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Abstract: Digital Twins have been in the focus of research in recent years, trying to achieve the vision
of Industry 4.0. In the domain of industrial energy systems, they are applied to facilitate a flexible and
optimized operation. With the help of Digital Twins, the industry can participate even stronger in the
ongoing renewable energy transition. Current Digital Twin implementations are often application-specific
solutions without general architectural concepts and their structures and namings differ, although the
basic concepts are quite similar. For this reason, we analyzed concepts, architectures, and frameworks for
Digital Twins in the literature to develop a technology-independent Generic Digital Twin Architecture
(GDTA), which is aligned with the information technology layers of the Reference Architecture Model
Industry 4.0 (RAMI4.0). This alignment facilitates a common naming and understanding of the proposed
architectural structure. A proof-of-concept shows the application of Semantic Web technologies for
instantiating the proposed GDTA for a use case of a Packed-Bed Thermal Energy Storage (PBTES).

Keywords: Digital Twin; Industry 4.0; cyber–physical system; service-oriented architecture; semantic
web; industrial energy systems

1. Introduction

1.1. Motivation

Digitalization is changing the way business is conducted within industrial value chains, facilitated by
the rapid development of communication and information technology [1]. This process is also referred
to as the fourth industrial revolution or Industry 4.0. The goal is a highly optimized and customized
production, as well as enhanced automation and adaption capabilities [2]. To realize these visions of
Industry 4.0, the Digital Twin (DT) is one of the most promising enabling technologies [3].

Industry 4.0 and the sustainable energy transition share important characteristics and can mutually
benefit from each other [4]. Information and communication technology helps to increase energy efficiency
and the interaction of industry with smart grids which facilitates the integration of renewable energy
sources. DTs are also the key enabler for such applications, as their common functionality includes
monitoring, diagnostic, prediction, and control [5].

The concepts and capabilities of DTs are not clearly defined and sometimes hard to grasp. This is
caused by the fact that DTs can be applied for various tasks in different life-cycle phases and industrial
domains. Thus, different interpretations of a DT exist, driven by specific use cases. This leads to the
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problem that concrete realizations of DTs follow a concrete goal without any architectural template [6].
For this reason, we present a novel generic architecture for a DT, which is in line with the Reference
Architecture Model Industry 4.0 (RAMI 4.0), called Generic Digital Twin Architecture (GDTA). The GDTA
facilitates a technology independent implementation of DTs and gives orientation for locating existing
frameworks and technologies inside this architectural model. We also introduce a context-dependent
View on the Virtual Entity inside the DT, consisting of special-purpose simulation models in combination
with context information. Additionally, a prototypical implementation of the proposed GDTA is presented
as a proof-of-concept, using Semantic Web technologies. It demonstrates how the context information of
resources and services can be managed inside a DT, and how a View of the Virtual Entity can be based on
a Simulation Service.

The remainder of the paper is structured as follows: Section 1.2 gives a short overview of related
work in the area of DT concepts, frameworks, and reference architectures. Section 2 describes the methods
which are applied for carrying out the presented work. Afterward, the GDTA is introduced in Section 3.
The proposed architecture is used for our proof-of-concept implementation, based on Semantic Web
technologies and applied for a use case of a thermal energy storage system in Section 4. In the end,
the presented GDTA is discussed with respect to other DT architectural frameworks, and an outlook on
our future work is given.

1.2. Related Work

In general, a DT can be defined as “a formal digital representation of some asset, process or system
that captures attributes and behaviors of that entity suitable for communication, storage, interpretation or
processing within a certain context” [7].

A very basic concept for structuring a DT defines three different aspects: the physical space, the virtual
space, and the connection between them to exchange data and information [8]. A similar concept is known
from the industrial domain as Cyber–Physical System (CPS) or more specifically as Cyber–Physical
Production System (CPPS). In [9], CPSs are described as autonomous and cooperative elements and
sub-systems across all levels of production, able to communicate with each other in situation-dependent
ways. The goal of CPSs is to have elements that can acquire and process data, allowing them to self-control
certain tasks and interact with humans. To reach that goal, a certain kind of virtual representation of
the production system has to be available. Therefore, a CPS can be characterized by a physical asset
and its cyber counterpart, which means that a DT can be seen as only the digital model inside a CPS [5].
Conversely, this also implies that a DT is the prerequisite for a CPS [10].

For CPSs, a five layer architecture (5C architecture) was proposed in [11], defining a “Smart Connection
Level”, “Data-to-Information Conversion Level”, “Cyber Level”, “Cognition Level”, and “Configuration
Level”. These layers should help to develop and implement CPSs at a certain layer of this 5C architecture.
In this context, the Smart Connection Level has to deal with acquiring accurate and reliable data from the
physical entity and is the first step to create a CPS. Afterward, meaningful information is inferred from
the data at the Data-to-Information Conversion Level. This level brings self-awareness to the machines.
The Cyber Level acts as an information hub inside the 5C architecture, which also introduces the possibility
of self-comparison of the performance of machines. In-depth knowledge of the monitored system is
created at the Cognition Level. Expert users will be supported by this information to make the correct
decision. At the Configuration Level, feedback is given from the cyber-space to the physical space. Here,
the supervisory control resides and makes machines self-configurable and self-adaptive. This functional
view of a CPS can also be beneficial for designing and implementing a DT for certain applications. Typical
applications have been identified by a literature review in [12] and can be clustered in the following
categories: simulation and optimization, monitoring, diagnosis, and prediction.
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Another important concept for describing DTs is the so-called Five-Dimensional Digital Twin
(5D-DT) [13]. It is an evolution of the previously mentioned DT concept, which extends the three
dimensions (“Physical Entity”, “Virtual Entity”, “Connection”) by the data aspect as well as the service
aspect. These five dimensions and their relations are shown in Figure 1. The “Physical Entity” consists
of various subsystems that perform specific tasks, facilitated with different sensors that collect the states
and working parameters. The “Virtual Entity” aims to model the physical entity with high precision
by the integration of multiple different types of models such as geometry models, physical models,
behavior models, and rule models. The “Service Model” includes services for the “Physical Entity”
and the “Virtual Entity”. It optimizes the operations of the “Physical Entity” and ensures the high
fidelity of the “Virtual Entity” through calibration of the “Virtual Entity” parameters during run-time.
The “Data Model” consists of five parts: data from the physical entity, data from the virtual entity, data from
the services, domain knowledge, and the fusion of those data. The “Connection Model” describes each
connection between the components of the DT. The ideas of the 5D-DT concept are the foundation for our
proposed GDTA.

Figure 1. Five dimensions of the Five-Dimensional Digital Twin (5D-DT) concept adapted from [13].

In addition to these very general concepts with a high level of abstraction, more detailed architectural
concepts and frameworks have been proposed for the implementation of DTs. In the following paragraph,
an overview of these concepts is given and summarized in Table 1. Table 1 also gives a classification based
on their level of abstraction. A high level of abstraction means that a more general concept is presented,
whereas a low level indicates a more concrete architecture or framework, targeting the implementation
of a DT. They are also used in the discussion (Section 5) to set our proposed GDTA into perspective by
comparing it with these concepts.

“Intelligent Digital Twin”—In [14], an architecture for an “Intelligent Digital Twin” was proposed
by applying algorithms known from Artificial Intelligence (AI). Next to the data acquisition interface,
a synchronization interface is introduced to keep the simulation models of the DT in line with the physical
asset, as they can otherwise differ over its life-cyle. Also, a co-simulation interface is described as a
component of the architecture to enable communication with other DTs and to facilitate multidisciplinary
co-simulation.
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“Reference Framework for Digital Twins”—A reference framework for DTs in the context of the
5C architecture of CPS is presented in [6]. The main building blocks of DTs, including their properties
(structure and interrelation), were specified for the proposed framework. Therefore, a systematic literature
review was conducted followed by a framework analysis using grounded theory. They identified four
main building blocks of a DT which are: a “Physical Entity Platform”, a “Virtual Entity Platform”,
a “Data Management Platform”, and a “Service Platform”. They also identified three different types of
physical entities, namely the “Physical Objects”, “Physical Nodes”, and “Humans”. The “Virtual Entity
Platform” consists of many virtual entity models, including information to mirror a certain aspect of the
physical entity. It is responsible for the generation and maintenance of “Semantic Models” (geometric
models, physical models, behavioral models, rule models, process models) of the physical entity to create
its virtual representation. The “Data Management Platform” performs data acquisition, management
(collection, transmission, storage, integration, processing, cleaning, analysis, data mining and information
extraction), and storage. The “Service Platform” consists of service models and a service management
layer to organize services for concrete applications.

“Cognitive Twin Toolbox”—In [15], a conceptual architecture of the Cognitive Twin Toolbox
(COGNITWIN) is presented with a special focus on the process industry. Three levels of twins were
defined: A “Digital Twin” which only uses isolated models of the physical system, a “Hybrid Twin” which
is also able to interconnect its models, and a “Cognitive Twin” which uses extended models that include
expert knowledge for problem-solving and to handle unknown situations. The toolbox proposes five
layers: “Model Management Layer”, “Data Ingestion and Preparation Layer”, “Service Management
Layer”, “Twin Management Layer”, and a “User Interaction Layer”. The specified model types are
quite similar to the defined semantic models in [6] and consist of first-order principle models based on
the underlying physics, empirical models, e.g., AI algorithms, and knowledge-driven models based on
domain experts. The “Service Management Layer” is responsible for handling services, like registration
and orchestration. Two types of services are distinguished. Data-driven and model-based driven services.
The “Twin Management Layer” manages the structure of the DT. Especially, the synchronization problem
caused by changes in the behavior of the physical system is handled here. The toolbox also introduces a
“User Interaction Layer” where users can explore the COGNITWIN.

“Conceptual Digital Twin Model”—A conceptual model for a DT in the context of Internet of Things
(IoT) is presented in [16]. The model is structured into five layers: “Physical Space”, “Communication
Network”, “Virtual Space”, “Data Analytics and Visualization”, and “Application”. Security aspects are
also covered explicitly by a vertical “Security Layer” that overlaps with all other layers. The tasks of the
various layers are quite similar to the already mentioned layers in other frameworks. Two conceptual use
cases in the automotive domain and smart health care area are described, but no real implementation of
the proposed model is presented.

“Asset Administration Shell”—In the context of the Industry 4.0 initiative, the Asset Administration
Shell (AAS) is introduced as a standardized digital representation of an asset. It is used to uniquely identify
and describe the functionality of asset as well as the AAS. It also holds various models of certain aspects.
Details of how the information of the AAS can be exchanged in a meaningful way between partners along
a value chain can be found in [17], where a meta-model for the AAS is defined. As resource description,
discovery, and access are the basic functionality of DTs [15], the current state of the AAS is only a first
part of the solution. The discovery and the definition of how operations are provided and described by
standardized interfaces is ongoing work for the AAS.

To structure the functionality of the presented architectures and frameworks, some kind of layered
architecture is used to handle the complexity. As presented, layers are defined with different names,
which often have similar functionality. This prevents the establishment of a common view and terminology
in the context of DTs. In order to solve this problem in the context of the Industry 4.0, RAMI 4.0 was
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introduced [18]. RAMI 4.0 is used to achieve a common understanding of standards, tasks, and use cases.
Therefore, three different aspects or dimensions are used by RAMI 4.0: It expands the hierarchy levels of
IEC 62264 [19] by “Product” and “Connected World”, defines six layers for an Information Technology
(IT) representation of an Industry 4.0 component and considers the life cycle of the product or system
according to IEC 62890. The life cycle is divided into a “type” and “instance” phase. The “type” phase is
part of the engineering phase, which ends when a prototype is available. An “instance” is the system or
product, when it reaches the operational phase in the life cycle. We used the mentioned six IT layers of the
RAMI 4.0 (Business, Functional, Information, Communication, Integration and Asset Level) to structure
our proposed GDTA (Section 3) to achieve a consistent naming and understanding of the used layers.

Table 1. Overview of concepts, architectures, and frameworks for Digital Twins (DT).

Name Target Domain Structure Main Parts Level of
Abstraction

3D-DT [8] Life-cycle
Management

component-based 3 components high

5D-DT [13] Manufacturing component-based 5 components high
5C Architecture [11] CPS in manufacturing layer-based 5 layers high
Intelligent DT [14] Production Systems component-based 4 interfaces & 9 components low
Ref. Framework for DT [6] CPS in general component-based 4 main components low
COGNITWIN [15] Process Industry components & layers 5 layers & 19 components low
Conceptual DT Model [16] CPS in general layer-based 6 layers medium
ASS [17] Manufacturing only meta-model ongoing work —

2. Materials and Methods

A literature review was conducted to identify common services, concepts, architectures,
and frameworks in the context of industrial DTs applied to the operational phase of the life-cycle.
These concepts were analyzed and used to develop a technology-independent generic architecture GDTA
in line with RAMI 4.0.

Afterward, a proof-of-concept was implemented, based on Semantic Web technologies and ontologies.
Therefore, a DT was implemented based on the GDTA as an exploratory prototype. The focus of the
presented proof-of-concept is put on the Simulation Service and the modeling of context information,
based on ontologies, to create a certain View on the Virtual Entity. Also, the Simulation Service was
identified as a base service inside the DT.

The ontologies are developed following the METHONTOLOGY approach [20]. The implemented
ontologies have been evaluated with the help of the OOPS! Pitfall Scanner [21], which detects common
inadequacies made during the ontology development process. The logical consistency of our ontology has
been evaluated with the HermiT 1.4.3.456 reasoner [22].

To evaluate the proof-of-concept implementation, a thermal energy storage system was chosen as use
case. With the help of the implemented DT for the Packed-Bed Thermal Energy Storage (PBTES), the basic
simulation functionality is evaluated.

3. Proposed Generic Digital Twin Architecture

In this section, we present our proposed GDTA which targets the applications of DTs during the
operational phase of an asset. The architectural model of the GDTA is depicted in Figure 2. The architecture
is aligned with the IT layers of RAMI 4.0 to structure the specified components. The hierarchy levels
of RAMI 4.0 are not taken into account because a DT can be located at various levels, depending on its
application or the physical entity for which it is designed for. Thus, a DT can potentially cover all hierarchy
levels of RAMI 4.0. As mentioned before, our DT architecture targets the “instance-phase” of the RAMI
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4.0 life-cycle. Thus, only the IT layer dimension of RAMI 4.0 is shown in Figure 2 and the architecture is
structured based on this dimension.

Figure 2. Generic Digital Twin Architecture (GDTA) model.

The GDTA is based on the introduced 5D-DT concept and inspired by the 5C architecture for
CPSs, because both concepts have a sufficient level of abstraction, which means they provide a more
conceptual view than a concrete architecture. However, they are still useful to identify key components
and functionality for DT.

The proposed GDTA defines the basic structure and components of a DT without specifying or
binding it to certain technologies. For realizing a DT based on the GDTA, various existing technologies and
frameworks can be used to implement its functionality on different layers. The specified components of
the DT are explained in more detail regarding their associated RAMI 4.0 layer in the following paragraph.

Asset Layer—The physical representation of the DT is located at the Asset Layer and corresponds to
the Physical Entity of the 5D-DT concept. It holds the physical parts of the CPS.

Integration Layer—At the integration layer, Run-time Data as well as Engineering Data can be
distinguished. Run-time Data are generated by sensors or events and represent the current state of
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the physical entity. They are usually time-series data. These data are very dynamic, so the underlying
infrastructure has to follow application-specific requirements, like big data processing or real-time reaction.
Archives, e.g., special time-series databases, can be used to store these data for diagnosis and model
identification purposes. Engineering Data are usually static data, which means they will not often
change over time. Examples are the plant topology or information about a physical component inside a
plant. This information is mostly available in analog formats, like drawings of pipe and instrumentation
diagrams, and has to be digitized. Even if the information is already available in machine-readable form,
the information has to be transformed and integrated into the DT as contextual information.

Communication Layer—Industrial communication or Industrial Internet of Things (IIoT) protocols can
be applied within the Communication Layer of the DT. The concrete protocol depends on the requirements
of the application, e.g., real-time capabilities or publication/subscription support. Thus, a combination
of various protocols can be expected, which are made transparent to the upper layers by the Smart Data
Service. Here, OPC Unified Architecture (OPC UA) is a representative in the context of Industry 4.0. Next
to its communication capabilities, information modeling also enables the representation and access to
context information through OPC UA.

Information Layer—Within the Information Layer of the DT architecture, data is gathered and
enriched with semantics and related with other context information. Thus, the data dimension of the
5D-DT becomes an information dimension at this stage. The central component inside the Information
Layer is a Shared Knowledge base, which stores contextual information about resources and services.
Data are linked with this information to add semantics to it. Different levels of semantic expressivity can
be achieved by applying different information modeling technologies. Ideally, data are stored in their
original formats in proper databases. The Shared Knowledge base acts as a semantic integration layer for
run-time data and engineering data by providing access to historical data (archives) and holding contextual
information inside the Shared Knowledge. Access to the information inside the Shared Knowledge is
granted by an Information Query Service. This service can retrieve information from the knowledge base
and provide it to other services. The Information Insertion Service is used to add or change information
from the upper layers of the DT architecture inside the Shared Knowledge base. Thus, information
ownership and access have to be managed including data access mechanisms. This is performed by an
Information Management component inside the DT architecture, which handles the information access of
the Query and Insertion Service.

The above-mentioned components and services form the so-called Smart Data Service [23],
which builds a central point of information inside the architecture. It provides information about
resources and services through the Shared Knowledge base and makes it accessible for other services in
the Functional Layer.

Functional Layer—In the Functional Layer, the service dimension of the 5D-DT concept is realized.
A service-oriented architecture is applied to enable loose coupling and cohesion of certain functionality [24].
The services of the DT can be grouped by their functionality and can build on each other. Five groups
are identified: Simulation Services, Monitoring Services, Diagnosis Services, Prediction Services, Control
Services, and Reconfiguration Services. Next to these functional services, a Service Management
component takes care of service registration, discovery, and obtaining status information about certain
services. This information about a service is part of the Shared Knowledge in the Information Layer and
will be inserted and queried through the offered Smart Data Service interface. The resource management
is not handled by a central component, as the services have to handle their resources by themselves,
facilitating the Shared Knowledge base.

Simulation Services are the core services, as they are part of the Virtual Entity of the 5D-DT concept.
Typically, there exists not only one model of the physical entity in a DT, but a set of executable models that
are specific for the intended purpose and also evolve over time [25]. Thus, different models for various
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domains, like the mechanical structure, thermal behavior, etc. can be hosted and used inside the Simulation
Service of a DT. As for the other services, resources have to be managed by the service itself, and the related
information about the models has to be made available through the Shared Knowledge base. A simulation
model hosted by the Simulation Service in combination with related context information from the Shared
Knowledge base generates a certain View of the Virtual Entity inside the DT.

Monitoring Services are elementary services to acquire data from the physical entity and observe its
current state. An example could be a fault detection service, which can be implemented based on simple
statistical models and indicate abnormal operating conditions of a plant.

Diagnostic Services are services supporting, for instance, condition monitoring or root cause analysis
of faults. They can build upon underlying Monitoring Services in combination with Simulation Services to
gain more insight into the current state of the Physical Entity.

Prediction Services are important for the DT to make decisions based on information about future
events. Such services can be used, for instance, for predictive maintenance or the prediction of energy
consumption. Also, external variables, like renewable energy production or prices at the energy market,
can be predicted. Additionally, external prediction services can be integrated. The prediction results can
be used by Control Services for realizing an optimized control or used to generate recommendations for
the operating staff.

Control Services have an influence on the operation of the plant via recommendations over
Human-Machine Interface (HMI) or direct access to the process control. Control Services with direct access
can bypass the Smart Data Service in the Information Layer to change the state of the physical entity
without additional delay. Usually, Control Services make use of monitoring, diagnosis, and prediction
services to achieve optimized operation. Thereby, the control strategy can change over time, caused by a
reconfiguration of the Physical Entity or new objectives specified by the business logic.

Reconfiguration Service. Reconfiguration means a rather static change of the fundamental properties
of the Physical Entity by the DT itself. This has a significant influence on the context information inside
the Shared Knowledge. Reconfiguration can be initialized through events or changed objectives inside
the business logic, which resides inside the business layer. The Reconfiguration Service takes care of such
changes inside the DT.

Humans have to be informed about the current state of the Physical Entity as well as the DT itself to
interact with it. Thus, an appropriate HMI is very important for almost every service of a DT.

Business Layer—In this layer, the business logic resides, which can also orchestrate a large amount of
DT. It defines the overall objectives (e.g., to reduce the risk of downtime or cost), which should be reached
with the help of the DT. As this highly depends on the business strategy, it is not relevant for the design of
the GDTA but only relevant via specific inputs.

4. Proof-of-Concept: Digital Twin Instantiation

The following section describes a prototypical implementation of the proposed GDTA as it is shown
in Figure 2. The focus of the implementation is the Virtual Entity consisting of a Simulation Service in
combination with context information, as it is a fundamental service inside the DT. The code of the prototype
is publicly available in a GitLab repository (https://gitlab.tuwien.ac.at/iet/public/GDTA_Prototype).

To realize the Shared Knowledge base, Semantic Web technology is used, based on Resource
Description Framework (RDF) and Web Ontology Language (OWL) to describe the resources and services.
Already existing ontologies, like Ontology Web Language for Service (OWL-S), ML-Schema [26] and
OWL-Time [27] are reused and extended with new concepts. The ontologies are created using the tool
Protégé [28]. The ontologies are loaded into Apache Jena Fuseki Server v.3.16.0 running in a Docker
container. Jena Fuseki provides a SPARQL Protocol and RDF Query Language (SPARQL) endpoint to

https://gitlab.tuwien.ac.at/iet/public/GDTA_Prototype
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access the information of the Shared Knowledge base. The service invocation is performed via Hypertext
Transfer Protocol (HTTP) in combination with a Representational State Transfer (REST) API as suggested
in [29].

4.1. Knowledge Representation Inside the Shared Knowledge Base

Semantic Web technologies are used to build the Shared Knowledge base as a central part of our
Smart Data Service. Ontologies are used to hold information about resources and services in a formal
and machine-readable way. A hierarchical design approach is used, consisting of a top-level-ontology
and a domain ontology, as shown in Figure 3. Further hierarchy levels would be possible. The top-level
ontology defines general terms that are common across all sub ontologies. Terms in the domain ontology
are ranked under the terms of the top-level ontology. For the presented implementation the Base Service
Ontology is defined as a top-level ontology holding general information about the available services of the
DT. Other services implement their information inside the domain ontologies. For the current prototype,
only the Simulations Service Ontology is implemented, but other domain ontologies can be developed
quite similar.

Figure 3. Top Level and Domain Ontology structure.

4.1.1. Base Service Ontology

The Base Service Ontology holds the necessary information for a general service description,
which helps to discover and access the service. The implementation of the Base Service Ontology consists
of a service description based on OWL-S profile classes and properties, additionally defined Quality of
Service (QoS) metrics for the services, and a specification of a service endpoint. OWL-S provides a set of
vocabulary and semantic rules for formal description of Web Services. The information about a service is
described using the OWL-S Profile, a subclass of ServiceProfile. More Information about OWL-S can be
found in [26]. The main concepts and relations of the ontology are depicted in Figure 4. The grey concepts
are part of OWL-S, whereas the white concepts are extensions and explained in more detail.

BaseService—The service is a subclass of the owl-s:Service class and described by the owl-s:Profile.
The BaseService concept aggregates the essential information about the service, like the service endpoint,
the current status, and quality metrics. A service is always related to a PhysicalEntity inside the ontology
(not depicted in Figure 4). Thus, the services of a component or a whole asset can be retrieved from the
Shared Knowledge base for the purpose of service discovery.

ServiceCategory—In order to classify a BaseService and define it as a certain functional service,
the abstract class ServiceCategory is used. The categories correspond to the functional service types
defined in the GDTA and also used for the grouping of the domain ontologies in Figure 3.

Quality Metrics—OWL-S has no capabilities for describing QoS for a certain service. To counteract,
eleven additional properties are added to describe certain QoS metrics for a service, like Accessibility,
ResponseTime, Availability, etc. This information can be used during service discovery to choose the best
service if more than one is available.
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Status—To gain information about the current service status, the last time of invocation, the invoked
method, that invoked the service, and a service status message (“OK”, “In Use”,“Warning”,“Error”) is
related with the service entity.

ServiceEndpoint—Each service has at least one service endpoint which enables service invocation or
subscription in order to exchange data with a service. The endpoint categories can be flexible in nature
and comprise of different protocols. In the prototypical implementation, a REST endpoint is specified in
the ontology. However, endpoints are not restricted to that type, e.g., SOAP could also be used.

Figure 4. Part of the Base Service Ontology concepts and their relations.

4.1.2. Simulation Service—Domain Ontology

A View on the Virtual Entity of the DT consists of a Simulation Service in combination with context
information, stored in the Shared Knowledge base. The information about the simulation models used by
the Simulation Services is captured by the Simulation Service—Domain Ontology. This ontology can be
seen as a reference implementation for other domain ontologies. The main concepts of this ontology and
their relations are shown in Figure 5.

Figure 5. Main Simulation Service—Domain Ontology concepts and their relations.

The domain service ontology inherits all classes and properties from the Base Service Ontology and
adds domain-specific knowledge. For the implementation of the Simulation Service—Domain Ontology,
ML-Schema is used to describe data-driven and physical simulation models within a Simulation Service.
ML-Schema is developed to represent and interchange information on machine learning algorithms,
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datasets, and experiments [30]. The concepts in the ontology which are reused from ML-Schema are
depicted with grey background in Figure 5. More Information about ML-Schema can be found in [31].
The additional concepts of the domain ontology are depicted with a white background.

The SimulationService is a special type of service for describing simulation models inside the
DT. It inherits all properties from the BaseService concept in the top-level ontology. The Simulation
Service executes a certain ML-Schema:Software which consists of an ML-Schema:Implementation and
ML-Schema:Model. The model is trained on a certain Dataset, which has properties to describe how the
data can be used (dataset location, dataset format, feature names, etc.).

The Virtual Environment provides a description of the environment in which a model is executed.
A Container is one possibility of such a concrete realization of a Virtual Environment. The presented
implementation uses a Docker container for providing such an environment. Each ML-Schema:Model
is related with a OWL-Time:TimeInstant to capture the date and time of its training or parameter
identification. This information is used to handle various versions of a model.

4.2. Simulation Service API

The Simulation Service is realized as a microservice that communicates over REST-ful service
endpoints with other services or agents. The stored information inside the Shared Knowledge base
is made available by calling HTTP methods on the endpoints. In the same way, information can be inserted
into the knowledge base, and the Simulation Service can be invoked. Currently, information about the
simulation model and the service status can be retrieved, models and data can be uploaded, and the model
can be trained. Also, predictions can be made by the Simulation Service, calling an HTTP method on a
special endpoint. A full list of the implemented service endpoints, as well as the required parameters,
can be found in Table 2. The Simulation Service adds information about a new model instance to the
Shared Knowledge base automatically, whenever a new model is created or successfully trained, or a new
hyper-parameter for the model is set. In the current implementation, only Matlab simulation models are
supported by the Simulation Service.

Table 2. Hypertext Transfer Protocol (HTTP) endpoint description for the implemented Simulation Service
Application Programming Interface (API).

Endpoint Description HTTP URL Parameters

service Returns information about the
simulation service as JSON

‘GET‘ /servicestate none

model Returns information about
the current model within the
simulation service as JSON

‘GET‘ /model/ none

train Trains the current model and
returns information of the
current model together with
a summary of the model
performance.

‘PUT‘ /train data_path = path to the
training data;
model_params = dictionary
with model parameters

predict Returns prediction of the input
data from the selected model
instance as JSON

‘GET‘ /predict model = modelLocation
returned by calling
model-endpoint or after
a training invocation;
data_path = path to the input
data

uploaddata Uploads new data to the
simulation service which is
used for training or prediction

‘POST‘/upload/data/ file = data stored in a file in
arbitrary format

uploadmodel Uploads a new model for
the Matlab based Simulation
Service instance.

‘POST‘/upload/model/ file = code stored in a Matlab
file
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4.3. Use Case: Packed-Bed Thermal Energy Storage

The PBTES is a reliable high-temperature thermal energy storage device with low investment costs.
It is capable of operating at temperatures of above 800 ◦C [32] and thus applicable in variable industrial
energy systems, as, for example, in the steel, glass, and cement industry or in solar power plants. Thermal
energy storage solutions are required to match heat supply with demand and, thus, can contribute
significantly to meeting society’s desire for more efficient, environmentally friendly energy use [33].
Increasingly complex energy systems, induced by the transition to renewable energy sources [34], feature
high flexibility that requires adequate control and optimization concepts. For fast analysis of various
operating conditions and different parameters by simulation, detailed, but efficient models of such systems
are needed. A PBTES is therefore considered as an ideal use case for a DT implementation.

4.3.1. Packed-Bed Thermal Energy Storage Test Rig

The PBTES represents the Physical Entity for the instantiated DT in this use case. It is located at
the laboratory of the Institute for Energy Systems and Thermodynamics (IET) at TU Wien. A schematic
illustration of the PBTES for loading and unloading is shown in Figure 6. It consists of an insulated
vessel filled with gravel, an electric heater, and a ventilation unit. For charging the PBTES, hot air
is ventilated through the gravel, which increases its temperature and stores sensible thermal energy.
For discharging, cold air is ventilated through the hot tank and the heated air leaves the storage. To assess
the thermodynamic conditions in the test rig’s storage vessel, it is equipped with a total of 18 calibrated
thermocouples, as well as mass flow and pressure measurement sensors at the inlet and outlet. For a
detailed description of the test rig and it’s measurement instrumentation, please refer to [35,36].

Figure 6. Bulk container of the Packed Bed Thermal Energy Storage (PBTES) installed at the laboratory in
load and unload state.

Various models were developed to simulate the thermodynamic behavior of the PBTES, i.e.,
the measured values for intrinsic and outlet temperatures given the input values for temperature and mass
flow. A physical model based on a 1D finite-difference approach was presented in [37]. A grey box model
using recurrent neural networks was published in [38]. Furthermore, physical and data-driven modeling
approaches for PBTES were compared and evaluated regarding prediction accuracy and modeling, as well
as the computational effort [35]. In general, each of these evaluated simulation models can be reused in



Appl. Sci. 2020, 10, 8903 13 of 20

the Simulation Service of the DT. For the presented use case the mentioned grey box model was chosen,
which was developed in [38].

4.3.2. Simulation Service Invocation

To provide some insights into the capability of our prototypical DT implementation, we show the
procedure of loading a dynamic thermal model of the PBTES into the DT, train the model with available
data, and use the model for a time-series prediction of the outlet temperature of the PBTES. The previously
explained Simulation Service API is used to perform these tasks. The Simulation Service interacts with the
Shared Knowledge base in the background to store and retrieve context information. This information is
organized using the explained Base Service Ontology and the Simulation Service—Domain Ontology.

Uploading a Simulation Model—The implemented Simulation Service allows for uploading new
simulation models. As mentioned before, a “Neural Net” grey box model, which is implemented in Matlab
is used. More details about the simulation model can be found in [38]. Figure 7 shows the sequence
diagram of the upload process. For uploading a new model, the HTTP POST method is invoked on the
endpoint with the URL /upload/model. As a parameter, the Matlab file is included in the HTTP body.
The endpoint returns the internal path where the simulation model is stored. This path is needed afterward
to access the specific model for training or prediction.

Agent Simulation Service: /upload/model

‘POST‘ Param[“file=@C:/Code/Matlab/NN/trainNN.m”]

{ “filestored at”: “trainNN.m” }

Figure 7. Sequence diagram for uploading a dataset at the service endpoint.

Uploading a Dataset—The HTTP POST method is used to upload a new dataset by invoking the
simulation service’s upload/data endpoint. The internal file path is returned in the HTTP response.
The returned path is used in order to train a model or to make predictions with the uploaded dataset.
The procedure is shown in the sequence diagram in Figure 8.

Agent Simulation Service: /upload/data

‘POST‘ Param[“file=@C:/DATA/data_fbr_new_small.xlsx”]

{ “filestored at”: “data_fbr_new_small.xlsx” }

Figure 8. Sequence diagram for uploading a model at the service endpoint.
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Train a Simulation Model—In order to train an uploaded simulation model with an uploaded
dataset, the HTTP PUT method is invoked at the Simulation Service endpoint with the URL /train.
The HTTP request holds the path to the uploaded training data and the model path as arguments.
Additionally, simulation model parameters can also be forwarded as a dictionary. As a result of the
training process, a new model description is returned in the JSON format and the information is also stored
in the Shared Knowledge base. The old model is archived but can be used for predictions afterwards
as well. The sequence is depicted in Figure 9, where just a small fraction of the returned information,
formatted in JSON, is shown.

Agent Simulation Service: /train

‘PUT‘ Param[“data_path=data_fbr_new_small.xlsx”,
“model=trainNN.m”]

{ “Fitted Values”: “”,
“model”: { “modelInstance”: “NN-2”,

“modelLocation”: “netOpen.mat”,
“mls:hasInput”: { “hasHyperParameter”: {},
“trainingData”: { “datasetName”: “data_fbr_new_small.xlsx”,
“datasetLocation”: “data_fbr_new_small.xlsx”,
. . . }

. . .
}

Figure 9. Sequence diagram for training a simulation model at the service endpoint.

Make a Prediction—In order to use the Simulation Service for predictions, the endpoint with the URL
/predict has to be called using the HTTP GET method. Its arguments are the path to an input dataset
and optionally a path to a model. If no path to a model is specified the service uses per default the most
recently trained model to make predictions. The service endpoint returns the predictions in a JSON array
as shown in Figure 10.

Agent Simulation Service: /predict

‘GET‘ Param[“data_path=data_fbr_new_small.xlsx”,
“model=predictNN.m”]

{ “prediction”:
{“values”: [24.319, 24.851, 25.662, . . . ] }

}

Figure 10. Sequence diagram for using a model to predict a time series at simulation endpoint.

In the presented use case of the PBTES, the output temperature is predicted by the Simulation Service
for a specified input trajectory. The predicted loading cycle of the PBTES over time is shown in Figure 11.
These prediction results could further be used for an optimized control strategy performed by the DT.
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Figure 11. Results of the Simulation Service for the output temperature Tout of the Packed-Bed Thermal
Energy Storage (PBTES) for a specific load cycle.

5. Discussion

The aim of our proposed GDTA is a simple architectural model that captures the essential components
of a DT in a technology-independent way. We presented various concepts and architectures for DTs in
Section 1.2. It becomes clear that DTs have to be able to handle various types of models for different
applications. Also, a structuring of different functionality by using services as well as information and
knowledge management are essential to gain a certain level of cognition.

The user interaction with a DT is a very important aspect, as in Industry 4.0 the workers or operators
will be the most flexible part of the CPS. They have the role of a strategical decisions-maker and problem
solver [39] so they have to interact closely with a DT. This is not reflected by most frameworks or concepts.

Almost all presented frameworks or architectures use a layered structure to specify some functionality.
Various layers are introduced with different names, which often perform similar tasks. This leads to
confusion. The alignment of our architecture with RAMI 4.0 facilitates a standardized wording and
common understanding of the layers in a DT. This helps to classify, combine, and re-use already existing
frameworks and technologies in the area of Industry 4.0 and the IIoT for designing and implementing
a DT.

In the following paragraph, the concepts, architectures, and frameworks for DTs, which have been
introduced in Section 1.2 are re-visited and set into relation with our proposed GDTA.

The foundation of our GDTA is the 5D-DT concept [13]. The data and service dimension of this
concept is refined in our architecture by identifying service clusters and introducing a Shared Knowledge
base, which semantically enriches available data and stores information about resources and services.
This Shared Knowledge base is the main component inside the Smart Data Service in our proposed
architecture and enhances the data dimension of the 5D-DT.

The suggested architecture for an “Intelligent Digital Twin” in [14] emphasizes the usage of AI inside
a DT to evaluate “what-if” scenarios. Therefore, certain components in the architecture are defined,
like an “Intelligent Algorithm” module, or a “Co-simulation Interface”. In our opinion, these are quite
specific modules, which can be implemented by distinct services of the proposed GDTA (e.g., a simulation
service can support co-simulation), but do not always have to be present in a DT. Also, the separation
of “intelligent” algorithms from the services into dedicated components seems not always beneficial.
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Nevertheless, important aspects and problems are addressed in this work, like user feedback, which is
also considered in our architecture.

A reference framework for DTs within CPSs is presented in [6] where four main building blocks
are identified. These blocks can be mapped to certain layers of our proposed architecture, which is
aligned with RAMI 4.0: The key concepts of the “Service Platform” are found in the Functional Layer
in our architecture. The “Physical Entity Platform” is equivalent to the Asset and Integration Layer.
In addition, our architecture captures the aspect of the communication layer. The main aspects of the
“Data Management Platform” can be located on the Information Layer. As we propose a service-oriented
architecture for the GDTA, some of the mentioned data management methods, like data processing, data
cleaning, data analysis, data mining and information extraction can be carried out by specific services of
the Functional Layer. The “Virtual Entity Platform” includes various “Semantic Models”. This corresponds
to our idea of a View on the Virtual Entity in the GDTA, consisting of various semantic simulation models
in combination with context information, stored in the Shared Knowledge base. The proposed reference
framework and the identified structural properties of the DT are very generic, but some additional aspects
can be found in our GDTA. So we introduced a Service Management component and defined groups of
common service types inside a DT, which help to structure and implement certain services. We also see the
HMI interaction as an important part of our GDTA which almost every service has to implement. Thus,
we include a HMI component in our GDTA.

The conceptual architecture of the Cognitive Twin Toolbox presented in [15] also introduces a
“Knowledge Repository” in combination with “Cognitive Services”. This is only applied for a “cognitive
Twin”. The basic DT concept implements only a so-called “Metadata Repository”. A separation into two
distinguishable components, as presented in [15] seems neither beneficial nor has practical advantages.
Therefore, we introduced the Shared Knowledge base, which acts as a central point of information in
our GDTA. Also a “Model Management Layer” is not explicitly stated in our architecture as resource
management has to be done by the service implementations themselves. The information about the
resources has to be made available through the Shared Knowledge base. The functions described for the
“Twin Management Layer” can be located in a Reconfiguration Service in the GDTA. The COGNITIVE
Twin toolbox is a solution with various components that seems to be specific for their definition of the
so-called “Hybrid” or “Cognitive Twin”. Thus, we tried to reduce the components of the proposed GDTA
to be as simple and generic as possible.

The conceptual model of a DT in the context of IoT, as presented in [16] introduces five layers
which are quite similar to the layers of RAMI 4.0. The “Physical Space” corresponds to the Asset and
Integration Layer; the “Virtual Layer”, to the Information Layer; the “Data Analytics and Visualization”
and “Application”, to the Functional Layer. In our architecture, we chose a more service-oriented view of
the various applications of the DT. Providing semantics of the data and a shared knowledge base is not
explicitly handled in this conceptual model, in contrast to the suggested GDTA. The conceptual DT model
emphasizes the importance of security by defining a vertical module overall specified layers. In our generic
architecture, such a module is not explicitly depicted, as it applies to all levels of RAMI 4.0 implicitly and
must be considered for the asset as a whole [40].

The AAS is a promising way of standardization as shown in [17] but still ongoing work. In its current
state, the concept of the AAS meta-model can be applied and implemented in line with our proposed
architecture. It was already shown, that the defined data model of the AAS can be semantically lifted to a
knowledge representation based on RDF [41]. In the context of our proposed architecture, this enables the
representation of the AAS inside the Shared Knowledge base.

The presented proof-of-concept implementation is the basis for further development of other services
inside the DT. Additionally, the knowledge representation of the simulation models can be extended
with application-specific domain ontologies. This would facilitate the integration of other semantic
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models of the DT as described in [6]. The hierarchical and modular ontology design, using a top-level
ontology as well as various domain ontologies, facilitates the integration of new concepts and ontologies.
These hierarchies can be further increased by introducing additional levels, like application or even task
ontologies. The alignment with already existing or emerging standards, represented in OWL, can be
performed by having similar concepts in the upper layers of the ontology hierarchy and using the
owl:equivalentClass property defined in OWL 2.

The presented use case was chosen in the domain of industrial energy system, but the proposed
GDTA can also be applied for a broader spectrum of applications. For this reason, we will investigate
other domains and apply the proposed GDTA also for other use cases.

6. Conclusions

A novel GDTA based on the 5D-DT concept is presented and evaluated based on a prototypical
proof-of-concept implementation. Other concepts, architectures, or frameworks in literature often use a
layered structure with similar functionality but different names. To overcome this problem, we aligned
our GDTA with the IT dimension of RAMI 4.0. This helps to have a common naming and understanding
of the layers inside the GDTA, which facilitates the development of a DT.

The presented GDTA is technology-independent. We instantiated it based on Semantic Web
technology and showed the suitability for handling context information about resources and services in
combination with simulation models. This enables application dependable Views on the Virtual Entity of
the DT. In our proof-of-concept, ontologies build the foundation for the Shared Knowledge base of the
Smart Data Service. Existing ontologies like OWL-S or ML-Schema are reused to describe resources and
services and facilitate interoperability.

Future work will further extend the service infrastructure inside the DT, including service
management. Other functional services of a DT will be implemented and the domain-specific ontologies
will be extended. For this goal, an advanced version management system has to be developed to keep
track of changes made on the DT during its life-cycle.

Another research direction will investigate the applicability of already available IoT standards and
frameworks at the Communication and Information Layer of our GDTA. It will investigate how those can
be organized in the hierarchical dimension of the RAMI 4.0 using edge and cloud computing.

Author Contributions: Conceptualization, G.S., M.S. and L.K.; methodology, G.S.; software, M.S.; writing—original
draft preparation, G.S., M.S. and L.K.; contribution to contents, review and editing, W.K and R.H.; supervision, W.K.
and R.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding, but was supported by the doctoral school SIC!—Smart Industrial
Concept! and the Open Access Funding of TU Wien.

Acknowledgments: The authors acknowledge TU Wien Bibliothek for financial support through its Open Access
Funding Programme.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

5D-DT Five-Dimensional Digital Twin
AAS Asset Administration Shell
PBTES Packed-Bed Thermal Energy Storage
CPPS Cyber–Physical Production System
CPS Cyber–Physical System
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DT Digital Twin
GDTA Generic Digital Twin Architecture
HMI Human-Machine Interface
HTTP Hypertext Transfer Protocol
IIoT Industrial Internet of Things
IoT Internet of Things
IT Information Technology
OPC UA OPC Unified Architecture
OWL Web Ontology Language
OWL-S Ontology Web Language for Service
QoS Quality of Service
RAMI 4.0 Reference Architecture Model Industry 4.0
RDF Resource Description Framework
REST Representational State Transfer
SPARQL SPARQL Protocol and RDF Query Language
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