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Abstract: Direct sound that is captured by the upper layer of a three-dimensional (3D) microphone
array is typically regarded as vertical interchannel crosstalk (VIC), since it tends to produce an
undesired effect of the sound source image being elevated from the ear-level loudspeaker layer
position (0◦) in reproduction. The present study examined the effectiveness of band-limited VIC
attenuation methods on preventing the vertical image shift problem. In a subjective experiment,
five natural sound sources were presented as vertically-oriented phantom images while using two
stereophonic loudspeaker pairs elevated at 0◦ and 30◦ in front of the listener. The upper layer signal
(i.e., VIC) was attenuated in various octave-band-dependent conditions that were based on vertical
localisation thresholds obtained from previous studies. The results showed that it was possible to
achieve the goal of panning the phantom image at the same height as the image produced by the
main loudspeaker layer by attenuating only a single octave band with the centre frequency of 4 kHz
or 8 kHz or multiple bands at 1 kHz and above. This has a useful practical implication in 3D sound
recording and mixing where a vertically oriented phantom image is rendered.

Keywords: vertical interchannel crosstalk; vertical auditory localisation; 3D audio; sound recording;
microphone technique; mixing; upmixing; psychoacoustics

1. Introduction

1.1. Background

Audio reproduction systems for surround sound are currently in a state of evolution. Audio
engineers and researchers are increasingly looking to improve on the spatial impression and realism
that are offered by conventional 5.1 systems through the incorporation of loudspeakers in the vertical
domain. The implementation of these so-called ‘height channels’ has seen audio reproduction systems
move into the third dimension, with systems, such as Dolby Atmos [1] and Auro-3D [2] becoming
more widely utilized in film and music productions. Such developments inevitably have implications
for the sound recording process, as additional height layers of microphones are required alongside the
pre-existing main channel layer to capture the necessary spatial information.

In the context of three-dimensional (3D) sound recording using microphones, it is necessary to
consider interchannel crosstalk oriented between vertically arranged microphones in terms of vertical
phantom image localisation. Consider a 3D microphone array that consists of two vertical layers of
microphones. For most classical music settings, the lower (main) layer would be typically used to
mainly capture direct sounds for horizontal source imaging, whilst the upper (height) layer would
be used to capture more reflections and reverberation to enhance perceived listener envelopment
(LEV). Ideally, in this case the height layer signals should not interfere with the vertical localisation
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of source images presented from the main loudspeaker layer. If there were excessive amounts of
direct sounds present in the height microphone signals, however the vertically-oriented phantom
images may be perceived at intermediate positions between the main and height loudspeakers layers
in reproduction. The direct sound present in the height layer is referred to as vertical interchannel
crosstalk (VIC) [3]. Conceptually, the phantom image localisation in the presence of VIC can be
compared with the precedence effect between the lead and lag signals [4,5]. In horizontal stereophonic
reproduction, it is well known that the precedence effect operates when an interchannel time difference
(ICTD) is introduced between the loudspeaker signals; a time delay that is greater than around 1 ms
would cause the resulting phantom image to be fully localised at the position of the earlier loudspeaker.
If the same effects were also effective in the vertical stereophonic reproduction, VIC from a vertically
spaced pair of omni-directional microphones would not cause such vertical localisation interference.
However, a previous study by the present authors [6] showed that the precedence effect would not
be triggered in vertical stereophony, with the influence of ICTD on vertical localisation being mainly
dependent on comb-filtering of the ear-input signals. This necessitates the suppression of VIC in the
height microphone signals.

From the above background, previous studies [3,7–9] subjectively measured the minimum amount
of level reduction that is necessary in the upper loudspeaker for the resultant phantom image to be
localised at the position of the sound presented from the lower loudspeaker only, which is commonly
referred to the ‘vertical localisation threshold’ (VLT). The loudspeakers were arranged at 0◦ (listener’s
ear height) and 30◦ elevations in the median plane (i.e., vertical stereophonic setup). Various types
of sound sources (cello and bongo [3], conga, quartet, speech, guitar, and oboe [9], broadband and
octave-band noises [8], as well as a range of ICTDs, were tested in those studies. The results from the
studies largely agreed, in that the VLT for natural sources were commonly around −7 dB for the ICTDs
of 1 to 10 ms, and −9.5 dB for the ICTD of 0 ms [9]. In [8], a vertical quadraphonic loudspeaker setup
was also tested (main layer loudspeakers at±30◦ azimuth and 0◦ elevation, height layer loudspeakers at
±30◦ azimuth and 30◦ elevation, based on the Auro-3D format [2]), but this did not produce significantly
different results from the vertical stereophonic setup. For broadband noise, the VLTs were reported to
be around −12 dB [7,8], which is considerably lower than the results for the natural sources.

1.2. Aim of the Study

The abovementioned previous studies provide useful practical implications on 3D sound recording
and mixing. In terms of 3D microphone array design, the height layer microphones should first be of
a directional polar pattern (e.g., cardioid or supercardioid) and angled upwards, so that the level of
VIC would be at least −7 dB, relative to the direct sound in the main layer microphones. This VLT can
also be a useful reference when a sound engineer aims to vertically pan a phantom image to the main
layer position in 3D sound mixing. It is also evident from [10] that a similar amount of ICLD would
also cause a phantom image to be fully panned to the physical position of the height layer. In such
methods, the amplitude of the signal in the height layer is reduced as a whole (i.e., even attenuation
across the frequency spectrum). Henceforth, this method will be referred to as ‘blanket VLT’.

However, in [7,8], VLT was also found to have a significant frequency dependency for octave-band
noise stimuli, being associated with psychoacoustic phenomena, such as the ‘pitch-height’ effect [11–13]
and the directional bands [14]. In general, the bands centred at 1 kHz and above generally having lower
threshold than the lower bands (e.g., −7 dB for the 250 Hz band and −13.5 dB for the 8 kHz band). This
formed the initial hypothesis of the current study that the VLT could be applied in a band-dependent
manner, rather than as the blanket. The rational for is as follows. As Lee [3] found, the application of
VLT does not totally mask the perceived effects of VIC, such as the increase in vertical image spread
and tone colouration; further attenuation of VIC is required to achieve a total masking (i.e., VIC being
completely inaudible). However, in practical 3D sound recording, mixing, and upmixing applications,
such spatial and timbral effects may be found to be preferable, as found in the case of horizontal
interchannel crosstalk [15]. Therefore, by applying the band-limited or single band VLT method,
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the spatial and tonal benefits would be preserved, whilst ensuring the desired vertical image position.
Furthermore, many professional recording engineers prefer using omni-directional microphones rather
than directional ones for the height channels [16,17], even though they are more prone to the undesired
vertical localisation shift due to the high level of VIC that is presented in the height channel signals.
This seems to be mainly because of their fuller and more spacious characteristics of sound benefitted
from the extended lower frequencies and the greater ICTD between direct sounds. In such a case,
VIC could be reduced only for specific band(s) in post-processing to avoid the vertical localisation
shift issue with minimal influence on the perceived spatial and tonal characteristics. This leads to the
following research question for the present study: Is it possible to achieve the goal of avoiding the
localisation interference effect of VIC by applying VLTs for a limited frequency range or a single band
instead of the blanket VLT method?

The rest of the paper is organised, as follows. The design of the subjective experiment conducted is
first described. Statistical analyses of the data obtained from the experiment are presented in Section 3.
Following this, discussion on the results and their practical implications are provided in Section 4.
Finally, Section 5 concludes the paper.

2. Methods

2.1. Physical Setup

The physical setup of the experiment was identical to the author’s previous VLT study while using
natural sources [9]. The experiment was conducted in an ITU-R BS.1116 [18]- compliant critical listening
room (6.2 × 5.2 × 3.5 m; RT = 0.25 s; NR = 12) at the Applied Psychoacoustics Lab of the University of
Huddersfield. Figure 1 shows the loudspeaker configuration for the experiment. The loudspeakers
were arranged in a vertical quadraphonic configuration that was based on the front part of the Auro-3D
9.1 loudspeaker format [2] (without the centre channel). The L and R loudspeakers, which had the
horizontal base angle of 60◦, were raised at the listener’s ear height (0◦ elevation). The HL and HR
loudspeakers in the height layer were placed right above the L and R loudspeakers and elevated at 30◦

from the listener position. The loudspeaker positions also comply with recommendations in ITU-R
BS.2152 [19]. The distance between the listening position and each of these loudspeakers was 2 m.
The direct-to-reverberant (D/R) energy ratios were 7.7 dB and 6.5 dB for the L and HL loudspeaker,
respectively, when measured while using an omni-directional microphone at the listening position.
Furthermore, within 15 ms after the direct sound, there was no reflection that exceeded −14 dB when
compared to the direct sound level, which meets the requirement of ITU-R BS. 1116. Therefore, it can
be considered that the influence of reflections on the perception of VIC would be minimal.
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Figure 1. Loudspeaker setup used for the listening test. The main layer loudspeakers are configured
with the standard 60◦ subtended angle from the listening position. The distance between the listener
and each of the main layer speakers was 2 m. The height layer loudspeakers are placed right above the
main layer ones, with 30◦ elevation from the listening position, based on the Auro-3D configuration [2].
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A light-emitting diode (LED) strip was directly positioned in front of the listening position. This
was located behind the acoustically transparent curtain and it was to be used by subjects when making
their localisation judgments.

2.2. Test Stimuli

The experiment used five natural sound sources of conga, oboe, quartet, speech, and guitar, all of
which were anechoic recording excerpts that were taken from [20]. They were chosen due to their
varied spectral and temporal characteristics, as shown in Figure 2.
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Figure 2. Long term average spectra and waveforms of test stimuli used for Experiment One.

The following eight experimental conditions were applied to the sources to create test stimuli.
For the VLT cases, the attenuation was only applied to the direct sound in the height layer, with the
ICTDs of 0 and 1 ms.

1. Full band VLT (FB): octave-band-dependent attenuation is applied to the height layer.
2. VLTs for 1 kHz band and above (1 + B): octave-band-dependent attenuation is only applied to the

1 kHz band and above.
3. 4 kHz band VLT (4B): only the band centred at 4 kHz is attenuated.
4. 8 kHz band VLT (8B): only the band centred at 8 kHz is attenuated.
5. Blanket VLT: attenuation is applied to the height layer as a whole.
6. Main layer only: only the main layer is presented.
7. Height layer only: only the height layer is presented.
8. Vertically oriented phantom image with 0 dB ICLD: no level attenuation was applied, thus

creating a vertical phantom centre image between the two loudspeaker layers.

The rationales for the 4B and 8B conditions are as follows. Previous work by the present authors [9]
suggest that there might be some perceptual dominance of the 7–9 kHz region in determining the
VLTs for complex sources. Furthermore, in the literature it has been reported that the primary cues for
elevation perception lie in the 4–10 kHz range [21,22]. More specifically, 8 kHz is related to ‘above’
perception, according to Blauert’s directional band theory [14], and therefore it is hypothesised that
the band that is centred at this frequency would have a major influence on the perception of image
elevation. The 4 kHz band is mapped to ‘front’ localisation by Blauert. However, in a phantom image
condition, which is the case in the present study, Lee [23] showed that, with a pair of loudspeakers
elevated at 30◦ from the listener’s ear position, a 4 kHz octave band noise was perceived to be elevated
at the same height as the loudspeakers, due to the phantom image elevation effect [24,25]. Therefore, by
reducing the energy of this band in the height layer, the perceived elevation of a phantom image that
results from the vertical quadraphonic reproduction might be reduced. The 1 + B condition was created
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while considering a potential benefit of maintaining the original low frequency energy in the height
layer signals captured using omni-directional microphones, whilst reducing all of the high frequencies
that are potentially problematic for accurate localisation. In addition, the main and height layer only
conditions as well as the blanket and 0 dB ICLD conditions were included to serve as references.

Table 1 presents a summary of the VLTs that were used for each band in the current study This is
based on the results from a previous study by the authors [8,9]. For band attenuation, the VLTs that
were applied to the speech, oboe, guitar, and quartet sources were the median results obtained for the
continuous octave-band noise stimuli in [8]. On the other hand, band reduction for the conga used the
VLT obtained for the octave-band noise burst stimuli used in the same study due to its transient nature.
It should be noted that, in [8], the thresholds for both the continuous 8 kHz band and the burst 4 kHz
band had a significant dependency on the ICTDs, whereas the other octave bands did not, regardless
of the transient nature of the sound source. For this reason, in the current study, different thresholds
were applied to those two bands, depending on the ICTD and source type. For blanket reduction,
the median thresholds that were derived in [9] were used (i.e., −9.5 dB for 0 ms and −7 dB for 1 ms).
The 0 ms condition is equivalent to a vertical coincident microphone configuration [26], whereas the
1 ms condition represents the spacing between the main and height microphones being 0.34 m. This
would be a practical spacing for a 3D microphone array, since, beyond this spacing, there would be no
perceived increase in vertical image spread and the tonal quality would decrease [27]. In addition,
the author’s previous study on the VLT while using the same sound sources also tested the ICTD of
10 ms, but there was no significant difference found between 1 ms and 10 ms in the results.

Table 1. Vertical localisation threshold (VLT) values applied to different octave bands of the stimuli,
based on Wallis and Lee [8].

Centre Frequency (Hz)
Height Layer Attenuation (dB)

Guitar, Speech, Oboe and Quartet Conga

63 −6 −6
125 −7 −6
250 −7 −5
500 −8.5 −6
1 k −11 −6
2 k −10 −6

4 k (0 ms) −9.5 −11
4 k (1 ms) −9.5 −6
8 k (0 ms) −13.5 −6
8 k (1 ms) −10 −6

16 k −8 −6

The test stimuli were created for each sound source, as follows. For the height channel signal,
each source was first broken down into octave bands while using a linear-phase 8th-order Butterworth
filter (−48 dB/oct), which was created using the ‘forward-backward’ filtering method [28] in MATLAB
(MathWorks, Natick, Massachusetts, USA). Each octave band then underwent the level reduction
according to Table 1. The main channel signal was unaltered. Time delays of 0 and 1 ms were applied
to the height channel with respect to the main. During the test, the main channel was routed to L and
R, whilst the right was routed HL and HR. For blanket reduction, the amplitude of the height channel
was reduced as a whole. From this, a total of 80 stimuli were created (five sources x two ICTDs x eight
presentation methods).

The playback levels of the main layers of all stimuli were calibrated at 70 dB LAeq at the
listening position. The increase in amplitude when the stimuli were presented as vertically arranged
quadraphonic phantom images was dependent on the VLT that was applied to the height layer,
as shown in Table 2. It was decided not to match the overall sound pressure level (SPL) of the stimuli
as a slight increase in SPL is an inherent result of VIC.
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Table 2. A-weighted average sound pressure level (LAeq) for stimuli presented while using each
localisation threshold method.

Method LAeq (dB)

FB 70.0
1 + B 71.2

4B 72.2
8B 72.4

Blanket 70.4
0 dB ICLD 73.1

2.3. Subjects

Ten subjects participated in the listening test. They comprised staff researchers, post-graduate,
and final year undergraduate students from the University of Huddersfield’s Music Technology (ages
that ranged between 21 and 40; Eight males and two females). They were chosen due to their extensive
experiences in performing auditory localisation tasks in critical listening test environments. They all
reported normal hearing.

2.4. Test Protocol

Localisation judgments were made while using the LED strip located directly in front of the
listening position. For each test, the subjects were provided with a handheld rotational knob, which
controlled which LED on the strip was turned on. They were required to adjust the knob until the
position of the active LED matched the perceived location of the focal point of each stimulus. This
method was chosen following research that was conducted by Lee et al. [29], who found that it was
faster and produced results with greater accuracy and consistency compared to the numbered scale
method, which had been used previously in [9]. The position of the LED selected for each stimulus
was converted into an elevation angle within a Max/MSP patch. The heads of subjects were not fixed,
but they were instructed to sit up and face forwards at all times, while only using their eyes to look at
the LED strip. A small headrest was positioned behind the head of each subject to help maintain the
correct seating position. The presentation order of stimuli was randomised for each test.

3. Results

Levene and Shapiro–Wilk tests were first conducted, using the SPSS software, in order to determine
the suitability of the collected data for parametric statistical analysis. The Shapiro–Wilk test showed
that not all scores in each condition featured normal distribution, although the results of the Levene test
showed homogeneity of variance for all sound sources. For these reasons, non-parametric tests were
chosen for the statistical analysis. Wilcoxon signed-rank tests were used to examine the significance of
difference between each presentation method for each source and for each ICTD since the experimental
design was of a within-subject repeated measure (i.e., all subjects tested all conditions in a randomised
order). Boferroni correction was applied to the p values that were obtained from the Wilcoxon tests to
reduce a potential Type-I error in multiple comparison.

Figure 3 shows the median perceived elevation of each of the test stimuli, plotted with notch
edges (i.e., non-parametric 95% confidence intervals). With respect to the VLTs, it can be observed
that each of the proposed band reduction methods, as well as the blanket threshold method, resulted
in the perceived location of each stimulus being similar to that for the main layer only condition,
suggesting that the proposed methods tend to fulfil their aim. This was the case for all sources, with
the median difference in perceived elevation between the main layer only and the VLT conditions
ranging between 2.4◦ and −4.0◦ for the 0 ms ICTD and between 3.9◦ and −3.2◦ for the 1 ms ICTD.
Alongside this, the notch edges of the main layer only and VLT conditions all overlap, which suggests
no significant differences among the conditions [30].
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The Bonferroni-corrected Wilcoxon tests indicated that, for all sources and ICTDs, none of the
VLT methods had a significant difference to the main layer only condition. In addition, the effect size
r did not indicate a large effect in any case (<0.5 for all). From this, it can be suggested that all of
the proposed VLT methods successfully prevented vertical interchannel crosstalk from affecting the
perceived location of the main channel signal.

The medians for the 0 dB ICLD condition were generally higher than those for the main layer
only condition (p < 0.05), which was expected. However, it is interesting to note that the oboe did not
follow this trend; there was no significant difference among all of the conditions (p > 0.05). This result
might suggest that the application of VLTs would not always be necessary and would have somewhat
of a source dependency.

A further result of note can be seen with respect to the main and height layer only conditions.
Firstly, for the latter condition, it would appear that perceived elevation judgments were generally
accurate for all sources, excluding the oboe, with respect to the physical position of the height layer.
Conversely, the judgments were less accurate for the main layer only condition, with perceived source
elevation being in the range of 5.8◦–13.0◦ with respect to the main layer’s physical position. This
elevation of the sound source with respect to the main layer was also maintained for the conditions,
whereby a VLT was applied to the height layer. The results of a Wilcoxon signed rank test, which
compared the results for the main layer only condition to the physical position of the main layer (0◦),
showed that each source was perceived to be significantly higher than the physical height from which
the source was presented (p = 0.000 for all sources).

4. Discussion

4.1. The Effecitveness of the Band-limited VLT Methods

The data that were provided in the present experiment have shown that a shift in the perceived
elevation of musical sources is apparent when a sufficient amount of direct sound is present in the
height layer. In addition, using any of the band or blanket reduction methods that were tested can
prevent this from happening. That both the blanket reduction and FB methods were successful was
somewhat expected. For example, the blanket reduction thresholds had already been derived in a
previous study [9] and so were reasonably expected to work. Additionally, it can be deduced from
Table 1 that the influence of the height channel on the resultant amplitude of each source for the FB
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method was low, with the average peak amplitude being equal to that for the main layer only condition.
Therefore, it seems reasonable that the perceived location of the main channel signal would not be
affected, as the audibility of the direct sound in the height layer was low with respect to that in the
main layer. It was the main focus of the current study to investigate whether vertical localisation
thresholds (VLTs) could be applied through the selective manipulation of frequency bands within the
height layer, with the 1+B, 4B and 8B conditions all being effective.

Consideration was first given to the discussions regarding the mechanisms that might determine
the VLTs for complex sources in order to explain the effectiveness of the 1 + B, 4B and 8B methods.
The difference in ear-input spectral energy of the height layer to the main layers the vertical quadraphonic
condition was measured while using HRIRs that were obtained from the KEMAR dummy head database
in order to gain further objective insights into this result [31]. The result is shown in Figure 4, in the
range of frequencies covered by the 4 and 8 kHz octave bands (2840–11360 Hz). Any point where the
difference is above 0 dB represents the dominance of the height layer over the main layer, and vice
versa. From the figure, it can be observed that the height layer has considerably more energy in the
7–9 kHz region when compared to the main layer. Given that 8 kHz 1/3-octave band has an association
with above localisation, according to Blauert’s directional band theory [14], it is reasonable to suggest
that the large energy dominance in the 7–9 kHz region would result in the vertical phantom image
condition being elevated with respect to main layer only presentation. By extension, this would also
mean that providing sufficient attenuation of the phantom image in this range would result in the
VLT being met, which seems to explain why the 8B and 1 + B methods were effective. In either case,
the methods would necessitate the attenuation of the 8 kHz octave band by a minimum of 6 dB for
transient sources and 10–13.5 dB for continuous sources, based on the listening test results (depending
on the ICTD, see Table 1).
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With regard to the 4B method, it can be seen in Figure 4 that the difference in spectral energy
between the main and height layers is much smaller for the 4 kHz octave band as compared to the
8 kHz octave band. However, as mentioned in Section 2.2, in [24] the phantom centre image of the
4 kHz octave band was found to be effectively elevated to the physical height of the height loudspeaker
layer. This seems to suggest that the attenuation of this band that was tested in the present study was
sufficient for suppressing the vertical localisation shift.
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4.2. The Relationship Between Perceived Source Elevation and the Vertical Localisation Threshold

The results showed that the difference in perceived elevation between the main layer only and
phantom image conditions differed for each source. For example, the speech source that was presented
as a vertically oriented phantom image with 0 dB ICLD was perceived as being significantly higher
than that for main layer only presentation for both of the ICTDs tested. On the other hand, judgments
for the oboe source were generally consistent, irrelevant of how the source was presented to subjects.
The remaining sources were more inconsistently affected. The increases in median perceived elevation
for the conga, guitar and quartet sources were significant when the ICTD was 1 ms. Despite this, for the
0 ms ICTD the difference was not significant, even though the median perceived elevation notably
increased in each case. These results would seemingly indicate that vertical interchannel crosstalk has
a source dependent effect with respect to the perceived migration of the main channel signal from the
position of the main layer.

With respect to the oboe source, an explanation of the results obtained is thus offered. The literature
suggests that narrowband stimuli incident from the median plane are localised on the basis of frequency,
with increases in frequency corresponding to increases in perceived elevation (i.e., pitch-height
effect) [11–13]. The spectrum for the oboe source was notably narrow, with its predominant energy
focused around 1 to 2 kHz, as can be seen from Figure 2. According both to the literature and to the
results presented in the present study, band-limited stimuli in this frequency range are localised at a
similar vertical position, regardless of which loudspeaker layer presented the source, for both vertical
stereophonic [13] and vertical quadraphonic [24] loudspeaker arrangements. Therefore, it might be
that the pitch-height effect determined localisation judgments for the oboe, with no relation to the
difference in energy in the 7–9 kHz region between the phantom image and main layer only conditions.
It might be further suggested that the suppression of vertical interchannel crosstalk is predominantly
needed for broadband sources, with less relevance to the sources that are both narrowband and absent
in high frequency energy.

4.3. Practical Implications

The results of the present experiment have implications both for microphone techniques for 3D
sound recording and for the rendering of 3D images in mixing or upmixing. It was discussed that
attributes, such as the tonal colour and spaciousness of the main channel signal, would be affected
when the VLT is applied. It is apparent that the perception of such attributes would vary, depending
on the VLT method being used. For example, given that the 1 + B, 8B, and 4B methods do not require
any attenuation of the low frequencies in the height layer signal, it could be the case that the resultant
phantom image would sound fuller compared to the blanket reduction method. In addition, given
that Furuya et al. [32] reported that the perception of vertical image spread (VIS) was related to the
amplitude of a vertical reflection relative to the direct sound, it could be that the degree of VIS afforded
by each method would differ.

Furthermore, as mentioned in Section 1.2, the proposed methods could be used for the post-processing
of height layer signals captured using omni-directional microphones. That is, the band-specific VIC
reduction could help avoid the potential issue of vertical image shift while maintaining the spatial and
tonal benefits of omni-directional microphones.

5. Conclusions

The aim of the study was to investigate the effectiveness of the frequency-band-limited attenuation
of vertical interchannel crosstalk (VIC) (i.e., direct sound presented in the height loudspeaker layer) on
vertical phantom image localisation in the context of quadraphonic sound reproduction with height
channels. The main findings of the study are as follows.

• It is possible to successfully prevent the localisation interference effect of VIC by attenuating only
some specific octave bands of the VIC, each by the amount specified Table 1; for example, (i) all of
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the bands centred at 1 kHz and above, (ii) only the band centred at 4 kHz only, and (iii) only the
band centred at 8 kHz.

• The influence of VIC on vertical localisation has a sound source dependency due to frequency-related
psychoacoustic phenomena, such as the pitch-height effect and the phantom image elevation effect.
The results suggest that, in vertical quadraphonic reproduction, sound sources with a narrow
frequency spectrum (e.g., oboe) would not have a significant VIC influence on perceived vertical
image position, since the image would be localised at a vertical position inherent from the
frequency content, regardless of the presentation method.

• In addition, the results support a previous finding that neither the precedence effect nor localisation
dominance operates vertically. That is, in the vertical domain, time delay between two loudspeakers
alone would not cause the auditory image to be localised at the position of the earlier loudspeaker,
and a certain level reduction would be necessary for this.

The band-limited VIC attenuation methods might produce a greater magnitude of perceptual
effects, such as increases in vertical image spread and fullness when compared to the blanket method
(i.e., attenuation as a whole). Their practical application areas include vertical sound image rendering
in 3D sound mixing and post-processing of 3D sound recording.

Future works will investigate (i) what the most salient effects of vertical interchannel crosstalk
are, (ii) how these vary when the different VLT methods are applied, and (iii) which method is most
preferred subjectively.
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