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Abstract: Water resources management in Malaysia has become a crucial issue of concern due to
its role in the economic and social development of the country. Kelantan river (Sungai Kelantan)
basin is one of the essential catchments as it has a history of flood events. Numerous studies
have been conducted in river basin modelling for the prediction of flow and mitigation of flooding
events as well as water resource management. This paper presents river flow modelling based on
meteorological and weather data in the Sungai Kelantan region using a cascade-forward neural
network trained with particle swarm optimization algorithm (CFNNPSO). The result is compared
with those trained with the Levenberg–Marquardt (LM) and Bayesian Regularization (BR) algorithm.
The outcome of this study indicates that there is a strong correlation between river flow and some
meteorological and weather variables (weighted rainfall, average evaporation and temperatures).
The correlation scores (R) obtained between the target variable (river flow) and the predictor variables
were 0.739, −0.544, and −0.662 for weighted rainfall, evaporation, and temperature, respectively.
Additionally, the developed nonlinear multivariable regression model using CFNNPSO produced
acceptable prediction accuracy during model testing with the regression coefficient (R2), root mean
square error (RMSE), and mean of percentage error (MPE) of 0.88, 191.1 cms and 0.09%, respectively.
The reliable result and predictive performance of the model is useful for decision makers during water
resource planning and river management. The constructed modelling procedure can be adopted for
future applications.

Keywords: river flow modelling; cascade-forward neural networks; particle swarm optimization;
multivariable regression; Malaysia river

1. Introduction

Malaysia is enriched with 189 river basins nationwide. This natural resource performs a crucial role
in the economic and social development of the country [1]. More specifically, rivers are the major source
of water for irrigation, residential, industrial, agricultural, and other human activities. Surface water
in the form of streams and rivers contributes 97% of raw water supply [2]. Consequently, due to
the over-dependence on surface water for food, recreation, water supply, transportation, and energy,
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the quality of river water is threatened by various factors [3]. Physicochemical and biological indicators
have been used to assess and estimate the quality of river water [4].

Another important aspect of hydrology in Malaysia is water resource management. Water resource
management can be defined as a procedure for evaluating the scope, source, quality, and amount of
water resources for adequate water resource management and utilization. In the aspect of quantity,
artificial neural networks (ANNs) have been employed in previous studies for the prediction of river
flow modelling in Malaysia and other countries [5]. For instance, in the case of Malaysian rivers,
Mustafa et al. [6] applied a radial basis function (RBF) neural network in forecasting the suspended
sediment (SS) discharge of the Pari River. The outcome of the study showed that the RBF neural
network models are adequate and they can forecast the nonlinear activity of the suspended solid
discharge. Tengeleng and Armand [7] applied cascade-forward backpropagation neural networks to
predict rain rate, radar reflectivity and water content with raindrop size distribution. The research was
conducted in five localities of African countries; Côte d’Ivoire, Cameroon, Senegal, Congo-Brazaville
and Niger.

Furthermore, the performance of two ANNs such as RBF and feed-forward neural networks
(FFNN) has been compared in the study of Rantau Panjang streamflow station, Sungai Johor [8].
The result indicated that the FFNN model gave a better performance in estimating the sediment
load compared to the RBF model. Memarian and Balasundram [9] compared two other ANNs,
namely, Multi-Layer Perceptron (MLP) and RBF for predicting sediment load at Langat River. However,
MLP showed better performance, although both ANNs models have demonstrated limited effectiveness
in estimating large sediment loads. Similarly, Uca et al. [10] compared the performance of Multiple
Linear Regression (MLRg) and ANN in the prediction of SS discharge of the Jenderam catchment
area. The ANN methods used are RBF and feed-forward multi-layer perceptron with three learning
algorithms, i.e., Broyden–Fletcher–Goldfarb–Shanno Quasi-Newton (BFGS), Levenberg–Marquardt
(LM), and Scaled Conjugate Descent (SCD). The effect of different numbers of neurons in the ANN
trained with difference algorithms were studied. Moreover, Hayder et al. [1] applied ANN in predicting
the physicochemical parameters of Kelantan River. The ANN model was trained by using the optimized
value of look back and epoch number. The performance criteria were obtained by calculating the
Pearson correlation coefficient (PCC), root mean square error (RMSE), and mean absolute percentage
error (MAPE). The findings of the study indicated that the estimation of the pH parameter gave the
best performance. Moreover, the lowest kurtosis values of pH suggest that the presence of outliers
impacted on the model.

However, artificial neural networks (ANNs) require further elaboration for their experimentations
and applications. Machine learning tools, including ANNs, need to be trained before being deployed
into real applications to solve a given task. This process is performed in order to identify the best
combination of bias and weight values of each neuron by optimizing a cost function that quantifies
the mean differences between the predicted and actual output [11]. In light of the above discussion,
ANN training is commonly performed using a gradient-based algorithm known as backpropagation
(BP) and its variants [12]. Despite its widespread applications in ANN training, the performance of
BP algorithm is highly dependent on the weight and bias values of each neuron initialized in the
multi-layer ANNs. Furthermore, BP also tends to produce suboptimal solutions of neuron weight and
bias values during the training process, hence restricting the performance of ANN [11–13]. Recently,
there are growing interests in exploiting the excellent global search ability and stochastics natures
of metaheuristic search algorithms (MSAs), including Particle Swarm Optimization (PSO) used in
this study, to perform ANNs training [11–17]. As compared to the BP algorithm, MSAs have more
competitive advantages in solving ANNs training problems with faster convergence without requiring
good initial solutions [11,13].

Therefore, this study presents the application of ANNs-based predictive modelling trained using
PSO. Particularly, cascade-forward neural networks trained with PSO (CFNNPSO) for the prediction
of river flow are presented. This study validates the functional ability and significance of ANN
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techniques in the simulation of real-world and complex nonlinear water system processes. In addition,
this research gives an insight into ANNs modelling in the Kelantan river scenario and the importance
of understanding a river basin and variables before attempting to model the river flow. River flow can
be effectively modelled with intelligent ANNs models, despite the spatial changes in the study field.

The river flow of Sungai Kelantan in the northeast part of Malaysia is predicted by using FFNN
and CFNN based on available meteorological input variables (features) namely; weighted rainfall (mm),
evaporation (mm), min of temperature (◦C), mean of temperature (◦C) and max of temperature (◦C).
Some of the ANNs-related experimentation carried out in this study includes; feature/input variables
selection, the effective number of hidden layer neurons, and performance comparison between CFNN
and standard multi-layer FFNN trained with PSO and other common training algorithms such as
Levenberg–Marquardt (LM), Bayesian Regularization (BR) backpropagation. This study has practical
meaning from the perspective of the current state-of-the-art in artificial intelligence (AI) and the Internet
of Things (IoT) technology. The machine learning model can be deployed in different ways, such as
using a web app or real-time monitoring device to predict Kelantan river flow based on the readily
available meteorological data. The applicability of this tool will be of importance nowadays in the
realm of Industrial Revolution 4.0.

2. Materials and Methods

2.1. Study Area

The Kelantan river basin is one of the important catchments as it has a history of flood events [18,19].
The catchment is representing most of the land area of Kelantan State, as shown in Figure 1. There are
several stations such as rainfall, water level, evaporation, water quality and meteorological stations
operating in the area.
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Figure 1. (a) Peninsular Malaysia map, (b) Kelantan State, and (c) the study area (using QGIS©).

2.2. River Flow Data

ANN is a popular machine learning algorithm that has been successfully applied for data-driven
predictive modelling. Therefore, the main ingredient for the success of predictive modelling is the
data itself in addition to the training algorithm developed. In this study, the river flow data were used
together with meteorological parameters. The river flow data were collected from the north of Kuala
Krai city downstream (merge of two main tributaries and before discharge into the sea). Similarly,
the original data obtained consist of 348 monthly records of Sungai Kelantan river flow (cubic meters
per second (cms)) spanning from January 1988 to December 2016. Rainfall and evaporation are usually
measured in a determined station, and only the computed area weighted rainfall is used to evaluate
the whole area rainfall quantity [20]. The river flow was mainly from one main station (Guillemard),
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while the weighted rainfall and evaporation (secondary data) were over the whole river catchment.
Table 1 shows the attributes of the data used in this study.

Table 1. Variables and their attributes.

Target Variable Input Variables (Features)

Name of
Variable River Flow Weighted

Rainfall
Average

Evaporation
Min of

Temperature
Mean of

Temperature
Max of

Temperature

Unit cms Mm mm ◦C ◦C ◦C

Notation y x1 x2 x3 x4 x5

Duration 1988–2016

Location Kuala Krai city downstream

2.3. Data Pre-Processing

The stage of data pre-processing and feature selection process is crucial in the initial stage of the
machine learning model building. This process can significantly affect the prediction accuracy in any
type of data [21]. The overall data pre-processing and feature selection are summarized as follows:

� Data randomization: the data were randomized to enhance the diversity of the data before
splitting into training and testing datasets.

� Data partition/splitting: datasets were randomly partitioned into training and testing datasets
consisting of 260 data samples (≈75%) for model training and 88 data samples (≈25%) for model
validation test.

� Data normalization: ANNs benefit from data normalization as do some other machine learning
algorithms. The input data are normalized to standardize the scale of each variable. In this study,
the data are normalized to the range [0,1] before the ANNs training.

� Feature selection: feature removal for considerably low correlation score to the output variable.
Normally, if the correlation score is less than |0.5|, these variables indicate a low correlation, i.e.,
a weak association between the specific input variable with the target variable. This process
is the most important for predicting the accuracy of this study. It is also useful for model
parsimony, especially when the input features are large. The reduced number of input features
will give benefit for model simplicity and data reduction in the absence of data collection/sensor
measurement. However, the experimentation results of this process are discussed in Section 3.
The correlation coefficient (rxy) between two variables was calculated by dividing the covariance
with the product of the standard deviations of the two variables as follows:

rxy =
Cov(x, y)
σxσy

(1)

2.4. ANN Structure, Training Algorithm, and Feature Input Selection

ANN is a supervised machine learning that can be trained to map the relation between input/feature
and the target/output by adjusting the weights and biases between neuron elements [22]. This highly
nonlinear mapping can be applied in many areas, including multivariable regression. There are different
types of ANNs structure and training algorithms. Among the common types are cascade-forward
neural networks (CFNN), multi-layer feed-forward neural networks (FFNN) and recurrent neural
networks. In this study, both FFNN and CFNN structures were implemented, and their effectiveness
was compared and evaluated. The programming execution was performed in MATLAB 2019b software.
The structure CFNN is similar to FFNN, but the key difference between the two is that CFNN include
a connection from the input to the neurons in the following hidden layers. The advantage of this
approach is that it accommodates the nonlinear input-output relationship without eliminating the
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linear relationship between the two [23]. FFNN is a standard structure for a multi-layer neural network
which can be found in many works of literature. Additionally, CFNN is a further modification of
FFNN where additional weights are connected from the input nodes to the hidden nodes, and output
nodes, as shown in the upper portion of Figure 2. These additional weights do not exist in the standard
FFNN. The different networks structure between CFNN and FFNN in terms of weight connection can
also be seen in the study [7,24]. Detailed computation works about the application of the training
algorithms can be found in [7,25].
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The output of the CFNN was expressed as:

ŷk(x, w) =
∑

i

ϕ(wixi) + ϕ

∑
h

wkhϕ

∑
j

whjϕ

. . . ϕ
∑

i

wlixi + bi


+ b j

+ bh

 (2)

where ϕ(·) is the selected activation function, wkh is the weight strength from a neuron in the last
hidden layer h to the single output neuron k, and so on, for other weights’ strength. xi is the ith element
of the input/features variable and bi is the bias weight in the neurons of the first hidden layer, and so
on. The symbol w denotes the weight vector for the entire set of all weights ordered by layer, followed
by neurons in a layer and then signal strength in a neuron. Hence, in this study, 1 or 2 hidden layers of
ANN were used for the evaluation. The activation function selected for the hidden layer(s) and the
output layer is the tangent sigmoid and linear function, respectively. The tangent sigmoid function can
be expressed as:

ϕ(Ii) =
2

1 + e−2Ii
− 1 (3)

where Ii is the signal coming into the neuron in hidden layers.
For the linear function in the output layer, it can be expressed as follows:

ϕ(Ik) = Ik (4)

where Ik is the input to the neurons in the output layer.
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Furthermore, ANN is usually trained using the backpropagation (BP) algorithm and its variations.
Among the commonly used ANN training algorithms is Levenberg–Marquardt (LM), which can
provide fast convergence for the moderate-sized FFNN of a few hundredweights [26]. However,
fast convergence does not guarantee that the trained ANN model will not overfit the training data.
In many applications, including this study, the generalization of the model to the given data is more of
concern, i.e., the model will not be either overfitting or underfitting. A more advanced modification
of the LM algorithm is called Bayesian Regularization (BR), which reduces the linear combination
of squared errors and weights. At the end of the training, the resulting network will have good
generalization qualities, i.e., to prevent model overfitting. Further detailed discussions on Bayesian
regularization can be seen in [27]. Therefore, for the reason of generalization capability, this algorithm
is also applied in this study. Lastly, the PSO algorithm is also applied to train both FFNN and CFNN
as the main contribution of this study. The performance of both FFNN and CFNN trained with PSO
will be evaluated. PSO is considered the most popular meta-heuristic algorithm inspired by the nature
process of bird flocking introduced in 1995 by Kennedy and Eberhart [28–30]. It has some appealing
features, such as fast convergence speed and simplicity of implementation. Since then many PSOs and
their variants have been studied. One of the early PSO variants introduced was PSO with constriction
coefficients which was proposed to guarantee solution convergence [30]. This version of PSO will be
applied in this study to train the proposed ANN model.

Prior to the discussion of the PSO algorithm used to train ANNs, the basic ANNs training/learning
process using the BP algorithm can be summarized as follows [31]:

1. Obtain the training dataset (xi) with the desired target (y).
2. Setup ANN structure and parameters: number of hidden layers, number of neurons, learning

rate (η), momentum constant and regularization constant (α) (if necessary).
3. Initialize of all weights and biases to random.
4. Start the ANN training and forward propagation of input data through the layers according to

Equation (2).
5. Calculate the error difference between ANN output (ŷ) and the desired target (y) such as using

MSE (mean squared error) defined as:

MSE =
1
n

n∑
k = 1

(ŷk − yk)
2 (5)

6. Back-propagate the error through the output and hidden layer(s), and adapt output weight
according to:

wk(t + 1) = wk(t) + ∆wk(t) (6)

where t indicates the iteration index and ∆wk indicates the change of weights’ strength in the
output layer k which is calculated as:

∆wk(t) = ηδkyh + α∆wk(t− 1) (7)

δk = yk − ŷk (8)

7. Back-propagate the error through the hidden layer(s) and input, and adapt output weight
according to:

wh(t + 1) = wh(t) + ∆wh(t) (9)

where ∆wh indicates the change of weights’ strength in the hidden layer h, which is calculated as:

∆wh(t) = ηyh(1− yh)
∑

(δkwk)xi + α∆wh(t− 1) (10)
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8. If the error according to step 5 is sufficiently small, then stop the training iteration and proceed
with model validation; otherwise, repeat steps 4 to 7.

The BP algorithm is developed based on the gradient-descent algorithm that tends to be slow in
terms of convergence, as mentioned earlier. Levenberg–Marquardt (LM) is the alternative training
algorithm with faster convergence developed based on a combination of Gauss–Newton and gradient
descent algorithm with computation of the Jacobian matrix. The weight update rule in the LM
algorithm is expressed as:

∆wk(t) = wk(t) −
(
JT
k Jk + µI

) 1
·Jkδk (11)

where µ > 0 is non-negative scalar.
On the other hand, as mentioned earlier, Bayesian Regularization (BR) training is integrated into

BP to prevent overfitting. The training goal is naturally to reduce modified error function expressed
as [32]:

F = αEy + βEw (12)

where
Ey =

∑ 1
2
(y− ŷ)2 (the sum squared errors)

Ew =
∑ 1

2
w2

i (the sum squared errors of network weights)

the “black box” regularization parameters α and β are responsible for penalizing the cost function (F)
which affects the generalization of the trained model. In general, the higher the regularization constant
(β), the more network weight connections will be dropped to prevent overfitting.

Table 2 summarizes the ANN parameters and algorithm setup that was investigated in this
study. Similarly, in order to have consistent results and fair comparison for each different ANN
setup, the initial random seeds for weights and biases were set to the same state of random number
generator in the software. All activation functions in each neuron are sigmoid for the hidden layer
and linear function of the output layer as expressed in Equations (3) and (4), respectively. Moreover,
the regularization constant (β) was set to 0.2, and the maximum number of iterations was set to 1000.
There is no cross-validation procedure performed during the training.

Table 2. Artificial neural network (ANN)-based model setup.

ANN Model Properties Experimentation

Feature Input Selection To use all features or reduced features using correlation score

ANN structure/architecture To use feed-forward and cascade-forward structure

Number of hidden layer and its neurons
To use 1 or 2 hidden layers with 5, 10, or more neurons in each

layer e.g., [n1 + n2] means n1 neurons in hidden layer 1 and
n2 neurons in hidden layer 2

Training algorithms To use Levenberg–Marquardt (LM), Bayesian Regularization
(BR) and Particle Swarm Optimization (PSO)

Once the ANN training was performed using the training dataset, the trained ANN model was
then validated using the testing dataset. The obtained model accuracy was evaluated by calculating
the regression coefficient (R2), RMSE (root mean squared error) value and mean of percentage error
(MPE) which are defined as:

RMSE =

√√ n∑
i = 1

(ŷi − yi)
2

n
(13)
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MPE =
n∑

i = 1

(yi − ŷi)

yi
×

100%
n

(14)

The overall process of the river flow modelling using ANN is illustrated in Figure 3. It begins
with raw data collection, as explained in Section 2.1, followed by data analysis and pre-processing,
as explained in Section 2.2. The ANN training and some related experimentations are explained
in Section 2.3. This procedure can be considered a general procedure for ANN-based predictive
model building.
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2.5. ANN Training Using Particle Swarm Optimization (PSO)

In the training of ANNs using PSO, the training process is handled by an optimization approach.
The objective of the optimization is to minimize prediction error by searching the optimum solution
(variables) of the weights and biases of the ANNs. PSO was inspired by the collective behaviours
of bird flocking and fish schooling. Each PSO particle represents the potential solution of a given
optimization problem, and it consists of unique velocity and position components in search space.

Suppose that the population size of PSO swarm and the dimensional size (i.e., number
of variables to be optimized) of a given optimization problem are represented as N and D,
respectively [29]. Denote that Vi =

[
Vi,1, . . . , Vi,d, . . . , Vi,D

]
and Xi =

[
Xi,1, . . . , Xi,d, . . . , Xi,D

]
represents

the velocity and position of each i-th particle in the search space, respectively, where = 1, . . . , N
and d = 1, . . . , D. The i-th PSO particle’s best searching performance achieved so far is
represented as Pbest,i =

[
Pbest,i,1, . . . , Pbest,i,d, . . . , Pbest,i,D

]
. Meanwhile, the global best position

refers to the so far best performance achieved by the entire PSO swarm, and it is denoted as
Gbest =

[
Gbest,1, . . . , Gbest,d, . . . , Gbest,D

]
.

The new position of each i-th particle in search space is then determined based on the updated
velocity vector. At the (t + 1)-th iteration of search process, the d-th dimension of velocity and position
of each i-th particle, denoted as Vi,d(t + 1) and Xi,d(t + 1), respectively, are updated as follows [33]:

Vi,d(t + 1) = ωVi,d(t) + c1r1
(
Pbest,i,d −Xi,d(t)

)
+ c2r2

(
Gbest,d −Xi,d(t)

)
(15)
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Xi,d(t + 1) = Xi,d(t) + Vi,d(t + 1) (16)

where ω is an inertia weight used to balance the exploration and exploitation searches of the particle by
determining how much the previous velocity of a particle is preserved; c1 and c2 are the acceleration
coefficients used to control the influence of self-cognitive (i.e., Pbest,i) and social (i.e., Gbest) component
of the particle; r1 and r2 are two random numbers generated from a uniform distribution with the
range of 0 to 1, where r1, r2 ∈ [0, 1].

A few main PSO parameters drive toward the optimum solution search, namely, ω and c1 and
c2. Clerc [30] in 2002 developed a constriction coefficient approach to guide the selection of these
parameters to guarantee the convergence solution [34]. In the Clerc’s version of PSO, the particle
velocity in Equation (15) is expressed as:

Vi,d(t + 1) = χ
(
Vi,d(t) + c1r1

(
Pbest,i,d −Xi,d(t)

)
+ c2r2

(
Gbest,d −Xi,d(t)

))
(17)

χ =
2K∣∣∣2−φ− √
φ2 − 4φ

∣∣∣ (18)

with φ = c1 + c2, typically K = 1 and c1 = c2 = 2.05 and therefore χ = 0.73 [34]. This version of
PSO is used to train the ANNs in this study.

There are three main components in optimization problems, namely, the solution variables (X),
the cost function (F(X)) and the constraints. The implementation of the PSO for ANNs training is
basically searching for the optimum ANNs weights and biases (the solution variables) to minimize
the prediction error (the cost function) subject to the boundary constraints of the weights and biases
(the constraint). The formulation of this PSO-based ANNs training can be expressed as:

min
X = [wi,wkh,wli,bi,b j,bh]

F(X) (19)

Subject to:
− 2 ≤ wi ≤ 2

− 2 ≤ wkh ≤ 2

− 2 ≤ wli ≤ 2

− 2 ≤ bi ≤ 2

− 2 ≤ b j ≤ 2

− 2 ≤ bh ≤ 2

The objective function for the ANN training is basically to minimize Normalized MSE (NMSE),
which can be directly related to maximizing the regression coefficient R2. Here, the cost function is
expressed as:

F(X) = NMSE =
MSE

variance(yk)
=

∑n
i = 1 (ŷk − yk)

2∑n
i = 1

(
yk − yk

)2 (20)

R2 = 1−NMSE (21)

3. Results and Discussion

According to the summary listed in Table 2, some experimentation needs to be carried out to
investigate various setups of the ANN model that will give the optimum prediction results. The first
result is a related feature selection, as this is the first stage of data preparation before ANN training.
The features were selected based on the correlation score between the independent variable (input
features) and the dependent variable (target). Table 3 shows the correlation score for each feature and
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the target/output variable. The result indicates a strong correlation (R = 0.739) between weighted
rainfall (x1) and the river flow (y). It can be concluded that the correlation between a min of temperature
(x3) and the target variable (y) is very low and therefore x3 was removed from the input feature.
The lowly correlated feature would degrade the prediction accuracy if it was not removed from
the feature.

Table 3. Correlation score for feature selection.

Variables Correlation Score (R)

x1 ←→ y 0.739

x2 ←→ y −0.544

x3 ←→ y −0.222

x4 ←→ y −0.563

x5 ←→ y −0.662

With these four selected features (after removing x3), the ANN training experimentation proceeds
and the evaluation is performed. For the model parsimony reason, further removal of either feature x4

or x5 is also investigated to ascertain whether it affects the model accuracy. This is because these two
features are of the same type, i.e., temperatures.

The first experimentation is mainly to investigate the number of hidden layer neurons and
comparisons between FFNN and CFNN trained with the LM algorithm. Table 4 shows the results of this
experimentation. The two numbers in the hidden layer neurons indicated that two hidden layers were
used with the corresponding number of neurons in each layer. In the first column of Table 4, the notation
in the square bracket indicates the number of hidden layer neurons, for example, [5] meaning there are
5 neurons in 1 layer, {10 + 10} meaning that there are 10 neurons in two hidden layers, etc.

Table 4. Results on ANN trained with 4 features (x1, x2, x4, x5) using the Levenberg–Marquardt
(LM) algorithm.

#

ANN Structure FFNNLM CFNNLM

Training Testing Training Testing

Hidden Layer Neurons R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 {5} 0.85 143.5 0.60 372.0 0.87 133.0 0.39 462.2
2 {10} 0.91 115.0 − 972.9 0.89 124.8 − 734.7
3 {20} 0.91 110.4 − >1000 0.94 92.8 − >1000
4 {5 – 5} 0.90 116.7 0.48 425.1 0.93 99.2 − >1000
5 {10 – 10} 0.97 62.1 − >1000 0.98 51.6 − >1000
6 {20 – 20} 1.0 0 − >1000 1.0 0 − >1000
7 {5 – 10} 0.94 93.4 − >1000 0.96 72.8 − 739.2
8 {10 – 5} 0.94 90.3 − >1000 0.96 72.8 − >1000

The main finding in this experimentation is that the ANN trained with LM algorithm have a
high tendency of overfitting, i.e., good prediction (even perfect, R2 = 1) for training data but poor
prediction of testing data. This occurs in both models using FFNN and CNNN structure. Some worse
cases of this situation are highlighted in gray where the obtained RMSE is very high such that the
ANN failed to make predictions, i.e., resulting negative values of R2, marked with ‘−’ in the Table.
In addition, increasing the number of neurons (and layers) tends to increase the chance of overfitting.

The second experimentation is the same as the first, but the BR training algorithm was used.
Table 5 shows the results of this experimentation. In Table 5, the lower RMSEs obtained during model
testing are marked by ‘*’ and the overfitting situations are highlighted in gray. It can be seen from
Table 5 that, generally, CFNN with one hidden layer (5 to 20 number of hidden neurons) sufficiently
produced lower RMSEs when it is trained with BR algorithms. Moreover, the increasing number of
neurons (and layers) did not give a satisfactory performance as can be seen from both Tables 4 and 5.
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Especially for the FFNN, poor generalization capability (overfitting) was observed when the number
of hidden neurons gets larger. During testing, the lowest RMSE of 211.1 was obtained when CFNN
with 20 hidden neurons (1 layer) was trained with the BR algorithm.

Table 5. Results on ANN trained with 4 features (x1, x2, x4, x5) using the Bayesian Regularization
(BR) algorithm.

#

ANN Structure FFNNBR CFNNBR

Training Testing Training Testing

Number of Hidden Layer Neurons R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 {5} 0.84 152.4 0.33 482.4 0.78 174.8 0.87 211.4 *

2 {10} 0.86 138.7 0.43 447.3 0.78 174.8 0.87 211.2 *

3 {20} 0.83 154.2 0.38 464.7 0.78 174.8 0.87 211.1 *

4 {5 + 5} 0.92 107.5 0.00 899.5 0.88 132.3 0.69 327.2

5 {10 + 10} 0.96 76.3 0.14 548.4 0.97 69.2 − 675.4

6 {20 + 20} 0.98 49.9 0.60 372.1 0.98 50.1 0.44 442.9

7 {5 + 10} 0.93 96.6 0.34 481.0 0.93 101.8 0.14 548.9

8 {10 + 5} 0.93 98.7 0.00 693.1 0.66 218.6 0.73 309.1

The third experimentation was conducted to show the results of FFNN and CFNN training using
the PSO algorithm (FFNNPSO and CFNNPSO respectively) where Clerc’s PSO version was used.
The number of populations used in the PSO is set to 40, and the iteration number is set to 1000, the same
as the one used in the LM and BR algorithms. The results are shown in Table 6. As compared to
the previously trained ANN with LM and BR algorithm, both FFNN and CFNN trained with PSO
(FFNNPSO and CFNNPSO) generally show good prediction ability in both the training and testing
dataset, except for a few cases when two hidden layers are used (highlighted in gray). Therefore, it is
preferable to use only one hidden layer to prevent overfitting. Thus, in the next experimentation,
only one hidden layer was used with some variations in the number of neurons. The few lowest
RMSE during testing were obtained (marked by ‘*’) for both FFNNPSO and CFNNPSO with 1 hidden
layer, except for 1 case of FFNNPSO (row 5 of Table 6). In all experimentations with one hidden layer,
only FFNNPSO with 10 hidden neurons shows slightly lower RMSE during the testing, as shown in
row 2 of Table 6.

Furthermore, the fourth and fifth experimentation was conducted to investigate the CFNN model
performance when only three features were used as the parsimonious model. The three features
(x1, x2, x5) were used in the fourth experimentation, while another combination of three features
(x1, x2, x4) were used in the fifth experimentation. The result of the fourth experimentation is shown
in Table 7, where FFNNPSO and CFNNPSO with a different number of neurons in one hidden layer
were investigated. The result indicates that it is possible to have a parsimonious model with only three
features (x1, x2, x5) as the ANN input. The prediction on testing data gave the best performance of
R2 = 0.88, RMSE = 191.1 cms and MPE = 0.09% when CFNNPSO with 10 hidden neurons was
trained despite slightly lower RMSE during the training as compared to the rest. This makes sense
since the feature x4 and x5 are basically of the same type, i.e., mean and max temperatures, as compared
to the result in Table 6 with four features. Similarly, the results obtained in this study corroborates with
the work of Khaki et al. [35], who reported an R2 value of 0.84 in the estimation of Langat Basin using
a feed-forward neural network. Additionally, Hong and Hong [36] obtained R2 values of 0.85, 0.81,
and 0.85 for validation, training and testing datasets, respectively, when multi-layer perceptron neural
network models were applied in estimating the water levels of Klang River.
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Table 6. Results on ANNs trained with 4 features (x1, x2, x4, x5) using the Particle Swarm Optimization
(PSO) algorithm.

#

ANN Structure FFNNPSO CFNNPSO

Training Testing Training Testing

Number of Hidden Layer Neurons R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 {5} 0.80 171.2 0.87 198.4 * 0.80 167.6 0.79 249.6

2 {10} 0.81 165.4 0.73 284.3 0.80 168.7 0.85 208.4 *

3 {20} 0.81 167.4 0.85 213.2 * 0.80 169.5 0.86 203.5 *

4 {5 + 5} 0.83 157.3 0.80 243.7 0.81 165.6 0.75 270.6

5 {10 + 10} 0.81 166.2 0.85 208.0 * 0.81 166.6 0.68 307.3

6 {20 + 20} 0.82 162.4 0.43 412.8 0.79 172.2 0.28 462.1

7 {5 + 10} 0.80 171.7 0.85 213.9 0.81 165.1 0.38 429.2

8 {10 + 5} 0.83 158.4 0.74 279.3 0.81 163.9 0.73 284.3

Table 7. Results on FFNN and CFNN trained using PSO with 3 features (x1, x2, x5).

# Number of Hidden Layer Neurons

FFNNPSO CFNNPSO

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 {5} 0.80 171.4 0.87 197.6 * 0.80 168.0 0.85 209.4

2 {10} 0.80 170.2 0.76 268.3 0.77 181.6 0.88 191.1 *

3 {15} 0.80 170.1 0.78 254.2 0.80 170.6 0.87 198.8 *

4 {20} 0.78 174.2 0.78 254.7 0.78 177.9 0.87 199.5 *

Figure 4 shows the regression plot of the best testing performance for CFNNPSO, with 10 hidden
neurons (1 layer) and three input features (x1, x2, x5), resulting to R2 = 0.88, RMSE = 191.1 cms and
MPE = 0.09%.

Table 8 shows the results of the fifth experimentation using another three combinations of
features (x1, x2, x4). However, the result shows quite significant degradation of the model performance,
particularly with the training dataset. This means that the combination of the three features is not
feasible to build a parsimonious predictive model. As the final remarks on the feature selection,
the accurate model can be achieved using four features (x1, x2, x4, x5) or using three features (x1, x2, x5)
as these two can achieve comparable performance as long as one hidden layer is used. In other
words, ANNs trained with PSO were able to achieve acceptable accuracy in predicting river flow by
using only weighted rainfall, average evaporation and max temperature as input variables. However,
CFNN structure is generally preferable as this can produce more robust generalization performance
despite the number of neurons applied.

Furthermore, as a comparison, Multiple Linear Regression (MLR) is also used to benchmark the
prediction outcome of the ANNs above. The MLR is trained via Lasso regression/L1 [37] with the
regularization parameter value (α = 0.2) as the same one used during training using the BR algorithm.
With the three features (x1, x2, x5), the resulting MLR prediction of the river flow can be expressed in
the following equation:

ŷ = (2120.47)x1 + (502.76)x2 − (1185.77)x5 + 447.32 (22)

The MLR prediction on the test dataset produces a regression coefficient (R2) of 0.73 and an
RMSE of 279.3 cms, which is lower accuracy compared to the FFNNPSO and CFNNPSO prediction.
This makes sense since MLR assume linear relation on the variables.
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Figure 4. The best testing performance for the cascade-forward neural networks trained with particle
swarm optimization (CFNNPSO) model (R2 = 0.88).

Table 8. Results on FFNN and CFNN trained using PSO with 3 features (x1, x2, x4).

#

ANN Structure FFNNPSO CFNNPSO

Training Testing Training Testing

Hidden Layer Neurons R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 {5} 0.74 193.0 0.87 199.7 * 0.73 198.3 0.85 211.4 *

2 {10} 0.75 188.2 0.71 294.7 0.73 197.8 0.79 250.4

3 {15} 0.74 193.1 0.76 266.7 0.72 199.2 0.81 238.5

4 {20} 0.74 191.8 0.85 207.6 0.73 196.1 0.82 230.4

Finally, the results of this study can be improved from the enhancement of data and improvement
of the algorithm. Data-driven predictive modelling relies on the quantity and quality of the recorded
data. Moreover, collection of field data is a costly practice that provides a series of snapshots of
watercourse behaviour and supplements existing information. Therefore, it is essential to carry out a
collaborative desk analysis to gather established existing records from different sources (consultants,
environment agency or water services company) to improve current understanding and expertise
deficiencies [38]. Additionally, hydrological and mathematical models play a significant role in the
forecasting of river basins using field data obtained from different temporal and spatial scales [39].

4. Conclusions

Predictive modelling of river flow based on meteorological weather data using the Multilayer
Artificial Neural Networks (ANNs) Particle Swarm Optimization (PSO) algorithm has been discussed.
Sungai Kelantan river flow data ranging from January 1988 to December 2016 was used. The results
demonstrate the potential applications of ANNs as an artificial intelligence-machine learning tool
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to predict river flow variables based on meteorological and weather data as studied in this paper,
where two ANNs structures were used: feed-forward neural networks (FFNN) and cascade-forward
neural networks (CFNN). The PSO algorithm used to train the ANN has also contributed to the
advancement of the predictive model building. Generally, ANNs with one hidden layer trained using
PSO were able to produce acceptable accuracy and good generalization for both the training and
testing dataset. This result is better than the prediction performance of the Multiple Linear Regression
(MLR) trained via Lasso Regression/L1. Moreover, a parsimonious model with reduced features was
proposed; this feature was carefully selected. From the parsimonious model experimentation, it was
possible to build an ANNs predictive model that can achieve acceptable accuracy in predicting river
flow by using only weighted rainfall, average evaporation and max temperature as input variables.
The experimentation results also indicate that CFNN trained using the PSO algorithm has more
robust generalization performance compared to FFNN in the reduced feature (parsimonious) model.
The model accuracy can still be improved using advanced techniques in machine learning modelling
such as the ensemble method, improvement of the optimizer and cross-validation training procedure.

Furthermore, future research will work on some areas including benchmarking with other
machine learning algorithms, benchmarking with other mete-heuristic algorithms for ANN training,
data augmentation to enhance the diversity of the available data without generating actual data and
real-time deployment of the predictive model in the Internet of Things (IoT) scenario. Despite the
efficiency of ANNs as a black box model for river flow modelling, further exploration of research in
this area is required. These include an automated feature selection mechanism, the possibility of using
Deep learning neural networks regression, and improvement of accuracy to reduce overfitting via
different optimizer algorithms. Another area includes the deployment stage of the machine learning
model, which can involve Big Data, IoT and the Cloud computing platform. As AI tools in this regard
are easily available nowadays, the area of this study promises high applicability of hydro-informatics
systems, especially in Malaysia. This hydro-informatics concept and implementation need more
extensive attention by authorities and decision makers to deal with water resource management which
is currently a serious issue in some countries.
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