratified, sampling the
subjects with AHI value for our study. The study was approved by the Taichung Veterans General
Hospital Institutional Review Board and Ethics Committee (Approval Number: CE19126A).

2.2. Physiological Parameters

Sleep-related parameters were collected from the records of a standard PSG (Sandman Elite,
Nellcor Puritan Bennett Ltd., Kanata, ON, Canada) and scored by a well-trained medical technologist.
After sleep stages were confirmed, apnea and hypopnea were defined as the complete cessation of
airflow in the thermocouple for over 10 s or a 30% reduction of breathing in the nasal cannula for
over 10 s, accompanied with an arousal or a 4% decrease in SpO2 [27]. AHI scores were determined
by apnea-hypopnea episodes per hour. Participants with more apnea than hypopnea episodes were
entered into the apnea-dominant group; otherwise, they were placed in the hypopnea-dominant group.
The raw airflow data generated from an oronasal thermal (Th) sensor were exported for analysis with
the proposed algorithm to predict AHI.

2.3. Statistical Analysis

All data were expressed as mean and standard deviation (SD) for continuous variables or numbers
(percentages) for categorical variables. Detection accuracy (Ac), Sn, and Sp for all participants were
computed according to the severity of OSAHS on the basis of ACP thresholds. Following the PSG
diagnosis, an AHI over the severity threshold was defined as a true positive, and an AHI under the
threshold was defined as a true negative. Ac was represented by the ratio of the total number of correct
classifications over the total number of subjects. Sn was represented by the ratio of the number of
positive measurements over the number of counts of true positives, and Sp was represented by the ratio
of the number of negative measurements over the number of true negatives. Statistical significance was
set at p < 0.05. Statistical analysis was performed using SPSS version 18.0 (SPSS Inc., Chicago, IL, USA).

2.4. Methods

The proposed apnea/hypopnea detection algorithm involved using the oronasal thermal airflow
signals with a sampling rate of 51.2 Hz, including annotations by clinicians (Figure 1). The algorithm
scans airflow signals by applying a windowing function, W:

W(t) = rect
[ t− 65

130

]
; (1)

where rect represents a rectangular pulse −T
2 < t < T

2 and T is 130 s. Generally, in apnea/hypopnea
episodes, the drop in blood oxygen level lasts from 10 s to 1 min or even longer [28,29]. Due to the
fact that apnea/hypopnea events can last as long as 120 s [30], a 130 s window frame is an appropriate
choice for clear observation of apnea/hypopnea episodes [25,30–32]. The observing window frame
shifts 5 s each time as W(t− 5n), n ∈ Z. Next, it finds all the peaks of airflow signals within a 130 s
window. Then, fuzzy logic is applied to compute the risk scores by fusing the SD of airflow signals
(SDAs) and ACP [25] indexes. The AHI value is determined according to risk scores. The details of
each block are as follows.
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2.4.1. Find Peaks

Within the windowing function, a fourth-order Butterworth filter was applied for noise cancellation.
Then, the first derivative was used to find local maximum peaks, representing the end of exhalation
processes. The intervals between two adjacent peak points indicate a complete breath cycle. However,
the cycles stop when breathing stops. Each amplitude of peaks within W(t) is stored to generate
additional indexes, including ACP [25] and SDA indexes. The window W(t) is shifted every 5 s, and the
indexes are updated with each shift. The methods used to compute the ACP and SDP indexes are
described as follows.

2.4.2. ACP Indexes

Through the use of a respiration signal to detect apneas, Kim’s method provides better overall
sensitivity, specificity [25], and accuracy than those of Vàrady et al. [33] and Fontenla-Romero et al. [34].
However, Kim’s method was developed using 20 individuals from a population with severe OSAHS,
so it is not suitable for use with healthy populations and those with mild and moderate OSAHS.
Their algorithm computes ACP indexes, so-called Pc, to detect events. It is summarized as follows.

The ACP method first separates 130 s into two window frames: a 120 s window as a baseline
window (Wp) and a 10 s window as a metric window (Wm). The baseline values (Bwp and Bwm) of the
Wp and Wm are first computed using the following formulas:

Bwp =
1

L f

L f∑
i=1

Pi (2)

where L f is the number of peaks, excluding peak widths of less than 0.9375 s; the top 45% of amplitudes
Pi are taken from the sorted peak list within Wp;

Bwm =
1
Lp

Lp∑
j=1

P j (3)

where Lp is the number of peaks and P j is the amplitude of the jth peak within Wm; the ACP indexes
for apnea detection are then expressed as

Pc =
Bwp − Bwm

Bwp
(4)

In Kim’s method, when Pc is larger than the suggested threshold (equal to 0.55), the apnea event
is identified.
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2.4.3. SDA Indexes with Dynamic Threshold

Higher Pc values provide higher sensitivity to apnea/hypopnea events. However, the imperfect
nature of human respiration signals creates Pc values with high false alarm rates in healthy patients
and those with mild apnea-hypopnea. Hence, our proposed SDA indexes are designed to balance Pc
values to provide a more robust fusion system for distinguishing apnea-hypopnea events. Normal
breath cycles are stable because inhalation and exhalation patterns are regular. The SD of amplitudes is
applied to quantize the stability. Unlike Pc values, the SDA indexes are computed using the entire
130 s window.

Without the identification of cycle peaks, the proposed algorithm is applied on the whole airflow
signal xi in the window (Wp plus Wm), where i = 1 . . . N, and N is equal to sampling frequency times
130 s. The SDA indexes are obtained as follows:

SDA(n) =

√√√ N∑
i=1

∣∣∣xi − x
∣∣∣2/N (5)

where x is the average value of sample points of the x vector. The SDA index is updated every 5 s,
described as W(t− 5n), n ∈ Z. Due to variant breath patterns in patients, a dynamic threshold is
necessary as a baseline to classify the SDA risk level:

Threshold(n) = SDA(n) ∗ 0.75 (6)

Threshold(n + 2) = Threshold(n + 1) ∗ 0.75 + Threshold(n) ∗ 0.25 (7)

where n represents the current window time, and Th changes dynamically when W(t) updates. If SDA
indexes are higher than the dynamic threshold, the risk of apnea is lower; if they are lower than the
dynamic threshold, the risk is higher. Hence, when a patient breathes normally, the SDA index stays in
a certain range, and when breathing stops the deviation should be close to zero.

2.4.4. Fuzzy Logic Fusion Method and Decision Making

The proposed fusion method provides the AHI risk score as a percentage for each moving window
by combining the ACP and SDA indexes. All ACP and SDA values are mapped to the percentage scale
from 0 to 1. The center values for ACP and SDA indexes are 0.55 and Threshold(n), and the ranges
are (0.4, 0.7) and (0.75*Threshold(n), 1.25*Threshold(n)), respectively. The fuzzy logic of the mapping
relationship is illustrated in Figure 2.
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After mapping, the AHI risk score can be computed using the following formula, which changes
over time:

Risk score(t) = Fc ∗RiskACP(t) + (1− Fc) ∗RiskSDA(t), 0 ≤ Fc ≤ 1 (8)

The optimal values of the Fc parameters are addressed in a subsequent section. If the maximum
risk score reaches 80% in the observation window, the window is marked as an AHI event. Figure 3
represents a signal channel airflow waveform with ACP and SDA values/ranges and details how the
AHI-related event is identified.
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Notably, our method is independent from signal DC shift and its absolute values of amplitudes.
The dynamic threshold is designed to adapt to different breathing patterns without prior knowledge,
so the algorithm is robust for variant patterns and peak amplitudes and can be applied on sensors with
different voltage levels.

3. Results

A total of 60 participants, most of whom were male (N = 57, 95%), were enrolled. The age of the
participants was 45.2 ± 12.2 years, and the AHI score was 40.8 ± 31.8 (Table 1). The body mass index,
neck circumference, and waist circumference were 29.7 ± 6.3 kg/m2, 40.0 ± 3.8 cm, and 100.1 ± 11.4 cm,
respectively. Apnea and hypopnea indexes were 21.5 ± 26.3 and 19.3 ± 15.2, respectively. There were
a total of 12,391 episodes, with apnea events of 6445 and hypopnea events of 5946. Figure 3 offers a
standard example to describe the warming and no-warming situations. The top plot depicts a single
channel airflow waveform containing two apnea events; the middle plot depicts ACP index curves and
two horizontal thresholds (dashed lines), which is updated every 5 s; and the bottom plot depicts SDA
index curves and two horizontal thresholds (dashed lines), also updated every 5 s. In the AHI warning
areas, the fuzzy combination risk of ACP and SDA was over 80% with weights Fc and 1-Fc (Equation
(7)), respectively. However, in the center of the no warning area, the high ACP indexes were balanced
out by SDA indexes in our algorithm, because SDA provides the variation of airflow signals and ACP.
The ACP is sensitive to slight changes in the amplitude of peaks, which may be influenced by noise
and unstable breath patterns. By contrast, the SDA with dynamic threshold better distinguishes quiet
and active breathing patterns.
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Table 1. Basic characteristics of enrolled participants (N = 60; female/male = 3/57).

Item Mean ± SD Item Mean ± SD

AHI 40.8 ± 31.8 R (%) 12.0 ± 7.7
Apnea-hypopnea event 206.5 ± 159.5 N1 (%) 25.5 ± 19.6

Apnea index 21.5 ± 26.3 N2 (%) 55.0 ± 16.3
Apnea event 107.4 ± 129.0 N3 (%) 7.4 ± 7.1

Hypopnea index 19.3 ± 15.2 SpO2nidar (%) 77.0 ± 11.7
Hypopnea event 99.1 ± 81.0 ESS 10.2 ± 4.4

TRT (min) 357.8 ± 11.3 Age (years old) 45.2 ± 12.2
TST (min) 307.4 ± 37.6 BMI (kg/m2) 29.7 ± 6.3

Sleep efficiency (%) 85.9 ± 10.2 NC (cm) 40.0 ± 3.8
Arousal index 42.5 ± 31.3 WC (cm) 100.1 ± 11.4

AHI: apnea hypopnea index; TRT: total recording time; TST: total sleep time; SpO2nidar: the lowest oxygen
saturation value the patient drops to during a polysomnography study. ESS: Epworth Sleepiness Scale; NC: neck
circumference; WC: waist circumference.

The results revealed that a lower Fc value was related to a lower AHI value, whereas a higher
Fc value coincided with a higher AHI value (Table 2). When Fc was at 40%, the predicted value was
25.7 ± 20.7, and the difference to AHI was −15.2 ± 17.7; when Fc was at 100%, predicted and difference
values were 75.3 ± 19.1 and 34.4 ± 36.8, respectively. Detection values presented two extremes with
the Fc filter. Noticeably, when Fc was between 50% and 70%, the detection difference was relatively
small. As applied for determining OSAHS severity, Sp could not classify normal breathing or OSAHS
of any severity with any Fc (Table 3). However, Sn and Sp were 74% and 100%, respectively, at the
AHI threshold of >15, and 71% and 97% for the detection of severe OSAHS (AHI ≥ 30) with Fc at 50%
(Table 3). Although the detection performances of Fc at 60% or 70% were almost the same as Fc at 50%,
Sp was 0% for an AHI of >15 among apnea-dominant participants (Table 4). As a result, Fc at 50%
offered optimal airflow detection for mild to severe OSAHS. However, Sn of 54% and Sp of 100% were
observed for an AHI of >15 and Sn of 38% and Sp of 100% were detected for an AHI of ≥30 among
hypopnea-dominant participants (Table 5). The results indicate that a higher Fc resulted in a higher Sn
and lower Sp for OSAHS of any severity (Figure 4).

Table 2. Detection values with different Fc values.

Fc 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Predicted value 25.7 ± 20.7 25.9 ± 20.4 27.0 ± 20.2 29.7 ± 20.3 72.3 ± 19.9 74.4 ± 19.6 75.3 ± 19.1
Difference for AHI −15.2 ± 17.7 −14.9 ± 18.3 −13.8 ± 18.8 −11.1 ± 19.8 31.4 ± 36.9 33.5 ± 37.0 34.4 ± 36.8

Table 3. Analysis of detection accuracy among all enrolled participants.

TH Outcome
Fc

0.4 0.5 0.6 0.7 0.8 0.9 1.0

AHI >5 Sensitivity (%) 89 89 91 91 100 100 100
Specificity (%) 50 50 33 17 0 0 0
Accuracy (%) 85 85 85 83.3 90 90 90

AHI >15 Sensitivity (%) 76 74 76 83 98 98 98
Specificity (%) 100 100 93 79 0 0 0
Accuracy (%) 81.7 80 81.7 81.7 75 75 76.7

AHI ≥30 Sensitivity (%) 67 71 70 76 97 97 97
Specificity (%) 97 97 96 93 7 4 4
Accuracy (%) 80 80 81.7 83.3 56.7 56.7 55
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Table 4. Analysis of accuracy detection among apnea-dominant participants.

TH Outcome
Fc

0.4 0.5 0.6 0.7 0.8 0.9 1.0

AHI >5 Sensitivity (%) 100 100 100 100 100 100 100
Specificity (%) NA NA NA NA NA NA NA
Accuracy (%) 100 100 100 100 100 100 100

AHI >15 Sensitivity (%) 100 95 95 100 100 100 100
Specificity (%) 100 100 0 0 0 0 0
Accuracy (%) 100 95.7 95.7 95.7 95.7 95.7 95.7

AHI ≥30 Sensitivity (%) 89 94 89 89 100 100 100
Specificity (%) 75 80 75 75 0 0 0
Accuracy (%) 87 87 87 87 82.6 82.6 82.6

Table 5. Accuracy analysis of detection among hypopnea-dominant participants.

TH Outcome
Fc

0.4 0.5 0.6 0.7 0.8 0.9 1.0

AHI >5 Sensitivity (%) 81 81 84 84 100 100 100
Specificity (%) 50 50 30 17 0 0 0
Accuracy (%) 75.7 75.7 75.7 73 83.8 83.8 83.8

AHI >15 Sensitivity (%) 54 54 58 67 96 96 96
Specificity (%) 1 1 1 85 0 0 0
Accuracy (%) 70.3 70.3 73 73 62.2 62.2 64.9

AHI ≥30 Sensitivity (%) 36 38 43 57 93 93 93
Specificity (%) 100 100 100 96 9 24 4
Accuracy (%) 75.7 75.7 78.4 81.1 40.5 40.5 37.8
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4. Discussion

In this research, a method was designed to analyze airflow signals for scoring apnea and
hypopnea. According to the results, if only ACP (Fc = 1) is applied, the system provides considerably
high sensitivity and low specificity, especially in patients with hypopnea. If SDA (Fc = 0) is applied,
the system is highly influenced by noise such as body movement or sensor drops. As Figure 5
indicates, the dynamic threshold moves up when noise occurs, and this causes false alarms. Hence,
using pure ACP (Fc = 1) or SDA (1−Fc = 0) may not be the correct decision, even with similar AHI
numbers; 50% ACP and 50% SDA can provide the most reliable performances for scoring apnea and
hypopnea when considering sensitivity, specificity, and accuracy. By contrast, pure SDA (Fc = 1)
may be influenced by noise caused by leads being dropped or body movements, suddenly changing
the dynamic threshold. Moreover, this method can be used with an embedded real-time system
because it effectively reduces computational power requirements by focusing on time-domain features
within 130 s window frames, requiring less signal processing in feature extraction, applying a dynamic
threshold to adapt to real-time signal changes, and, most importantly, shortening the time required to
build a fuzzy logic model without a training process. Reports have indicated that portable monitors
measuring three or more physiological parameters (level 3 and level 2 monitoring) offer accurate results
in comparison with laboratory results [35–39]. Due to the fact that discomfort and inconvenience are
barriers to the prevalence of PSG among the public, a single-channel airflow signal is one of the most
applicable solutions for real-time monitoring [32,37,38].
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OSAHS has serious and life-shortening consequences including cardiovascular disease, diabetes,
poor quality of life, depression, and automobile accidents caused by falling asleep [39]. However,
waiting times for PSG diagnosis in the United States and United Kingdom were estimated to be 2–10
and 7–60 months, respectively [40]. A study reported a median waiting time of 152 days in 2009 to
92 days in 2012 (p < 0.0001) by home based PM [41]. A reliable PM may be used for general population
screening as a result. Our study provides an airflow sensing algorithm with overall sensitivity of
74%, specificity of 100%, and accuracy of 80.0% for mild to moderate OSAHS. If the airflow in the
PM screening of a patient represents an AHI of >15, the physician could preferentially arrange a PSG
follow-up. Moreover, when applied to the airflow sensed by an oronasal thermal sensor under the
mask, our algorithm may provide an accuracy of 85% and therefore assist with determining patients
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with an AHI >5 and conducting PAP titration. However, the main limitation of the proposed system is
that when fc = 0.5, it has low sensitivities of 54% and 38% at the thresholds of AHI >15 and AHI ≥30
among hypopnea-dominant individuals, respectively. We suggest if patients are tested as normal by
this method, but combined with snoring and daytime lethargy, physicians should further confirm with
their PSG results. The characteristics of the proposed detection method are summarized in Table 6.

Table 6. Characteristics of the proposed detection method.

Platform Rationale Advantages Limitations

Single-channel
respiratory activity

Oronasal thermal airflow
sensing algorithm

1. Suitable for detecting both apnea
and hypopnea.

2. Low computational power
requirement due to time
domain features.

3. Real-time system compatible.
4. Dynamic threshold is applied to

adapt to real-time signal changes.
5. Fuzzy logic model without training.
6. Specificity of 100% and accuracy of

80% for mild to moderate OSAHS.

1. Low sensitivity when fc = 0.5 among
hypopnea-dominant individuals with
AHI >15.

2. System sensitivity can be improved;
PSG should be used for normal
patients with snoring and
daytime lethargy.

3. Dynamic threshold of SDA increases
because of noise from movement,
causing a false alarm.

5. Conclusions

The study proposed an algorithm using 50% ACP and 50% SDA that can provide optimal
performance for scoring apnea and hypopnea episodes. It provided an overall sensitivity of 74%,
a specificity of 100%, and an accuracy of 80.0% for mild to moderate OSAHS. The method potentially
provides fast screening for early diagnosis and treatment and can be applied on an embedded
real-time system for portable monitoring as a reference for PAP titration with an accuracy of 85% when
determining AHI >5. In the future, system sensitivity should be further improved, especially for
hypopnea-dominant individuals with AHI >15. Sensor or data fusion, signal transformation,
decision trees, and deep learning methods are promising approaches to increasing system sensitivity.
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