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Abstract: In this work, a cost-effective wind resource method specifically developed for the
ROSEO-BIWT (Building Integrated Wind Turbine) and other Building Integrated Wind Turbines is
presented. It predicts the wind speed and direction at the roof of an previously selected building
for the past 10 years using reanalysis data and wind measurements taken over a year. To do so,
the reanalysis wind speed data is calibrated against the measurements using different kinds of
quantile mapping, and the wind direction is predicted using random forest. A mock-up of a building
and a BIWT were used in a wind tunnel to perform a small-scale experiment presented here. It showed
that energy production is possible and even enhanced over a wide range of attack angles. The energy
production estimations made with the best performing kind of calibration achieved an overall relative
error of 6.77% across different scenarios.

Keywords: building integrated wind turbines; reanalysis; ERA5; anemometer; Savonious turbine;
quantile mapping; random forest

1. Introduction

Small wind turbines are a useful technology for transitioning to a more sustainable energy model.
They are a good way to decentralize electricity generation, an objective set by the European Union
through its 2009/72/EC directive [1]. Among these, Building Integrated Wind Turbines (BIWT) are
specially interesting for many reasons, such as:

• Since they are installed on buildings and can be installed within cities, which are both big energy
consumers, transport and transformation losses are reduced.

• Being installed on already urbanized areas, they avoid some of the environmental [2] and
social [3] impacts of conventional wind farms, such as land use, visual pollution of natural areas,
and destruction or disruption of habitats.

• They can be installed alongside solar panels to create hybrid generation systems. Power generation
becomes more stable compared to pure photovoltaic system of the same rated power. In isolated
installations, this can lead to a lower set-up cost because less batteries are needed to ensure that
demand is met [4].

• They can play a key role on the so called nearly Zero-Energy Buildings [5].

With the promotion of small wind turbines in mind, the authors of this paper have been working
on a novel Savonious-type small wind turbine specifically designed for urban environments called
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ROSEO-BIWT, which has already been presented in previous papers [6,7]. We have the conviction
that any small wind turbine has to be cost effective if it is going to contribute to the mentioned energy
transition, and a proper wind resource assessment method is key for that [8].

Traditional wind farms require extensive monitoring and measurements plans. For instance,
according to the National Renewable Energy Lab [9], a single measurement tower that takes wind and
other variable readings costs about US$25,000 and US$40,000 to set up and maintain. A small wind
turbine does not justify such an expensive and detailed analysis to spot a good location, or to calculate
the potential of an already chosen location. Apart from that, the topography of the place has to be
taken into account. Landberg et al. propose using CFD (Computational Fluid Dynamics) simulation
for each site for this, but, as they note, it consumes a large amount of time and computing capacity [10].

The aim of this paper was to present a wind resource estimation method that requires few
computational resources and that takes into account the particularities of our turbine, primarily
being its high sensitivity to the wind direction and the concentrating effect of the building and the
concentration panels. Furthermore, each aspect of this method can be applied to other small wind
turbine designs. It estimates the energy production of a previously selected building, allowing for
calculation of the return on investment. It also helps selecting the facade or facades most suitable for
an installation. For this study, the specific case of the University of the Basque Country’s building in
the town of Eibar was studied [11].

There have already been attempts to develop efficient methods for small wind turbines.
Weekes et al. [12] suggests fitting linear functions that given the wind module speed of a reference
site output the estimated module of a target site. This method has some inconveniences. First of all,
it can predict negative wind speed values at the target side because of the residual scatter term.
The authors solved this by setting the negative predicted values to the mean of the function before
applying that term. However, this could lead to overestimating the wind potential at the target site.
The second inconvenient is that a linear regression escalates the whole wind speed range with the
same factor: the slope of the linear function. This means that non-linear effects cannot be properly
taken into account.

Instead of this, we propose using quantile mapping to come with a similar method that does
not have such inconveniences and that is specially suitable to get the overall potential of a site.
This technique consists in training transference functions that match the quantiles of a forecast sample
with the quantiles of an observation sample. Then, those functions can be used to come up with
forecasts when observations are not available. Apart from its extensive use in the field of meteorology,
it has already been used in the context of wave [13–15], solar [16,17], and wind energy [18–20].

In the method presented in this paper, reanalysis data is used as observation and wind
measurements data as forecast. The goal is to get a calibrated time series of the wind speed module
of several years of a site even if measurements were only taken for a much shorter time period.
That way, the energy potential estimation is not affected by the peculiarities of the measurement period.
For this purpose, the calibrated data does not need to be a precise forecast; instead, it has to match the
probability distribution of the wind speed module time series of a typical year.

2. Data and Methodology

Due to the complexity of the methodology, the diagram shown in Figure 1 was made. It shows
the process by which the best predictive models were chosen, but it does not cover its application to
the 10-year data period that gives us the results in Section 3.4.2.
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Figure 1. Diagram that summarizes the methodology and data used.

2.1. Data

2.1.1. Anemometer Data

The measurements were taken at the roof of the University of the Basque Country’s building in
Eibar, located at the following coordinates: 43◦10′45.82′′ N, 2◦29′19.80′′ W. A cup and vane anemometer
was used. It measured the wind speed in intervals of approximately 7 min and uploaded the mean
wind speed and the direction of each interval to a web page. The data could later be retrieved using
web scrapping techniques. A year of data was used, covering the period from the 22nd of May 2018
to the same day of 2019. This way, the effect of the changing weather during the year could be taken
into account, without having an excessively long measurement period that would make the method
unattractive for commercial use.

Ideally, if one of the facades of the building was already selected, the anemometer would have
been installed on the edge between that facade and the roof, where a turbine would be installed.
Alternatively, it could be installed on the center of the roof, which would allow to select the facade
taking the measurements into account. However, due to architectonic and legal limitations, none of
these options were possible, and the anemometer had to be installed on one side of the roof several
meters away from the edge.

The anemometer’s data was filtered to ensure that all measurements used in the calibration were
taken while the anemometer was working properly. These filters detected suspicious measurements
but did not automatically delete them. Instead, the positions of those measurements were stored,
so they could be plotted later, along with all the data. That way, the proper functioning of the filters
could be checked, and their parameters could be tuned, before deleting any data. Three of them
were used:
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1. The first filter detected measurements with negative wind speed or values greater than 30 m/s.
2. The second one detected if the difference between two subsequent measurements was greater

than 5 m/s .
3. The third one detected whether 20 subsequent measurements varied their mean wind speed less

than 0.05 m/s.

When applying these filters, the first one did not detect any errors, the second one detected 3,
and the third one detected 117. Overall, a 0.12% of the data points were flagged as erroneous and
deleted, so the filters did not meaningfully affect the data set.

2.1.2. Reanalysis Data

The reanalysis data used in this study came from the ERA5 hourly data (ERA5 from now on)
provided by the European Center for Medium-Range Weather Forecasts. It has a temporal resolution
of one hour and a spatial one of 0.1◦, and it contains values of multiple variables for each hour and
grid point [21].

The ERA5 data used in this study covers 10 years, from 2010 to 2019, both included. The 9 grid
points closest to the anemometer were selected. As seen in Figure 2, they form a 3× 3 square around
the town of Eibar, being the one in the center the closest to the anemometer.

Figure 2. Location of the studied building (red) and ERA5 grid points (blue). The grid points are
numbered according to their proximity to the anemometer.

From all available variables, the 10-m and 100-m components of wind were used. The wind speed
module and direction were calculated from these components, so the ERA5 data would be similar to
the anemometer’s.
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2.1.3. Data Merging and Cross-Validation

Since the reanalysis data’s time period totally overlaps the period in which the measurements
were taken, it is possible to merge both data sets (ERA5 data and the measurements) to form another
one that covers that time period. It was done in a way that every data point corresponded to a
timestamp and had the wind speed modules and directions of the anemometer and the reanalysis.
Since ERA5 data had the lowest sampling frequency, every measured speed and direction was matched
with the ERA5 data point that was closest in time, and all other measurements were discarded.

The anemometer took a sample every 7 min when working properly, so, in most of the final
data set, the ERA5’s and the anemometer’s timestamps of each data point were no more than 3.5 min
apart. However, the gaps in the anemometer’s time series could theoretically mean that some
ERA5 data points could be matched with measurements taken a long time apart, or that various
of them were matched with the same measurement. Those mismatched data points could disrupt the
calibration, but luckily none of the gaps was large enough to do so, as the biggest difference between
the anemometer’s and ERA5’d timestamp for the same data point was around 5 min. This meant that,
in this particular case, no data points were discarded.

In order to cross-validate the results, this data set was randomly split in two equal-size sets:
one for training and the other one for testing. The splitting was made just once for the whole study;
that means that all the quantile mapping calibrations, the classification via random forest, and the
estimation of produced energy done on the 1-year data set were trained and tested with the same
training and testing data sets.

By this point, we have three different data sets that contain timestamps and wind speed and
direction data. Table 1 below shows the scope of each data set for clarification purposes.

Table 1. Summary of the scope of each data set.

Anemometer Data Reanalysis Data Merging of Both Anemometer and Reanalysis Data

Spatial (number of sites) 1 9 10
Temporal (years) 1 10 10

Height Rooftop 10 m and 100 m Rooftop and 10 m

2.2. Interaction between Wind Direction and Building Orientation

2.2.1. The Importance of the Skew Angle and a Small-Building Experiment

The skew angle of any Vertical Axis Wind Turbine (VAWT) is the angle between the plane
perpendicular to the rotation axis and the incoming wind direction, which means that, for a regular
VAWT, it has a value of zero when the wind only has horizontal components, as well as a value of 90◦

when it has only vertical ones. If the VAWT is mounted horizontally on the edge between the roof
and the facade, this is the same angle as the angle between the plane perpendicular to both the facade
and the roof and the wind direction. When working with wind turbines in this position, it is very
important to take this angle into account when estimating the wind resource because they only work
when the wind is facing the facade.

To determine the maximum skew angle with which the turbine can generate the potency given by
the power curve for a particular wind speed, a small wind tunnel experiment was run. It involved
using a mock-up of a building with a miniature Savonious turbine and Power Augmenting Guiding
Vanes (PAGVs). The turbine was attached to a dynamo, from which voltage readings were taken.
The voltage was later used to calculate the rotation speed for each wind speed and skew angle.

Figure 3 shows the design, dimensions, and photos of the small-scale model with a 6-bladed small
turbine within the PAGVs and the building. Figure 3a,d shows the first design and the corresponding
real construction of the small turbine along the building (plant view). The profile of the design and
real methacrylate PAGVs are shown in Figure 3b,e. Figure 3c’s profile view shows the design and exact
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dimensions and angles of the 6 blades, while Figure 3f is a photo of the small building with the PAGVs
in a previous experiment.

The electrical motor attached to the small turbine is a maxon DCX06M EB KL 6V of 0.529 W
(speed constant of 3060 min−1 V−1, speed–torque relation of 36,600 min−1 m Nm−1). This description
and the characteristics of the wind tunnel in which the skew angle experiment is performed are already
described in our previous publication [7]. Although the blockage ratio of the small scale experiment
(the transverse area of the small building with respect to the wind tunnel circular area) should be
below 10% [22], a blockage ratio of around 20% is obtained even with our precise scale model of the
turbine. In the future, a bigger wind tunnel in necessary with a wider range of wind speeds.

Figure 3. Design and dimensions of the small Savonius model and the PAGVs (Power Augmenting
Guiding Vanes) (a)–(c) and the corresponding photos of the small-scale building with the real Savonius
and the PAVs (d)–(f).
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Although the experiment is preliminary and should be validated by CFD or in a bigger wind
tunnel, it shows very relevant results for our purpose and the configuration of our Savonius turbine.
It should be noted that the horizontal plane skew angle with respect to this horizontally mounted
Savonius is analogous to the typical vertical plane skew angle with respect to a VAWT (see Figure 4).
The experiments were developed for wind speeds around 6 m/s, 7 m/s, and 8 m/s. There are
fluctuations in the measured wind speed and the rotational speed (rpm) of the small Savonius, and that
is why boxplots are used for the representation of the graph.

Figure 5 shows the behavior of the small turbine for different skew angles (0◦, 10◦, 20◦, 30◦,
and 40◦), with the 0◦ being the angle corresponding to perpendicular wind to the facade (pink color).
The skew angle deviation, surprisingly, does not affect the measured rpm; they even increase for higher
skew deviations from the perpendicular incidence.

Figure 4. Scheme of the skew angle for our small scale experiment and the horizontal axis turbine
with the incoming wind field (vectors above) in the wind tunnel. 0◦ corresponds to wind direction
perpendicular to the facade.
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Figure 5. Boxplots of rotational speed of the small-scale longitudinal turbine at different wind speeds
and skew angles.

A hypothesis on this anti-intuitive behavior can be related to the helical rotative wake or vortex
prolonged along the horizontal axis, the energy of which is not dissipated and is captured by the
turbine. This idea should be validated by more detailed CDF simulations than previous works [23],
but other authors have also observed also this behavior of the Savonius and other VAWTs’ power
production with respect to the skew angle even with higher Cp,max values for non-skewed cases [24–26].

2.2.2. Selection of Facade for Installation

After reassuring that this kind of turbine can work with a wide range of wind directions, we can
now examine the wind resource on the building’s roof. With this information, the best facade or
facades can be selected, and, after that, the hypothetical wind energy output of a installation on that or
those facades can be estimated.

For this purpose and for simplicity’s sake, we will suppose that the Cp,max does not increase
nor decrease from 0◦ to 60◦ of skew angle, as well as that it drops to zero with higher values.
This is consistent with the tendency found at the wind tunnel experiment explained in the previous
Section 2.2.1, as well as with Reference [25]. This means that, in our analysis, a turbine mounted
between the roof and a facade absorbs the wind coming from a range of 120◦ in front of the facade.

After studying the wind rose of the wind measurements taken on the building, it is very clear that
the valley in which the town of Eibar is located concentrates the wind, since the predominant wind
directions are the ones parallel to the valley’s direction. This means that the building primarily receives
wind from the NE and specially the SW, as seen in Figure 6. Even if various facades could be selected
to augment the overall produced energy, selecting only the best facade is the best option for optimizing
the capacity factor and thus making the installation more economically viable. Apart from that,
wide facades are desirable over narrow ones because they concentrate the wind better and because they
give more room for the installation. For all these reasons, the south facade was selected. This facade
directly faces the wind coming from 197◦, so the absorption range covers any wind coming from 137◦

to 257◦. Figure 7 shows that the 120◦ range is wide enough to absorb the strongest winds.
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Figure 6. Wind rose of the wind measured in the building.

Figure 7. Representation of the studied building and the relevant information to choose a facade for the
installation. The wind rose is the same of Figure 6. The light blue area corresponds to the absorption
range of the selected facade. The dotted red line marks the valley’s direction. The green square marks
the anemometer’s location on the roof.

2.3. Calibrations via Quantile Mapping

Once the training and testing data sets were ready, the measurements were calibrated against the
reanalysis 10-m wind data using quantile mapping, quantile matching or QM. This technique seemed
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appropriate for energy output estimation purposes because it makes the PDF of the reanalysis data
more akin to that of the measurements. It has already been used by the authors in a wider context of
renewable energies, such as the study of historical wave energy trends in Ireland, Chile, or the Bay of
Biscay [13–15,27], and by other researchers in the context of solar [16,17] and wind energy [18–20].

A first round of simple calibrations was performed for each of the ERA5 grid points using quantile
mapping. We call them simple because they were not categorized, meaning that the training data set
was not splitted, as opposed to the following calibrations. The results, which are more extendedly
discussed in Section 3.1, showed that both ERA5’s and the calibrated wind speed did not show
meaningful differences between grid points. For these reason and for simplicity’s sake, only the grid
point closest to the anemometer was used for the next three calibrations. These are performed on
categorized data sets, meaning that the training data set was split using different criteria and that
the training and calibration process were done independently on each split. The first of them was
directional, the second one seasonal, and the third one was both directional and seasonal; each one’s
most distinguishing properties are summarized in Table 2 for clarification purposes.

Table 2. Summary of the distinctive properties of the QM (Quantile Mapping) calibrations performed.

Name Grid Points Splitting Criteria Splits

Simple Closest 9 None 1
Directional Closest one ERA5 wind direction 8
Seasonal Closest one Season 4
Combined Closest one ERA5 wind direction & Season 8 × 4 = 32

To perform the directional calibration, 8 wind directions were used, corresponding to the cardinal
and intercardinal directions. All data points were grouped according to which of those directions
were closer to their ERA5’s wind direction, and separate training and calibrations were done for each
one. This way, the calibrations of the data points that had a ERA5 wind direction between established
ranges were done using transference functions trained only with data points with a ERA5 direction
within that range.

The seasonal calibration consisted of splitting the data set based on the season instead of the
direction. For simplicity, instead of accurately grouping the data points according to seasons, they were
grouped by months: the data from January, February, and March was considered as being part of
“winter”; April, May, and June as “spring”; July, August, and September as “summer” and October,
November, and December as “autumn”. Following the same logic as the directional calibration,
the data from each season was trained and calibrated separately.

The third and last calibration was a combined calibration, meaning that it was directional and
seasonal at the same time. The directions and seasons were the same as in the previous calibrations,
so the data points were split in 32 groups, according to their ERA5 direction and season.

2.4. Adaptation of Calibrated Wind Speed Series to ROSEO-BIWT’s Peculiarities

2.4.1. Correction of Wind Speed Series

Due to architectonic and legal restrictions, the anemometer could not be located at the same spot
as the hypothetical turbine. Instead of being on the edge between the roof and the center of the facade,
where the concentrating effect of the building is more potent, it was installed over the roof on one side
of the building, as shown in Figure 7. This caused the measured wind speed to be lower than what
empirical observations suggested a hypothetical turbine could receive.

This was compensated by multiplying the wind speed series by a range of augmenting factors,
which are the ratio between the mean wind speeds at the anemometer’s and the turbine’s locations.
These were deduced from the findings of previous research done on the difference of the wind speed
on the area around the roof relative to the free wind speed [24].
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According to this paper, the installation site (that is, the spot just above the edge between the roof
and the facade facing the wind) has wind speeds that are between 0.33 and 0.9 times the free wind
speed. Our hypothesis is that this difference is constant for the entire wind speed range for a given
building and facade. So, by knowing the mean wind speed value between the wind at the anemometer
and the free wind, we can also calculate the factors. Since the free wind is the wind that occurs at such
a height where it is no longer slowed down by the roughness of the terrain, the 100-m wind data from
ERA5 was used as free wind.

They were calculated as follows: first, the data pertaining to the times when the wind was facing
the selected facade (using the 120◦ range explained in Section 2.2.2) was separated from the rest.
Then, within this subset of data, the averages of the measured and ERA5’s 100 m wind speeds were
calculated, and the former was divided by the latter. We will call this factor fa, which is equal to 0.26.

Another factor, called fb, represents the difference between the mean wind speeds at the edge
and at 100-m height and can be extracted from the CFD simulation results of Micallef et al. [24].
In order to take into account different scenarios regarding the increase of the wind speed at the edge,
three different values were used. We will call them fb1 , fb2 , and fb3 , and their values are 0.33, 0.6,
and 0.9, respectively.

Lastly, by dividing fb by fa, we got what we will call fc, which is the difference between the edge
and the anemometer’s spot, that is, the correcting factors for the measured and calibrated wind speed
series. Having different values for fb means that we got different values for fc: fc1 is equal to 1.28,
fc2 to 2.34, and fc3 to 3.50. The equations below summarize the calculations. AnemWS is the mean
wind speed value of the measured wind speed inside the absorption range, FreeWS is the mean wind
speed of the ERA5’s 100-m data pertaining to the same data points AnemWS, and EdgeWS is the mean
speed of the wind that, according to these calculations, the turbine would receive.

fa =
AnemWS
FreeWS

= 0.26,

fb =
EdgeWS
FreeWS

,

fb1 = 0.33,

fb2 = 0.6,

fb3 = 0.9,

fc =
fb
fa

=
EdgeWS× FreeWS
FreeWS× AnemWS

=
EdgeWS
AnemWS

,

fc1 = 1.28,

fc2 = 2.34,

fc3 = 3.50.

2.4.2. Prediction of Wind Direction via Random Forest

Since the direction from which the building receives the wind greatly affects the concentrating or
obstructing effect of the building’s geometry, a method to predict the past wind direction is necessary
in order to use historical data for wind resource estimation. The random forest (RF) algorithm was
chosen for this task because of its ability to use different types of inputs and evaluate its relevance, so it
can be fed with the historical reanalysis data already on hand without any previous variable selection.
Apart from that, being an ensemble learning method means that it is more robust and less likely to
overfitting than single decision trees.
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Predicting a variable, such as the on-site wind direction, is tricky because it is a numerical cyclical
variable. For instance, the values 360◦ and 0◦ refer to the same direction. However, the low resolution
of the anemometer’s wind direction data, which only differentiates between 16 directions, means that
it behaves more like an ordinal cyclical variable. Apart from that, there is no way that we are aware
of to make a random forest predict a cyclical variable, be it numerical or ordinal. For that reason,
the on-site wind direction variable is treated as categorical, even if it means some loss of information.

The reanalysis data used in the calibrations is used as input. Since the comparison of the grid
points’ wind speed showed that they are very similar, only the wind speed of the closest point was
used, while the 9 variables of wind direction were used. The month of each data point was also added
as a predictor, since the seasonal calibration’s performance already showed that there are changes on
the relationship between the modeled and the measured wind throughout the year. The month to
which each data point corresponds is encoded as a categorical variable for the same reasons exposed
for the on-site wind direction: few cases and cyclical nature.

That gives a total of 11 input variables to predict a categorical variable with 16 classes. The number
of variables randomly sampled as candidates at each split was set to 3, following the advice given
by Svetnik et al. [28], which states that this number should be set to the root square of the number
of predictors. The number of trees for the RF was set to 500. The tuning and posterior use of the
algorithm was made in a similar fashion to that of the calibrations: first, the tuning and validation
were made using the training and testing data sets, respectively, and, once the correct parameters were
found, an RF was generated without using cross-validation (that is, using both sets), and then it was
used to predict the on-site wind direction for the period ranging from 2010 to 2019.

The tuning involved dealing with the unbalanced nature of the on-site wind direction, which the
count of measured wind directions displayed in Figure 8 shows. Without any tuning, the algorithm
tended to overestimate the frequency at which wind comes from the south-west. Such a bias would
mean that the power that a turbine located on the south side of the roof would be overestimated,
creating unrealistic expectations of the installation’s viability.

Figure 8. Frequency of each measured wind direction during the studied 1-year period.

The problem was solved with a combination of cost sensitive learning and pruning. On the one
hand, the algorithm was forced not to have any bias towards the majority classes by assigning all
classes (that is, each one of the 16 possible wind directions) the same weight. This is an adaptation of
the approach that Chen et al. [29] call “Weighted Random Forest”, in which the less represented classes
are assigned a higher weight or misclassification cost. Giving all the classes the same weight eliminated
the need to calculate the weight of each class, which would be specially difficult given that we are
dealing with 16 of them, and proved to be good enough for our purposes. On the other hand, the trees
forming the forest were pruned by assigning a minimum size of terminal nodes of 4, meaning that
each terminal node needs to have at least 4 data points before attempting any further split. While none
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of this approaches worked on their own, their combination yielded satisfactory results, which are
further discussed in Section 3.2.

2.5. Modeling of Power Curve

In order to estimate the power output, and thus the economic viability of any wind turbine using
the predicted wind speed and direction, a power curve is needed. A theoretical approximation can be
developed based on the theory of drag machines in order to obtain an estimated power curve for our
turbine. The general equation for the the power coefficient (Cp) in function of tip-speed ratio (λ) is the
following one for a drag machine, with CD being the corresponding drag coefficient [30]:

CP =
1
2

CDλ(1− λ)2. (1)

The derivative of CP shows that its maximum value is given for λ = 1
3 , with a Cp,max of 0.15.

For that, an inferior limit CD ≈ 2 is considered, a typical drag value for the frontal incidence in a
cylindrical profile.

As a reference, a transferal area of 1 m2 will be adopted. If there is simple control and regulation
system to ensure an angular velocity that fulfills the optimum condition of λ = 1

3 for a given wind
speed U, the generated power between the cut-in and rated wind speed would be

P = Cp,max
1
2

ρAU3 = 0.091U3(W), (2)

having an standard air density with ρ = 1.225 kg/m3.
Given the low wind speeds measured and calibrated in the building, a low rated wind speed Urated

should be adopted, which establishes also the value of the rated power and the main characteristic of
the consequent generator. For Urated = 14 m/s, the rated power is around 250 W for the mentioned
area of 1 m2. These approximate values are adopted for this study given its high similarity with the
maximum power limit of a photovoltaic solar panel of the same dimension [31].

This obviously allows the hybridization of solar-wind energy in buildings harnessing the same
system of energy storage by a DC generator. In the previous work of the authors, the corresponding DC
generator of 250 W is described in their laboratory wind tunnel [7,32]. As mentioned above, this rated
power implies an exact Urated of 14 m/s, which will be used for the construction of the power curve
with a low cut-in speed (2 m/s, usual for drag machines) and a cut-off of 25 m/s (the typical security
value for wind turbines). For a generator of 200 W, Urated = 13 m/s; for 150 W, 11.8 m/s; and, for 100 W,
10.3 m/s.

All of them can be considered to estimate a final optimum annual energy production (AEP) for
the different calibrated and non-calibrated wind speed time series. However, the main reference power
curve will be given by the 250 W rated power, as shown in Figure 9. The expression P = 0.091U3 can
be corrected in a simple cubic polynomial fitting to fulfill the condition of P = 0 at 2 m/s and 250 at
14 m/s with two unknown parameters: P = aU3 + b. The correction gives a very similar equation
conserving the parameter a: P = 0.091U3 − 0.728.
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Figure 9. Estimated power curve of the Savonious drag-type turbine for a 250 W generator without
guiding vanes or plates.

2.5.1. Power Curve Using PAGVs and Plates

Power Augmenting Guiding Vanes (PAGVs) and concentration plates can improve the value
of Cp,max. Mohamed et al. [33] used plates to eliminate the negative torque in the returning
blade, obtaining a Cp of 0.27, and almost duplicating the typical value of 0.15. Altan et al. [34]
studied the influence of the inclination angle of the plates obtaining a Cp,max of 0.38, or even 0.48,
using omnidirectional vanes. Obviously, the use of these vanes also reduces the cut-in speed up to
1 m/s or even 0.5 m/s.

Given these values in the literature, three paradigmatic cases and power curves are considered
for this study, keeping the generator of 250 W and the cut-off of 25 m/s, and applying an analogous
method to the previous section. Table 3 shows the three cases, with the first one being the referential
case analyzed before.

Table 3. Three paradigmatic cases (inferior limit, intermediate, upper limit) according to the
improvement of efficiency in terms of Cp,max and cut-in speed.

Case Cp,max Cut-in (m/s) Urated (m/s) U3 Zone Equation

C1 0.15 2 14.0 P = 0.091U3 − 0.728
C2 0.30 1 11.1 P = 0.182U3 − 0.182
C3 0.50 0.5 9.4 P = 0.302U3 − 0.038

The cases C1, C2, and C3 represent progressive paradigmatic cases with the case C2 as the
intermediate and reasonable one. Hence, C1 represents the worst case without any kind of improvements
by vanes and plates, and C3 represents the best case applying complex aerodynamic design.
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2.6. Annual Energy Production and Capacity Factor Calculations

The ultimate goal of the wind resource estimation method presented in this paper is to get the
Annual Energy Productions (AEP) and Capacity Factors (CF) of various possible installations. This is
meant to help decide the characteristics of the installation, such as the nominal power per absorbed
square meter, which is the characteristic studied here. The AEP also serves to get an estimate of the
economic viability and the carbon emission savings of an installation.

These two variables were calculated for a total of 36 scenarios that arise from the combination of
different possibilities regarding different aspects of the installation:

• The rated potency per 1 m2 of transferal area, which can be 100, 150, 200, or 250 W, as explained
in Section 2.5.

• The correction of wind speed, which can be increased by 1.28, 2.34, or 3.50, as explained in
Section 2.4.1.

• The effect of the PAGV, which gives three possible cases named C1, C2, and C3, as explained in
Section 2.5.1.

To calculate the AEP, first, every wind speed value in which corresponding wind direction does
not fall into the absorption range of the selected facade is set to zero. In the case of the measured wind
speed series, the measured wind direction is used for this, whereas, for the calibrated wind speed
series, the predicted wind direction is used. Then, after applying the corresponding augmenting factor,
each wind speed value is used to calculate the generated power for each power curve. In this study,
since we are using three cases regarding the effect of the PAGV and 4 possible rated powers, we use a
total of 12 power curves. All these calculations are performed using hourly wind speed time series,
so the value of the generated power expressed in kW for each data point is equal to the value of the
generated energy in kWh. Finally, the generated energy for each hour is summed and then normalized
to get the AEP. The CF is calculated by dividing the AEP by the energy the turbine would generate if it
was working at the rated power for a whole year.

First, only the AEP is calculated with the measured and predicted wind speeds and directions of
the testing data set. This will help select the type of quantile mapping that gets a energy production
estimation closer to that calculated with the measurements. Then, the AEP and CF will be calculated
with the reanalysis data covering 10 years, using the wind speed time series from the calibration that
proves to be best and the predicted wind direction. This will serve to select the best rated power and
to get an energy production estimation.

3. Results

3.1. Comparison between ERA5 Grid Points

As stated in Section 2.3, the directional, seasonal, and combined calibrations were performed only
for the ERA5 grid point closest to the anemometer due to the similarity between them. This similarity
can be perceived in the following tables and graphics. They compare each grid point’s wind speed
time series between each other and their calibrated counterparts between each other. All of them have
were using only the data belonging to the testing set.

Figure 10 shows each grid point’s correlation with the rest and with the measured wind series,
while Figure 11 does the same with the calibrated time series of each point. The numbering of the grid
points corresponds to their proximity to the studied building, the first grid point being the closest one.
It is important to note that all ERA5 grid points have a correlation of around 0.5, even the farthest ones.
Considering that previous studies [35,36] have found correlations of 0.6 to be typical of buoy wind
measurements against reanalysis data at open sea, this level of correlation for a much more complex
terrain seems satisfactory.
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Figure 10. Correlation table of the wind speed series from each ERA5 grid point and the measured
wind speed series.

Figure 11. Correlation table of the calibrated wind speed series from each ERA5 grid point and the
measured wind speed series.

Table 4 shows the ME (Mean Error) , MAE (Mean Absolute Error), and RMSE (Root Mean Square
Error) of the uncalibrated and calibrated reanalysis’ wind speed series against the measurements for
each point.
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Table 4. Error metrics of ERA5 grid points’ wind speeds and their calibrated counterparts against the
measurements, expressed in m/s.

ME MAE RMSE

ERA5 Simple QM ERA5 Simple QM ERA5 Simple QM

grid point 1 1.669 0.013 1.811 0.832 2.238 1.108
grid point 2 1.663 0.013 1.811 0.842 2.243 1.121
grid point 3 1.274 0.016 1.476 0.818 1.842 1.101
grid point 4 1.642 0.013 1.781 0.827 2.202 1.101
grid point 5 1.268 0.016 1.476 0.826 1.843 1.111
grid point 6 1.274 0.013 1.473 0.814 1.84 1.093
grid point 7 2.238 0.017 2.337 0.856 2.847 1.137
grid point 8 2.215 0.018 2.319 0.864 2.832 1.151
grid point 9 1.669 0.012 1.822 0.853 2.262 1.136

3.2. Wind Direction Prediction Results

This sections shows the results of the classification of wind direction made using RF. Figure 12 is
the confusion matrix of the classification done on the testing data set, while Figure 13 is the wind rose
generated using the measured wind speed and the predicted wind direction from the testing data set.
It is intended to be compared with the wind rose made with the measured wind speed and direction,
which can be seen in Figure 6.

Figure 12. Confusion matrix of the results of the wind direction classification performed on the testing
data set using random forest (RF).
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Figure 13. Wind rose that combines the measured wind speed with the predicted wind direction from
the testing data set.

3.3. Wind Speed Calibration Results

This section shows the results of the different types of calibration for only the closest grid point
and using only the testing data set.

Figure 14 is the Taylor diagram that shows the correspondence of the uncalibrated wind speed
time series and its various calibrated versions with the measurements.

Figure 14. Taylor diagram of the various calibrations and the uncalibrated wind speed time series from
the closest grid point against the measurements.
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Table 5 shows the error metrics of the uncalibrated data and the calibrations against the wind
measurements.

Table 5. Error metrics of ERA5’s closest grid point’s wind speed series and its calibrations against the
measurements for a 1-year period, expressed in m/s.

ERA5-GD1-1yr QM QM Dir QM Season QM Comb

ME 1.667 0.011 −0.155 0.004 0.005
MAE 1.801 0.832 0.784 0.808 0.779
RMSE 2.235 1.1 1.033 1.073 1.046

The calibrations can also be evaluated through their probability distributions. This is specially
suitable for our purposes, since it is more important to get a realistic overall probability distribution
from which to calculate the wind resource rather than to accurately predict wind at any given moment.
In this case, the Weibull distribution was used, which is one of the types of distributions usually used
in wind data analysis [30]. It was fitted for each of these wind speed times series: the measurements,
the reanalysis data, and all 4 calibrations. That gave the coefficients showed in Table 6, and with those
the probability density functions were plotted, as shown in Figure 15.

Table 6. Coefficients of the Weibull distributions of various wind speed time series covering a
1-year period.

ERA5-GD1-1yr Anem QM QM Dir QM Season QM Comb

k 1.808 1.301 1.277 1.253 1.281 1.315
c 3.291 1.472 1.466 1.236 1.448 1.488

Figure 15. Probability density functions of the Weibull distributions of various wind speed series
covering a 1-year period.

As the error metrics already showed, the directional calibration stands out by underestimating the
wind speed. The rest of the calibrations have almost identical PDFs to that of the measured wind speed.

These distributions were fitted using the whole testing data set, without taking into account the
measured nor the reanalysis’ wind direction. This is helpful for evaluating the calibrations themselves,
but, if we want to better understand how the calibration helps estimating the production of any wind
direction dependent wind turbine, we have to separately analyze the performance of the calibration
using only the data points in which wind direction falls within the absorption range explained in
Section 2.2.2. For that purpose, another series of Weibull distributions were fitted. In the case of the
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measured wind speed series, the measured wind direction was used for selecting the data points.
For the calibrated series, the predicted direction was used. Table 7 shows the coefficients of these
distributions, while Figure 16 shows the probability density functions.

Table 7. Coefficients of the Weibull distributions of various wind speed time series covering a 1-year
period, using only certain wind directions.

ERA5-GD1-1yr Anem QM QM Dir QM Season QM Comb

k 1.728 1.232 1.203 1.194 1.209 1.236
c 3.233 1.286 1.444 1.208 1.389 1.304

Figure 16. Probability density functions of the Weibull distributions of various wind speed series
covering a 1-year period, using only certain wind directions.

In both Figures 15 and 16, we clearly see that the measured wind speed is significantly lower than
that of the reanalysis. This can be due to the different locations: the closest ERA5 grid point is located
outside of the town, while the anemometer is inside the town and located at the roof of a building
away from the edge, a place where CFD simulations, like that of Micallef et al. [24], indicate a low
wind speed.

3.4. Energy Output Estimation Results

3.4.1. Comparison of the AEP Estimates of Each Calibration against the AEP Calculated with
the Measurements

In this section, the AEP values calculated using the testing data set are used to evaluate
the usefulness of the different types of calibration, alongside the predicted wind direction series.
Thirty-six scenarios and 5 wind speed series are used: the measured one and the 4 types of calibration.
That gives a total of AEP 180 values, shown in Table 8, with 36 of them corresponding to the measured
data and the rest corresponding to the predictions.

To get an idea of the overall performance of each calibration across all scenarios the average
relative error for each calibration was calculated. The results, in ascending order, are these: 6.77% for
the directional calibration, 8.65% for the combined one, 28.20% for the seasonal one, and 31.48% for
the simple calibration. In 24 out of 36 scenarios, the directional calibration’s AEP was the closest one
that to that of the measured data, while, in the other 12 scenarios, the combined calibration was.
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Table 8. Annual Energy Production (AEP) expressed in kWh for all scenarios. The value that is closer
to that of the measurements is underlined for each scenario.

Power Curve
Augmenting Factor

Wind Speed Time Series over 1 Year

Rated Power PAGV Effect Case Anem QM Simple QM Dir QM Season QM Comb

100 W

C1
1.28 5.51 7.55 4.5 7.22 5.98
2.34 30.17 40.36 29.93 40.33 33.67
3.50 69.43 89.53 71.57 87.45 74.51

C2
1.28 12.37 17.03 11.1 16.38 13.83
2.34 51.97 66.84 51.77 66.12 55.69
3.50 102.54 127.98 109.5 122.59 108.57

C3
1.28 20.23 27.04 18.85 26.73 22.58
2.34 71.66 91.15 72.95 89.11 75.93
3.50 130.85 155.99 137.76 148.7 134.31

150 W

C1
1.28 5.56 7.55 4.5 7.22 5.98
2.34 33.46 45.04 31.83 44.98 37.57
3.50 81.83 106.33 82.85 104.75 88.19

C2
1.28 12.7 17.38 11.1 16.62 13.95
2.34 59 77.09 58.96 77.03 64.7
3.50 125.57 159.21 131.32 154.15 133.94

C3
1.28 21.21 28.84 19.17 27.8 23.6
2.34 84.26 107.85 84.08 106.3 89.52
3.50 162.39 200.78 173.57 192.09 171.29

200 W

C1
1.28 5.56 7.55 4.5 7.22 5.98
2.34 35.23 47.98 32.55 47.21 39.78
3.50 89.93 118.01 91.05 117.39 99.18

C2
1.28 13.03 17.39 11.1 16.63 13.95
2.34 63.94 84.34 63.28 84.23 70.72
3.50 142.99 183.14 147.03 178.89 152.96

C3
1.28 21.56 29.49 19.19 28.23 23.92
2.34 92.56 119.52 92.23 118.92 100.38
3.50 188.07 236.31 198.77 227.88 199.8

250 W

C1
1.28 5.56 7.55 4.5 7.22 5.98
2.34 36.24 49.76 32.85 48.07 40.71
3.50 96.16 127.62 97.83 127.5 107.41

C2
1.28 13.14 17.39 11.1 16.63 13.95
2.34 67.55 89.72 65.69 89.72 75.12
3.50 156.77 202.16 159.85 198.36 167.64

C3
1.28 21.9 29.67 19.19 28.4 23.92
2.34 99.01 129.08 98.89 128.98 108.47
3.50 209.81 265.75 219.27 257.35 223.7

3.4.2. Estimation of Proposed Installation’s AEP and CF

Once the wind speed and direction predictions have been validated by calculating and comparing
the AEP values in the testing data set, the predictive methods can be applied to the 10-year period in
which the reanalysis data is available. With the results on hand, we can simulate the decision-making
process we would make before deciding to install an horizontally mounted Savonious turbine on a
given building. Since we still have no way to validate the accuracy of the augmenting factors described
in Section 2.4.1 nor the effect of the PAGV described in Section 2.5.1, we are going to presume the
intermediate cases. That means that the augmenting factor will be 2.34 and that the selected case for
the PAGVs effect will be the one called C2. The calibration kind used will be the directional, not just
because it has shown the best overall performance, but also because it performs best for all rated
powers in this intermediate scenarios.

To perform the calibration of the 10-year reanalysis data, first, the necessary transference
functions were trained using the whole 1-year period in which the measurements were taken,
without cross-validating. That gives a total of 8 transference functions, one for each wind direction.
Then, they were applied to the 10-year data to get a predicted wind speed time series for this period.
The wind direction was predicted using the RF algorithm in a similar fashion: a single RF was trained
with the 1-year data, without cross-validating and using the input parameters already explained in
Section 2.4.2. Then, this RF was applied to the whole historical data.
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The predicted wind speed and direction were later used to calculate 4 AEP and CF values, one for
each rated power in the intermediate scenario. The results are shown in Table 9, which also shows the
equivalent AEP and CF values calculated with the directional calibration and the measured data from
the testing data set.

Table 9. AEP and CF values for various wind time series and rated powers for the scenario considered
as the most realistic.

Wind Series Rated Power [W/m2] AEP [Kwh/m2] CF [%]

Anem over 1 year

100 51.97 5.93
150 59 4.49
200 63.94 3.65
250 67.55 3.08

QM dir over 1 year

100 51.77 5.91
150 58.96 4.49
200 63.28 3.61
250 65.69 3

QM dir over 10 years

100 59.59 6.8
150 65.4 4.98
200 68.18 3.89
250 69.77 3.19

4. Discussion

One of the highlights of this work is the use and comparison of different kinds of QM calibrations.
Twelve of them were performed with cross-validation, and all of them were successful in reducing the
error between ERA5’s and the measured wind speeds. This is consistent with the previous usage of
this technique in the contexts of energy potential estimation and sensor calibration.

One of the findings concerning QM is the similarity between ERA5 grid points. That can be
seen in the correlations and error metrics presented in Section 3.1, which indicate that the grid points’
wind speed series do not have meaningful differences between them, and that the calibration further
homogenizes them. We deduce that taking into account multiple grid points does not add meaningful
information to the analysis in terms of predicting the wind speed. This is important for achieving
cost-effectiveness because using a single grid point to predict the wind speed module simplifies greatly
the wind resource assessment process. It also means that the current ERA5’s spatial resolution is high
enough for the method presented here to be used in any building, independently of its distance to the
closest grid point.

Another important finding concerning QM is the increase in the predictive capacity when training
and calibrating separately different subsets of data. Seasonal categorization for QM has already been
used in the field of meteorology [37]. Regarding directional categorization, one of the authors already
used it for QM in the context of wave energy [14], and Applequist [38] uses it to remove bias in wind
roses. However, as far as we know, this is the first time that directional categorization was used for
QM in the context of wind energy, as well as the first time a combined categorization was used for
wind energy estimation.

The advantage of categorized QM can be seen in the error metrics of the calibrations done
on a single point without filtering by wind direction. All of them improve when compared to the
uncategorized or simple QM, with just one exception: the directional calibration performs worse
than the simple one in terms of the ME. Its negative value suggests that the directional calibration
underestimates the wind speed. The PDFs reinforce this; they show that all calibrations get a Weibull
distribution almost identical to that of the measured data, with the exception of the directional
calibration, which predicts sensibly lower wind speed values. Lastly, the Taylor diagram also shows
that the directional QM stands out from the rest.
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When filtering by wind direction, the results are harder to interpret. First of all, the fact that the
calibration’s and the measurements’ filtering are done with different wind direction series (predicted
for the calibrations and measured for the measured wind speed) means that the data points used for
each one are not exactly the same, so there is no way to get a Taylor diagram or error metrics. However,
there is still the possibility to compare each wind series’ PDF. According to them, the seasonal and,
especially, the simple calibrations overestimate the wind speed, while the combined and, especially,
the directional underestimate it. However, in these cases, there does not seem to be a clear distinction
between the different calibrations. It could be that the directional calibration performs worst when all
wind directions are taken into account but that it performs better at the direction with the most data,
which is the wind directions facing the facade. That could explain that it goes from being the worst
calibration to be on par with the rest when filtering by wind direction.

Theoretically, the combined calibration should also have this advantage. It is logical to think
that, since both the seasonal and the directional categorization give better results than the lack
of categorization, the combined calibration would get the best results. However, that is not true
because the directional calibration scores the best AEP results, and the combined one comes second.
It may be that such an extensive categorization leaves insufficient data points to properly train
the transference functions for the combined calibration. Since combined calibration splits the data
according to 4 seasons, as well as the same directions used for the directional one, each combined QM
transference function was trained with 4 times less data than the directional QM functions.

All the results already discussed seem to suggest that the directional calibration should be one
of the worst at predicting the AEP. However, it is the calibration that gets closer to the AEP values
calculated with the measured data in most scenarios, with the combined calibration being the one
that performs best in the rest of scenarios. It is logical to think that, since both the seasonal and the
directional categorization give better results than the lack of categorization, the combined calibration
would get the best results. However, it may be that such an extensive categorization leaves insufficient
data points to properly train the transference functions for the combined calibration. Since combined
calibration splits the data according to 4 seasons, as well as the same directions used for the directional
one, each combined QM transference function was trained with 4 times less data than the directional
QM functions.

Regarding the use of random forest to predict wind direction, the confusion matrix shows that
the classification has margin for improvement. However, the wind rose plotted using the predicted
wind direction and the calculated AEP values tells us that the classification was good enough for our
wind resource purposes. After all, the AEP values for the directional calibration, which depend on the
predicted wind direction, have an overall relative error of 6.77%. Our interpretation of this apparent
contradiction is that not every classification error has the same negative impact on the energy potential
estimation. For example, there is no impact if the classification mixes two wind directions that are both
inside the facade’s absorption range. Apart from that, the classification seems to mix the winds coming
from both sides of the valley; that is, it tends to mix the south-western wind with the north-eastern
wind. Even if this kind of error can affect the estimation, it is reasonable to think that these kinds of
errors partially compensate each other’s negative impact.

Finally, a series of AEP and CF estimations were made taking into account various possible rated
powers. The results show that the AEP and CF over 10 years are slightly higher than the AEP and CF
calculated with both the predicted and the measured wind data. This means that the 1-year period was
less windy than the typical year on that location and that, without the calibration process, the potential
would have been underestimated. The AEP and CF values are also meant to help select an adequate
rated power. When doing so there is a trade-off between the total amount of produced energy during
the lifetime of an installation and the investment’s payback time. In this case, the low CF values tell us
that a low rated power is the most reasonable choice. However, it seems that these low values come
from the low measured wind speeds. Since the empirical observations made on the roof suggest that
more prominent winds are usual on the edge of the selected facade, we are inclined to think that the
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correcting factors were not enough to compensate the inadequate location of the anemometer, as well
as that more sophisticated ways to take into account the effect of the buildings geometry are needed.

5. Conclusions

In this study, different kinds of QM and a classification RF were used to predict the wind
speed and direction over the roof of a building for a period of 10 years using ERA5’s data as input.
These predictions were then used along different modeled power curves and different suppositions
about the effect of the building’s geometry on the wind speed to come up with estimations of AEP and
CF for an horizontally mounted Savonious type turbine. Even if the method was developed with the
ROSEO-BIWT in mind, some aspects can also be applied to other wind turbine designs.

One of those aspects is the experiment made on the effect of the skew angle on the performance
of a building integrated turbine. Apart from confirming some previous findings, like the fact that
the performance of VAWTs increases with non-zero skew angle values, we also propose a way to
incorporate these findings in a wind resource method. That is the absorption range, which is key
to the selection of a facade and could also we used to select buildings according to their orientation.
A more detailed knowledge of the effect of the skew angle could lead to more sophisticated ways to
incorporate wind direction to the wind resource assessment. One of them could be modeling different
power curves for different skew angles within the absorption range.

Important lessons can also be extracted from the use of QM. The fact that, when using every wind
direction, even the simple calibration gets very good results in terms of PDF means that it can be used
for estimating the potential energy production of wind turbines that work with every wind direction.
Moving on to categorized calibrations, the success achieved by using directional and seasonal criteria
seems to suggest that better results could be achieved by refining these criteria (by using more wind
directions or by separating by month instead of season, for example) or by incorporating new criteria.
However, the results bring up a question: why did the directional calibration perform better that the
combined one even if seasonal categorization improves the results over uncategorized QM? That will
have to be answered by analyzing more locations and by comparing the outcomes of different training
data set sizes. For now, the best explanation is that both seasonal and directional categorization improve
the calibration, but, in this study, not enough was available to properly train the combined calibration.

Apart from QM, RF was also used as a way to take into account the sensibility to wind direction.
Its prediction was used to filter the wind speed predictions made via QM before implementing them
on power curves. This procedure was used because QM has a great capability to match the calibrated
wind speed’s PDF with that of the measurements. However, the use of RF opens up another possibility,
which is using it to totally replace QM. This would be by applying regression RFs to the wind’s u and
v components.

Another pending task is finding better ways to measure or estimate the concentrating effect
of the wind on the edge between a facade and the roof due to the geometry of the building and
its surroundings. An ideal way to validate such a method would be installing a cup anemometer
directly on the edge with its rotation axis on a horizontal position, parallel to the edge, just like a
horizontally-mounted Savonious would be.
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Abbreviations

The following abbreviations are used in this manuscript:

CFD Computational Fluid Dynamics
PAGV Power Augmenting Guiding Vanes
VAWT Vertical Axis Wind Turbine
A Swept area by the turbine
Cd Drag Coefficient
Cp Power Coefficient
k Weibull form parameter
c Weibull scale parameter (m/s)
P Turbine power (W)
U Wind speed (m/s)
Urated Rated wind speed (m/s)
λ Tip Speed Ratio
ρ Air density
QM Quantile mapping or Quantile matching
QM dir Directional quantile mapping
QM season Seasonal quantile mapping
QM comb Combined quantile mapping
Anem Anemometer, referring to the measured wind data
RF Random forest
AEP Annual Energy Production
CF Capacity Factor
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