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Abstract: A complex amplitude hologram can reconstruct perfect light waves. However, as there
are no spatial light modulators that are able to display complex amplitudes, we need to use
amplitude, binary, or phase-only holograms. The images reconstructed from such holograms
will deteriorate; to address this problem, iterative hologram optimization algorithms have been
proposed. One of the iterative algorithms utilizes a blank area to help converge the optimization;
however, the calculation time and memory usage involved increases. In this study, we propose to
reduce the computational complexity and memory usage of the iterative optimization using scaled
diffraction, which can calculate light propagation with different sampling pitches on a hologram
plane and object plane. Scaled diffraction can introduce a virtual blank area without using physical
memory. We further propose a combination of scaled diffraction-based optimization and conventional
methods. The combination algorithm improves the quality of a reconstructed complex amplitude
while accelerating optimization.

Keywords: complex amplitude; iterative hologram optimization; holography; holographic display;
phase-only hologram

1. Introduction

Light waves are essentially represented by complex amplitudes. Therefore, if we can display a
complex amplitude hologram on a spatial light modulator (SLM), we can reconstruct perfect light
waves. Complex amplitude holograms can be displayed by using two SLMs [1], or by dividing the
displaying areas of a single SLM [2,3]. However, in the former, it can be difficult to alight two SLMs
precisely, and the latter sacrifices the spatial bandwidth product of an SLM.

As there is no single spatial light modulator that can display complex amplitudes, we must
convert the complex amplitude holograms to amplitude, binary, or phase-only holograms [4].
The reconstructed images from such holograms are degraded because of noises. To address this
problem, deterministic methods have been proposed to encode to amplitude, binary, or phase-only
holograms [5–9]. Although noniterative methods are computationally effective, they decrease the
spatial bandwidth product of the SLM because of the use of superpixels and the spatial multiplexing
of two holograms.
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In addition, iterative optimization algorithms have been proposed [10–15]. A representative
algorithm is the Gerchberg–Saxton (GS) algorithm [16]. The GS algorithm has a wide range of
applications; for example, the measurement of unknown complex-valued objects from diffraction
patterns or holograms; vortex beam generation; multi-spot generation; and the optimization of
holograms that can display high-quality reconstructed images. We then focus on the hologram
optimization for display purposes. The GS algorithm iteratively calculates the light propagation
and back-propagation between the object plane and the hologram plane to optimize the hologram.
During this iteration, some constraints, based on prior information, are imposed on the hologram
plane and object plane. One of the GS-based algorithms uses a blank area to help the convergence of
the optimization [10–12,14]. However, the calculation time and memory usage increase.

In this study, we propose the reduction of computational complexity and memory usage for
iterative optimization using scaled diffraction that can calculate light propagation with different
sampling pitches on a hologram plane and object plane. The scaled diffraction can introduce a
virtual blank area without using physical memory. We demonstrate that the proposed method
can reconstruct a better complex amplitude from an optimized hologram. We further propose
an algorithm that combines scaled diffraction-based optimization with conventional methods.
The combination algorithm improves the quality of the reconstructed complex amplitude while
accelerating iteration optimization.

2. Proposed Method

This section describes the two proposed methods, using scaled diffraction. First, we explain a
conventional iterative algorithm [14]. Next, we explain the two proposed methods. The first method
uses scaled diffraction and the second method uses the scaled diffraction-based iterative algorithm,
followed by the conventional method.

2.1. Conventional Method

A conventional iterative algorithm [14] optimizes a phase-only hologram to reconstruct the desired
complex amplitude, in which a blank area is introduced around the original complex amplitude
o(x, y). The size of the original complex amplitude is N × N pixels. The expanded object plane
uo(x, y) with the blank area has mN ×mN pixels, where m denotes the magnification of the expansion.
The magnification m indicates the ratio between the sizes of the original object plane to the expanded
one. The size of the hologram plane uh(x, y) is the same as that of uo(x, y).

The flow of the conventional algorithm is shown in Figure 1 and is performed in the following steps:

1. We initially set random phase values in the hologram plane uh(x, y);
2. We compute the diffraction calculation from uh(x, y) to the object plane uo(x, y) with the

propagation distance +z;
3. As an object plane constraint, the area where the original object in uo(x, y) exists is replaced by

o(x, y), while the calculated value in the blank area remains;
4. The updated uo(x, y) is back-propagated to the hologram plane uh(x, y) by the same diffraction

calculation with the propagation distance −z;
5. We introduce two constraints to the hologram plane. The first constraint is to calculate uh(x, y) =

uh(x, y)/|uh(x, y)| because our target is a phase-only hologram. The second constraint is the
support of the hologram. We set zero values in the blank area of the hologram plane, because the
size of the hologram is N × N;

6. We repeat Steps 2 to 5 until the number of iterations reaches a predefined number, or the image
quality of the reconstructed complex amplitude reaches a predefined quality, or the image quality
of the reconstructed complex amplitude decreases;

7. To obtain the final hologram, we crop only the central part of uh(x, y) with N × N pixels.

The computational complexity of the algorithm is O(Lm2N2 log2 mN), where L is the number of
the iterations. Memory usage requires O(m2N2).
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Figure 1. Conventional algorithm.

2.2. Proposed Method 1: Scaled Diffraction-Based Hologram Optimization

A conventional algorithm can optimize a hologram. However, by introducing the blank area,
it requires an expanded area that is m-times the size of the original hologram. In this section, we
describe the proposed algorithm, which uses scaled diffraction to introduce a virtual blank area,
to solve this problem. Several scaled diffraction calculations have been previously proposed [17–22].
In this study, we used aliasing-reduced shifted and scaled (ARSS)-Fresnel diffraction [22] as the scaled
diffraction. The ARSS-Fresnel diffraction can perform Fresnel diffraction with different sampling
pitches on the source and destination planes. Note that the number of pixels on the source and
destination is N × N pixels. As with other diffraction calculations, the ARSS-Fresnel diffraction can be
acceleration using fast Fourier transforms (FFTs). In this study, we denote the operator of the scaled
diffraction as

u2(x, y) = P z
p1,p2{u1(x, y)}, (1)

where u1(x, y) and u2(x, y) are the source plane and destination plane with sampling pitches p1 and p2,
respectively, and z is the distance between the planes. For simplicity, we only show the one-dimensional
ARSS-Fresnel diffraction, but two-dimensional ARSS-Fresnel diffraction can be simply derived using
separation of variables in Fresnel diffraction. The ARSS-Fresnel diffraction is expressed as

u2(x2) = P z
p1,p2{u1} = CzF−1

[
F
[

u1(x1) exp(iφu)

]
F
[

exp(iφh)Rect(
xh

2xmax
)

]]
, (2)

where x1 = p1m and x2 = p2n, and where −N/2 ≤ m, n < N/2 are the integer coordinates, F
[
·
]

denotes the Fourier transform, Rect(·) is the rectangular function for reducing aliasing error, xh is
a variable for the generation of exp(iφh), xmax is the aliasing-free area and exp(iφu), exp(iφh) and
Cz are defined by exp(iφu) = exp(iπ((s2 − s)x2

1)/(λz)), exp(iφh) = exp(iπsx2
h/(λz)) and Cz =

exp(iφc)/(iλz) = exp(ikz + iπ((1− s)x2
2))/(λz))/(iλz), where s is defined by p1/p2.

The flow of the proposed algorithm is shown in Figure 2. The proposed algorithm using the
scaled diffraction is performed in the following steps:

1. We initially set random phase values in the hologram plane uh(x, y), with the sampling pitch ph;
2. We compute the diffraction calculation from uh(x, y) to the object plane uo(x, y) with the sampling

pitch of po = mph where m is the magnification. The calculation is performed by

uo(x, y) = P z
ph ,po{uh(x, y)}; (3)
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3. As an object plane constraint, the area where the original object in the object plane exists is
replaced by down-sampled original object od(x, y) with the number of pixels N/m× N/m. The
complex values in the virtual blank area remain;

4. The updated uo(x, y) is back-propagated to the hologram plane uh(x, y) using the same
diffraction calculation:

uh(x, y) = P−z
po ,ph
{uo(x, y)}; (4)

5. As a constraint on the hologram plane, we calculate uh(x, y) = uh(x, y)/|uh(x, y)|, because our
target is a phase-only hologram;

6. We repeat Steps 2 to 5 until the number of iterations reaches a predefined number or the image
quality of the reconstructed complex amplitude reaches a predefined quality.

We used scaled diffraction in Steps 2 and 4. The number of pixels in the scaled diffraction
source and destination planes is N × N, unlike in the case of the conventional algorithm; therefore,
the computational complexity and memory usage of the algorithm are only O(LN2 log2 N) and O(N2),
respectively. We can reduce the computational complexity and memory usage of the conventional
algorithm by a factor of 1/m2.

Figure 2. Scaled diffraction-based algorithm.

2.3. Proposed Method 2: Combination Algorithm

The second proposed method is a combination of a scaled diffraction-based algorithm (described
in Section 2.2) and a conventional algorithm (described in Section 2.1). In some cases, the results of
scaled diffraction-based algorithms are inferior to those of conventional algorithms. While maintaining
the advantage (low computational complexity) of scaled diffraction-based algorithms, we improve this
problem by combining a scaled diffraction-based algorithm with a conventional algorithm. Figure 3
shows the flow of the combination algorithm.

First, the hologram is optimized by a scaled diffraction-based algorithm with the iteration number
L1. The hologram is then further optimized by a conventional algorithm with the iteration number
L2. The total computational complexity and memory usage of the combination algorithm are only
O(L1N2 log2 N + L2m2N2 log2 mN) and O(m2N2), respectively.
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Figure 3. Combination algorithm.

3. Results

We have discussed reconstructed complex amplitudes obtained from a non-optimized phase-only
hologram, optimized holograms using the conventional algorithm, a scaled diffraction-based algorithm
(Proposed method 1), and a combination algorithm (Proposed method 2). Non-optimized phase-only
holograms are calculated by simply propagating the object plane using a Fresnel diffraction calculation.
The calculation conditions are a wavelength of 532 nm, z = 0.3 m and the pixel pitch of the hologram
ph = 8 µm. All the calculations were performed using our wave optics library, CWO++ [23]. We used
two original objects with complex amplitudes. The first complex-valued object consisted of Mandrill
and Pepper images as amplitude and phase, respectively. The second complex-valued object consisted
of House and Jelly images as amplitude and phase, respectively.

Figure 4 shows the reconstructed amplitude images (upper row) and phase images (bottom row)
obtained from a non-optimized hologram and optimized holograms, respectively. The resolution of
the holograms is 1024× 1024 pixels. The number of iterations in each iterative algorithm is fixed to
L = 20. Note that the combination algorithm used the first and second iteration numbers of L1 = 0.8L
and L2 = 0.2L. We empirically determined the ratio between L1 and L2. If L2 is large, the effect
of improving the image quality cannot be expected to be substantial, and only the calculation time
increases. We measured the quality of the reconstructed amplitude and phase images using the peak
signal-to-noise ratio (PSNR) between the original and reconstructed images. In the reconstructed
amplitude image, the proposed methods can reconstruct better images than the conventional method.
In particular, Proposed method 1 had the highest quality. In the reconstructed phase image, Proposed
method 1 was slightly inferior to the other methods. In contrast, Proposed method 2 had the highest
quality of the reconstructed phase images. The calculation times for the conventional algorithm,
Proposed method 1, and Proposed method 2 were 58 s, 15 s, and 23 s, respectively. Proposed methods
1 and 2 can accelerate hologram optimization approximately 4 times and 2.5 times faster, respectively,
than the conventional algorithm.

The difference between the conventional method and the proposed methods is the use of scaled
diffraction. The sampling pitch on the object plane in the scaled diffraction is larger than that of
the conventional diffraction calculation, leading to the averaging effect of noises on the object plane.
The averaging effect gradually reduces the noise in the reconstructed images during the iterations of
the proposed methods.
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Figure 5 shows the reconstructed amplitude images (upper row) and phase images (bottom row)
obtained from a non-optimized hologram and optimized holograms, respectively. The calculation
conditions were the same as those in Figure 4. In this case, the two proposed methods have better
quality outcomes than the conventional algorithm. Proposed methods 1 and 2 can also accelerate
hologram optimization by approximately 4 times and 2.5 times, respectively, than the conventional
algorithm. In particular, the amplitude and phase are the highest in Proposed method 1.

Figure 4. Reconstructed amplitude images (upper row) and phase images (bottom row) obtained from
non-optimized hologram and optimized holograms, respectively.

Figure 5. Reconstructed amplitude images (upper row) and phase images (bottom row) obtained from
a non-optimized hologram and optimized holograms, respectively
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Figure 6 shows the amplitude images, phase images, and total intensity as a function of the
iterations. The left and right columns show the results of the original objects “Mandrill+Pepper”
and “House+Jelly,” respectively. In the graphs, “Conv,” “Pro1,” and “Pro2” denote the conventional
algorithm, Proposed method 1, and Proposed method 2, respectively. In the combination algorithm,
the iteration numbers of the first and second optimization were L1 = 0.8L and L2 = 0.2L, respectively.
Note that we did not perform Proposed method 2 in the L = 1 iteration.

Regarding the quality of the reconstructed amplitude images of “Mandrill+Pepper” and
“House+Jelly,” Proposed method 1 has a higher quality than the other methods. In contrast, as shown
in Figure 6c, the quality of the phase image using Proposed method 1 is no better than the conventional
algorithm, but Proposed method 2 maintains the best quality of all the iterations when compared
with the other methods. Figure 6e,f show the total intensity of the reconstructed images. The total
intensity is defined as the total light intensity of the reconstructed image calculated by ∑x,y |a(x, y)|2,
where a(x, y) is the amplitude in the object plane. In Figure 6e, Proposed method 2 has the highest
total intensity of all the iterations. In Figure 6f, Proposed method 1 has the highest optical efficiency of
all the iterations.

Figure 6. Reconstructed amplitude images, phase images, and total intensity as a function of the
iterations. The resolution of the hologram is 1024× 1024 pixels. The peak signal-to-noise ratios (PSNRs)
and total intensities were averaged with five different initial random phases. (a,b) are the amplitude
PSNRs for “Mandrill+Pepper” and “House+Jelly”, (c,d) the phase PSNRs for “Mandrill+Pepper” and
“House+Jelly”, and (e,f) are the total intensities for “Mandrill+Pepper” and “House+Jelly.”
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Figures 7 and 8 show the amplitude images, phase images, and total intensity as a function
of the iterations. The calculation conditions are the same as in Figure 6, except for the resolution
of the holograms. The resolutions of the holograms in Figures 7 and 8 are 512 × 512 pixels and
2048× 2048 pixels, respectively. Overall, the proposed methods demonstrated better image quality
and total intensity than the conventional method.

Figure 7. Reconstructed amplitude images, phase images, and total intensity as a function of the
iterations. The resolution of the hologram is 512 × 512 pixels. (a,b) are the amplitude PSNRs
for “Mandrill+Pepper” and “House+Jelly”, (c,d) the phase PSNRs for “Mandrill+Pepper” and
“House+Jelly”, and (e,f) are the total intensities for “Mandrill+Pepper” and “House+Jelly.”
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Figure 8. Reconstructed amplitude images, phase images, and total intensity as a function of the
iterations. The resolution of the hologram is 2048 × 2048 pixels. (a,b) are the amplitude PSNRs
for “Mandrill+Pepper” and “House+Jelly”, (c,d) the phase PSNRs for “Mandrill+Pepper” and
“House+Jelly”, and (e,f) are the total intensities for “Mandrill+Pepper” and “House+Jelly.”

Figure 9 shows optical reconstructions from holograms with 1024× 1024 pixels, using the original
complex-valued objects of “House+Jelly” and “Mandrill+Pepper.” We used a phase-modulated spatial
light modulator with a full high definition (HD) resolution. The calculation condition of the holograms
is the same as in Figure 6. Figure 9a,e show the optical reconstructions using the non-iterative method.
Figure 9b,f show the optical reconstructions using the conventional method. Figure 9c,g show the
optical reconstructions using Proposed method 1 and Figure 9d,h show the optical reconstructions
using Proposed method 2. The proposed methods improve the image quality compared to the
non-iterative method while reducing the calculation time.
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Figure 9. Optical reconstructions from holograms with 1024× 1024 pixels: (a,e) show reconstructed
images obtained from the non-optimized hologram, (b,f) show reconstructed images obtained from
the conventional algorithm, (c,g) show reconstructed images obtained from the proposed method 1,
and (d,h) show reconstructed images obtained from the proposed method 2.

4. Conclusions

We proposed a scaled diffraction-based algorithm for hologram optimization. To introduce the
virtual blank area without using physical memory, the scaled diffraction-based algorithm is effective
in terms of computational complexity and memory usage, while maintaining the image quality of
the reconstructed complex amplitude. However, in some calculation conditions, the quality of the
reconstructed complex amplitude obtained from the scaled diffraction-based algorithm was slightly
inferior to the conventional algorithm. We further proposed the combination of a scaled diffraction
base with conventional algorithms. The computational complexity of this algorithm was less than that
of the conventional method, and the image quality, which exceeded the conventional method, could
be stably obtained.
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