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Featured Application: Novel approach to wind fleet generator fault detection using Supervisory
Control and Data Acquisition (SCADA) data and alarm logs.

Abstract: A hybrid health monitoring system for wind turbine generators is introduced. The novelty
of this research consists in approaching a 115-wind turbine fleet by using the fusion of multiple
sources of information. Analog SCADA data is analyzed through an autoencoder which allows to
identify anomalous patterns within the input variables. Alarm logs are processed and merged to the
anomaly detection output, creating a reliable health estimator of generator conditions. The proposed
methodology has been tested on a fleet of 115 wind turbines from four different manufacturers
located in various locations around Europe. The solution has been compared with other existing data
modeling techniques offering impressive results on the fleet. An accuracy of 82% and a Kappa of
56% were obtained. The detailed methodology is presented using one of the available windfarms,
composed of 13 onshore wind turbines rated 2 MW power. The rigorous evaluation of the results,
the utilization of real data and the heterogeneity of the dataset prove the validity of the system and
its applicability in an online operating scenario.

Keywords: alarms; anomaly detection; autoencoder; fault detection; SCADA data; generator;
predictive maintenance; wind turbines; renewable energy

1. Introduction

Wind energy is one of the main enablers of the ongoing renewable energy revolution. It was
reported by WindEurope that in 2016, wind energy production overtook coal as the second largest
form of power capacity in Europe, right behind natural gas. The strong increasing trend suggests that
it is just a matter of time for wind energy to take the lead [1].

Many challenges are yet to be solved to increase wind energy profitability, and operation and
maintenance (O&M) in particular has to be improved. It was reported that unexpected breakdowns
typically cause 10–15% of production losses, with extreme peaks of 30% [2]. These losses cripple the
profit of energy companies, thus it is not surprising to find optimization of O&M through big data,
cloud solutions and innovative technologies as one of the top priorities of the industry [3].

Historically, maintenance has been performed via a reactive approach, based on preventive
inspections and corrective interventions once failures were acknowledged. New approaches providing
predictive maintenance solutions have emerged both in the academia and the industrial scene.

Turbines are commonly equipped with a Supervisory Control and Data Acquisition (SCADA)
system, which was initially installed to monitor and operate the system, but lately has been utilized to

Appl. Sci. 2020, 10, 8649; doi:10.3390/app10238649 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-9690-4359
https://orcid.org/0000-0003-2601-9028
https://orcid.org/0000-0002-8164-3635
https://orcid.org/0000-0002-1951-1498
http://www.mdpi.com/2076-3417/10/23/8649?type=check_update&version=1
http://dx.doi.org/10.3390/app10238649
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 8649 2 of 15

assess and predict the health status of the turbines as well. SCADA data is recorded by a network
of sensors located in the main components of the turbine, the typical sampling frequency is 10 min,
making it relatively cheap to collect, transmit and store in a database. All wind fleet operators collect
data on their centralized control. SCADA data is collected and stored on Structured Query Language
(SQL) databases from SCADA providers or OsiSoft PI system.

Early fault detection can be achieved, as shown by Schlettingen and Santos, by building a model
that captures normal operation of the system and by comparing the difference between predicted
and measured values of a key variable, to detect anomalies [4]. This approach does not fully take
advantage of the high dimensionality of the SCADA dataset and focuses only on the behavior of a
single key variable, while component failures are typically complex and can manifest themselves in
different failure modes.

The literature is rich with examples based on power curve modeling of wind turbines [5–8].
This approach is based on tracking the relation between wind speed and output power, the function
that describes the relation between these two variables can be inferred from operational data and
compared to the one provided by the manufacturer, and significant deviations from the theoretical
power curve can be hints of problems in the turbine. Different algorithms, as well as the introduction
of context variables, have been studied in order to get a reliable picture of the turbine behavior.
The main drawback of this approach is its incapacity to determine which component is causing
underperformance since the turbine is studied as a whole.

Solutions based on control monitoring systems (CMS) are available and have been studied in the
literature [9–11]. These analyses typically use vibration, sound and acceleration measurements to detect
anomalies in the behavior of bearings, gearboxes and other mechanical components. The frequency
of the data used for these analyses is much higher than the typical SCADA data, thus bringing more
information for the detection of failures. That being said, most turbines are not provided with vibration
sensors, the installation of these instruments disrupts the operation of the turbine and can cost a
windfarm owner thousands of euros per turbine. The authors of Reference [12] presented a thorough
analysis of the available monitoring techniques for wind turbine; regarding the CMS, they highlighted
as main challenges: financial cost, difficulty of interpretation of the results and not-trivial integration
with all the existent monitoring systems, as well as its scalability.

For these reasons, solutions based on the usage of SCADA data can be particularly interesting for
owners of old turbines, since no installation of additional sensors or interruption of their operations is
needed. Value can be created from the large quantity of unutilized SCADA data stored in their databases.

The rapid growth of the Deep Learning field led many researchers to apply neural networks
to solve data challenges. Autoencoders in particular appear to be a good fit for anomaly detection.
Autoencoders have been applied in multiple practical applications, such as anomaly detection of
seasonal Key Performance Indicators (KPIs) in web application [13], cyber-security monitoring [14]
and monitoring of gas turbine conditions [15].

In the wind energy sector, Jiang et al. stacked multiple autoencoders to extract new representations
of vibration data in the event of gearbox failures [16]. Successively, they also utilized denoising
autoencoders, enriched with temporal information to assess turbine conditions in a laboratory and
online scenario [17]. Finally, autoencoders have been successfully used for ice-detection on turbines’
blades by Liu et al. [18].

Alarms and events records have been used to determine the remaining useful life of wind
turbines [19]. In Reference [20], the time-sequence of the alarms is analyzed to detect relations between
the different alarms, determining the causal relationship between the different events and helping to
determine the root-cause of failures.

This research aims to explore the capabilities of autoencoders and SCADA alarms as a hybrid
fault detection system for wind turbines’ generators. While in the literature examples of predictive
strategies based only on SCADA data or alarms are present, no holistic approach using both sources of
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information is present. This paper reports a methodology that takes advantage of both SCADA and
alarm logs in the same algorithm.

As a benchmark, other typical anomaly detection algorithms are implemented, and their results
are compared with the autoencoder’s results. Additionally, the overall methodology is compared
to a normality model, one of the most common predictive maintenance approaches available in the
literature. Given the practical nature of the project, SCADA and alarm logs of existing windfarms
are used. Results are validated using maintenance logs and verifying the concordance between the
predictions and the available information.

A key aspect of this investigation is the thorough analysis of real data from a heterogeneous sample
of data. The dataset includes four different turbine brands, from seven different windfarms, located in
different nations and climates (Spain, United Kingdom and Poland). Moreover, the size of the sample
is remarkable, as more than a hundred turbines are studied. These factors are rare in the relevant
literature, as most of the time, a single turbine or windfarm is analyzed. All these considerations
support the applicability of the approach in real-life scenarios and its ability to generalize results to
heterogeneous conditions.

2. Materials and Methods

2.1. Data Description

The source of information used for this research are the SCADA and alarm datasets as inputs to
the model, and the maintenance task logs as ground-truth material to evaluate the effectiveness of
the methodology. Two years of operation data for more than 100 turbines rated 2 MW and different
manufacturers was available. Data has been received directly from the windfarm operator in the form
of comma-separated values (csv) and text archives and uploaded in a SQL database.

The dataset was split into a training and test set, maintaining a train/test split ratio of 70–30%.
The last 9 months of data have been used as the test dataset, and the remaining data was used for training
the algorithms. The utilized data is a real-life dataset of various windfarms operating under common
conditions, it is not the results of a simulation. As a consequence, the data required thorough cleaning
and pre-processing to get rid of inconsistencies due to sensors’ errors and communication malfunctions.

2.1.1. SCADA Dataset

The SCADA dataset contains more than 300 variables as the main systems of the turbine are all
monitored (pitch, main shaft bearing, gearbox, generator, etc.). Sampling frequency is 10 min and
quantities such as the arithmetic mean, minimum, maximum and standard deviation are computed
with the data acquired for this period. The format of the SCADA dataset, as well as the name of
the variables and position of the sensors, may vary according to the manufacturer of the turbine.
An example of the dataset used in this research is provided in Table 1.

Table 1. Sample of the Supervisory Control and Data Acquisition (SCADA) dataset. Average (avg.)
and standard deviation (std.) values are reported.

Timestamp Wind Speed
(avg.) (m/s)

Power
(avg.) (kW)

Power
(std.) (kW)

Generator Stator
Temperature (avg.) (◦C)

2018-10-01 00:10:00 4.945 282.8 28.524 64.653
2018-10-01 00:20:00 5.361 331.433 20.253 64.322
2018-10-01 00:30:00 5.01 289.525 47.297 61.16

2.1.2. Alarm Dataset

Alarms are typically triggered whenever an operating parameter, most typically a temperature,
exceeds its normal operation range. Table 2 is an example of the information contained in the alarm
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dataset. The alarm description field contains standardized text data, generated by the control system
of the turbines.

Table 2. Alarm dataset sample.

Start time End time Turbine Alarm Description

2017-05-24 10:39:29 2017-05-24 10:40:27 WT05 Gen brushWear Warn
2018-07-05 11:47:29 2018-07-05 11:59:57 WT03 GenRot RpmMonitor Stop
2018-04-13 08:00:58 2018-04-13 12:37:04 WT02 Gear OilFilt Warn (75% clogged)

2.1.3. Work Orders Dataset

All the maintenance tasks that have been carried on in the windfarm, including inspections, regular
checks as well as extraordinary interventions, are registered in the work order logs. An example of the
available work order logs is provided in Table 3. This information has been used for labeling turbines’
SCADA data. Records preceding critical interventions to the turbines have been removed from the
training dataset. Work orders have also been used for the prediction evaluation. The information
of the work orders is not provided in any form to the predicting algorithm, it is uniquely utilized to
process data, assigning labels, and finally, evaluate the predictions, thus being the ground truth for
the algorithm.

Table 3. Work order sample.

Start Time End Time Turbine Component Work Description

2017-02-18 07:52:00 2017-02-19 13:30:00 WT06 Generator bearing Generator bearings replacement
2017-06-30 10:46:00 2019-06-30 14:03:00 WT08 Blade Scheduled inspection
2017-08-27 08:50:00 2018-09-03 15:28:00 WT07 Gearbox Gearbox replacement due to fractured gear tooth

2.2. Autoencoder Anomaly Detection

Anomaly detection via autoencoder is performed providing the network a training dataset
composed of normal data, that can be represented as {x(1), x(2), ..., x(m)}. Autoencoders can be divided
into two parts: an encoder and a decoder.

The encoder’s goal is to reduce the dimension of the data, mapping data into lower dimensional
spaces, reducing the number of neurons in each successive layer, until the bottleneck is reached.
The number of layers and neurons in the network is determined by a tradeoff between the compression
of the input information and the ability to reconstruct the input sufficiently well. Neurons are activated
by an activation function such as the one presented by the following equation [21]:

a(l)i = f

 n∑
j=1

W(l−1)
i j a(l−1)

j + b(1)i

 (1)

where W and b are the weight and bias of the model, and the indexes i and j denote the unit and
the layer, respectively. Non-linear activation functions are typically utilized to allow the network
to represent non-linear characteristics of the data. In this research, the rectified linear unit (ReLU)
function has been used, and is defined as follows:

f (x) = max(0, x) (2)

The decoder’s function is to reconstruct the encoded data at the best of its possibilities. The entire
structure, encoder and decoder, is in fact optimized, minimizing the following cost function, presented
in Reference [21]:

J(W, b) =
1
m

m∑
i=1

(1
2

∣∣∣∣∣∣x(i) − x̂(i)
∣∣∣∣∣∣2)+ λ

2
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sl∑
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)2
(3)



Appl. Sci. 2020, 10, 8649 5 of 15

in which nl is the number of layers, sl is the number of units in layer Ll and λ is the regularization
parameters that keep a balance between the memorization and generalization capabilities of the
network. As the equation shows, a larger and more complex network would be penalized by the factor
λ. The first part of the equation defines the difference between the input and output vectors, and thus
a priority of the network will be to minimize this difference.

As explained in Reference [22], anomaly detection using autoencoders can be seen as a
semi-supervised learning problem. The autoencoder is trained with normal data and learns its
representation in a reduced dimensional space. The reconstruction error is utilized as a metric to
determine abnormal data. Data that does not fit the representation learned in the training phase results
in higher reconstruction error and can be marked as anomalous.

2.3. Methodology

Fusion of multiple sources of information, namely SCADA data anomaly detection and alarm
registers, is the core of this research. First, the initial processing of the SCADA data is presented,
then the processing of the alarms and the final step of merging the autoencoder and alarms’ predictions
in unique indicators are discussed separately.

2.3.1. SCADA Data Processing

Of the entire dataset, a subset of six variables is used to model the generator: active and reactive
power, temperature of nacelle and generator stator, as well as wind and generator speed. While the
dataset was composed of more than 300 variables, just a small selection was kept. Processing all
the variables would result in very large computation time and likely lead to overfitting of the data,
interpretability of the predictions would also be not trivial since the number of inputs would be very
large. The selection of the variables has been done choosing measurements related to the system under
evaluation (generator speed, generator stator temperature) as well as context signals that determine
the operating status of the turbine (active and reactive power, nacelle temperature and wind speed).

The dataset is split into a training and a test set, the first 70% of the data was used for training
and the remaining 30% for test. Data shuffling has been avoided, since the dataset is composed of
timeseries and random selection of data could result in information leakage.

Analysis of the maintenance and alarm logs allows to filter out abnormal operating conditions
from the training set, as well as remove outliers caused by sensor malfunctions, thus creating a training
set composed only by normal operation records. No imputation of missing data was performed.
To filter data, pre-processing algorithms [23] are applied. In practice, a range of acceptable values for
the input variable of the model is defined and all the data not conforming with this range has been
filtered, considered as communication errors.

A crucial part of pre-processing is normalization of data, the training set is used to determine the
minimum and maximum value for each input variable, and these values are then stored to be used
later on in the test set.

2.3.2. Autoencoder Architecture Selection and Training Process

To determine the optimal architecture (number of layers and neurons, activation function, etc.)
of the autoencoder, a grid search approach is used, multiple configurations are tested and the one
obtaining the lowest reconstruction error is chosen. Training time and complexity of the network have
been considered. A process of trial and error of different configurations is necessary to determine the
best structure for the available data; thus, a different dataset could result in a different network structure.
The best network layout is a fully connected network composed of six layers, having respectively
7–12–4–12–7 neurons activated by the rectified linear unit (ReLU) function and mean squared error was
used to measure the distance between the input and output, and the optimization algorithm is “adam”.

Having found the best network layout, its predictions on the training data are created to obtain the
distribution of the reconstruction error, which is the difference between the original and the processed
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data. The assumption that the reconstruction error does not contain systematic errors is verified,
analyzing its distribution that resembles a normal distribution. Using this information, it is possible
to determine a critical value to identify anomalies. Three standard deviations from the central value
are utilized.

2.3.3. Alarms’ Processing

Alarms’ data is processed by selecting, from all the alarms available in the dataset, the ones that
are more relevant for the generator assembly, such as high temperature, overspeed and overload
of the generator or its auxiliaries, such as cooling fans. The alarm description field of the dataset
was analyzed by keywords, terms such as: “high-temperature”, “error”, “warning”, “over speed”,
“overload”, etc., were searched. In this step, expert knowledge played an important role in excluding
from the initial selection those alarms that do not represent truly critical conditions and not simple
communication errors.

Once the list of alarms has been defined, it is possible to count how many times any of the selected
alarms has occurred during the period under evaluation. In this research, the authors decided not
to assign a different weight to the various alarms and simply counted the occurrences. More refined
strategies involving rankings of the alarms, as well as detection of patterns or study of the time
separating two consecutive alarms, could be implemented in future studies. According to this indicator,
turbines having a higher number of alarms should be prioritized for maintenance.

2.3.4. Indicators’ Merging Process

The health predictions are made for the entire period of time comprised in the test set and
information is aggregated to construct a generator health indicator. Anomalies are summarized to a
weekly resolution, by comparing the number of anomalies detected in each turbine with respect to the
windfarm. The distribution of anomalies within the windfarm is calculated and turbines lying at a
distance superior to two standard deviations from the central value are considered anomalous. This is
done because particular external conditions lead the entire windfarm to behave anomalously while not
undergoing a real fault in the generator system.

The generator’s health indicator is a vector defined in a two-dimensional space. The components
of the vector are the processed output of the autoencoder and the counter of key alarms per turbine
during the period of the analysis, the module of the vector is calculated as the Euclidean Sum of the two
components. A threshold is defined to determine and prioritize the turbines that require maintenance.
Alarms’ data is used directly in the model, hybridizing and complementing the results of the numerical
analysis performed with the autoencoder. The generated status vector considers anomalies in the
numerical data and information from the alarm system.

Figure 1 summarizes all the steps of the proposed methodology showing data reception, its storage
and preprocessing and the predicting algorithm.
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3. Results

The methodology has been proven on a fleet of more than 100 wind turbines, from four different
manufacturers, located in very different geographical locations ranging from hot climates, such as
south of Spain, to colder ones such as Poland and the United Kingdom. While adjustments were
required due to the different variables and characteristics of the turbines, the overall methodology was
not modified.

3.1. KPIs Definition

A brief explanation of the indicators utilized for the presentation of the results is provided in
this subsection.

In order to assess the prediction power of the predictive models, we have used the confusion
matrix (CM) as a basic unit of evaluation. The CM consists of four labels given to each prediction
according to its veracity. In summary, these labels are true positives (TP, a failure occurs when a
failure was predicted), false positives (FP, no failure when a failure was predicted), true negatives
(TN, no failure when no failure was predicted) and false negative (FN, failure when no failure was
predicted). Using the count of these basic evaluation units, the main KPIs are calculated.

The main KPIs used in this project are sensitivity, specificity, accuracy, Kappa, precision and F1
score. Sensitivity, Recall is the ratio of predicted events over the total of events:

Sensitivity, Recall =
TP

TP + FN
(4)

Specificity is the ratio of well-predicted negative events over the total of negative events:

Speci f icity =
TN

TN + FP
(5)

Accuracy is the ratio of the total well-predicted observations over the total number of observations:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Cohen’s Kappa is defined as follows:

K =
p0 − pe

1− pe
(7)

where p0 is the relative observed agreement among raters, which is analogous to accuracy, and pe is the
hypothetical probability of chance agreement, using the observed data to calculate the probabilities
of each observer randomly seeing each category. For categories, k, number of items, N, and nki,
the numbers of times the rater i predicted category k, pe can be calculated as follows:

pe =
1

N2

∑
k

nk1nk2 (8)

A low value of K means that there is no agreement among the raters other than what would be expected
by chance. A K value close to one is an indication of good performance of the classifier.

Precision is the ratio of predicted events over the total of positive predictions:

Precision =
TP

TP + FP
(9)

F1 score is defined as the harmonic mean of precision and recall and it is typically used to measure the
accuracy of a test:

F1 = 2
precision ∗ recall
precision + recall

=
TP

TP + 1
2 (FN + FP)

(10)
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3.2. Autoencoder and Alarms Results

As one of the main goal of this research is to demonstrate the advantages of merging different
sources of information, the results of the autoencoder and an alarm-based predictive system are
presented and compared to the numbers obtained using a unique predictor made by the fusion of the
two individual methods.

Table 4 presents the results obtained using the autoencoder as a unique predictor of the generator
status. It can be seen that various failures are anticipated, but the rate of FPs is quite high, as well as
the FNs.

Table 4. Results obtained using the autoencoder. WF stands for Windfarm, TP True Positive, FN False
Negative, FP False Positive and TN True Negative.

Brand Location TP FN FP TN Accuracy Kappa Sensitivity Specificity Precision F1

WF1 Vestas Spain 3 1 4 3 55% 15% 75% 43% 43% 55%
WF2 Vestas Spain 1 3 2 3 44% −15% 25% 60% 33% 29%
WF3 Siemens Poland 1 0 6 11 67% 17% 100% 65% 14% 25%
WF4 Siemens Poland 3 3 1 8 73% 41% 50% 89% 75% 60%
WF5 Senvion Poland 4 1 4 4 62% 27% 80% 50% 50% 62%
WF6 Senvion Poland 3 1 6 12 68% 28% 75% 67% 33% 46%
WF7 Nordex UK 2 4 7 13 58% −1% 33% 65% 22% 27%

TOTAL 17 13 30 54 62% 18% 57% 64% 36% 44%

Table 5 shows the results obtained using an alarm-based predictor. The results are not so different
from the autoencoder’s ones, a slightly higher Kappa is achieved by this method, and one more TP
was found, while the FPs rate is almost equal. It is clear that neither of the two techniques, on its own,
would be sufficiently reliable in a real-life scenario.

Table 5. Results obtained using an alarm-based predictor. WF stands for Windfarm, TP True Positive,
FN False Negative, FP False Positive and TN True Negative.

Brand Location TP FN FP TN Accuracy Kappa Sensitivity Specificity Precision F1

WF1 Vestas Spain 2 2 1 6 73% 38% 50% 86% 67% 57%
WF2 Vestas Spain 2 2 1 4 67% 31% 50% 80% 67% 57%
WF3 Siemens Poland 1 0 17 0 6% 0% 100% 0% 6% 11%
WF4 Siemens Poland 2 4 2 7 60% 12% 33% 78% 50% 40%
WF5 Senvion Poland 4 1 0 8 92% 83% 80% 100% 100% 89%
WF6 Senvion Poland 4 0 6 12 73% 42% 100% 67% 40% 57%
WF7 Nordex UK 3 3 4 16 73% 28% 50% 80% 43% 46%

TOTAL 18 12 31 53 62% 19% 60% 63% 37% 46%

3.3. Overall Results

As the results of the individual predictors are not sufficiently good, the authors present a hybrid
technique that merges the two systems in a more complete predictor, as detailed in Section 2.3.
Table 6 presents a summary of the results. The turbines that were obtaining higher values for the health
KPIs were reported. Examining the reported turbines and the maintenance log, the results table was
done. During the test period, problems such as broken generators, consumed generator brushes or
generators bearing damages were encountered.

It can be seen that most of the reported turbines were found to have some problems; moreover,
the results across the various windfarms are consistent. The accuracy never gets lower than 70%
and the overall Kappa is 56%. The advantages of using a hybrid predictor are clear when its results
are compared to the ones of the autoencoder and alarm predictors. The number of TPs increased
substantially, and remarkably, the number of FPs was halved. The two components of the composed
predictors are complementary, allowing for more accurate and reliable predictions.
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Table 6. Key Performance Indicators (KPIs) results summary for all the available windfarms (WF),
sorted by turbine manufacturer (Brand) and location. TP stands for True Positive, FN False Negative,
FP False Positive and TN True Negative.

Brand Location TP FN FP TN Accuracy Kappa Sensitivity Specificity Precision F1

WF1 Vestas Spain 4 0 0 7 100% 100% 100% 100% 100% 100%
WF2 Vestas Spain 3 1 1 4 78% 55% 75% 80% 75% 75%
WF3 Siemens Poland 1 0 3 14 83% 34% 100% 82% 25% 40%
WF4 Siemens Poland 4 2 0 9 87% 71% 67% 100% 100% 80%
WF5 Senvion Poland 5 0 2 6 85% 70% 100% 75% 71% 83%
WF6 Senvion Poland 3 1 4 14 77% 41% 75% 78% 43% 55%
WF7 Nordex UK 3 3 4 16 73% 28% 50% 80% 43% 46%

TOTAL 23 7 14 70 82% 56% 77% 83% 62% 69%

The Receiving Operator Curve (ROC) is calculated to represent the predictive power of the
proposed methodology and its response to adjustments in the cutoff value to apply to the health status
vector. In Figure 2, the ROC curves of the different windfarms are presented. The cutoff values are
adjusted for each wind farm to obtain optimal results.
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Figure 3 represents the dataset as a whole, without distinction between the different windfarms
and simulating the effect of a unique cutoff value. The two dashed line defines the values of the
false positive rate and true positive rate that can be obtained by selecting the optimal cutoff value for
each windfarm. It can be seen that fixing a unique threshold value yields good results while being a
simpler decision strategy, but in applications where the reliability of the prediction is the key objective,
the additional complexity provides better outputs.
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3.4. Normality Model Comparison

An additional validation of the results is presented. A normality model using the same input
data is trained and utilized to make health predictions of the generators. Details on how to build
a normality model are available in Reference [4]. The value of the generator stator temperature is
predicted by a ridge regression model and the prediction error is used as a metric for the generator
status. Details on the algorithm can be found in Reference [24], the decision of using this algorithm is
dictated by its capacity to deal with multicollinearity in the inputs. The results of the normality model
are presented in Table 7.

Table 7. Normality model results. WF stands for Windfarm, TP True Positive, FN False Negative,
FP False Positive and TN True Negative.

Brand Location TP FN FP TN Accuracy Kappa Sensitivity Specificity Precision F1

WF1 Vestas Spain 4 0 2 5 82% 65% 100% 71% 67% 80%
WF2 Vestas Spain 1 3 0 5 67% 27% 25% 100% 100% 40%
WF3 Siemens Poland 1 0 12 5 33% 4% 100% 29% 8% 14%
WF4 Siemens Poland 4 2 6 3 47% 0% 67% 33% 40% 50%
WF5 Senvion Poland 0 5 2 6 46% −28% 0% 75% 0% NA
WF6 Senvion Poland 2 2 5 13 68% 17% 50% 72% 29% 36%
WF7 Nordex UK 5 1 6 14 73% 41% 83% 70% 45% 59%

TOTAL 17 13 33 51 60% 14% 57% 61% 34% 43%

One can see that while the normality model yields reasonable results, it scores lower overall
values for the tracked indicator when compared to the presented methodology. In particular, it should
be noted that the number of FPs is more than double the proposed solution and the total number of TPs
is lower. The only case in which the normality model performed better is WF7, where two additional
TPs are found.

The presented results were obtained using a large sample of real data. The sample is extremely
heterogeneous since it represents four different turbine brands, and the windfarms are located in
different geographical locations (Poland, Spain and United Kingdom), characterized by very different
climates and wind conditions. Such results are rare in the literature, as many algorithms have been
tested either in laboratories or in a reduced sample of turbines.

In Section 4, the detailed analysis of windfarm 5 is proposed. This one was chosen since it has a
high prevalence of failures of the generator and two predictions were classified as FN, so it is useful to
analyze them in detail to determine the reason why the alarms were raised.
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4. Discussion

The last 9 months of data available were used as a test set. The performance of the autoencoder
as an anomaly detector was compared to other algorithms that have been widely used for anomaly
detection tasks. Isolation forest and one-class support vector machine were tested. Details on these
algorithms can be found in References [25,26].

The same post-processing methodology was applied to all algorithms. Results are presented in
Figure 4. Three risk-areas were identified based on the generator’s health indicator value distribution.
Table 8 provides the information to assess the accuracy of the predictions, and major component
replacements that took place during the testing phase are reported.
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Figure 4. Comparison of the results obtained by the three implemented algorithms hybridized with
alarms information. The higher the distance from the origin, the worse the conditions of the generator.
Three areas are identified according to the health status: healthy (green), warning (yellow) and danger
(red). The shape determines the presence and type of fault occurred.

Table 8. Principal maintenance intervention occurred during the testing phase.

Turbine Maintenance Description Component

WT13 Bearing High Speed Shaft replacement Gearbox-Generator
WT11 Generator brushes replaced Generator
WT11 Generator bearing Non-Drive End replaced Generator
WT10 Generator bearing Non-Drive Endreplaced Generator
WT08 Generator bearing Non-Drive Endreplaced Generator
WT07 Generator brushes replaced Generator

All three algorithms, when merged with alarm information, are able to satisfactorily isolate
faulty turbines from the rest. Autoencoder is selected as the algorithm of choice to analyze SCADA
data, since it is able to better diagnose faulty turbines even in the absence of alarms data, as in the
case of turbine WT13. Moreover, the autoencoder better identifies the high-speed shaft-bearing fault,
where isolation forest could not separate it sufficiently and one class Support Vector Machine (SVM)
positioned it on the frontier between the warning and safe areas, the ability to identify various failure
modes holds large relevance in the selection of the algorithm. Analyzing the results of the autoencoder,
it can be noticed that most of the turbines in the critical (red) and dangerous (yellow) areas required
replacement of the bearings or brushes of the generator. None of the windmills located in the safe
(green) area required maintenance.

A detailed study of the data of WT09 and WT12 was done due to their high anomaly count and
absence of maintenance intervention. The input variable distributions of all the signals and some
other key variables of the generator have been reviewed thoroughly to understand the reason why the
autoencoder has found these turbines to be anomalous. The most relevant relationships related with
generator failure are presented here and discussed.

In Figure 5, the distribution of the probability density of the temperature difference across the two
sides of the generator bearing of turbine WT09 are represented, compared with the mean value of the
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windfarm and the characteristic curve of this temperature difference with respect to nominal power.
It can be observed that the behavior of turbine WT09 is widely different from the rest of the windfarm.
These considerations lead us to categorizing this prediction as early fault alert of the generator bearing
conditions, rather than a false alarm.
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Figure 6 shows that turbine WT12 is characterized by an anomalous distribution of the generator
stator temperature, in fact the standard deviation of its recorded values is larger than the value of the
windfarm, meaning that the generator of this turbine is subjected to less stable operating conditions.
This case can also be considered anomalous and worthy of a technical review of the generator.
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Merging the information of alarms with anomalies provides a more comprehensive health status
of the generator. Looking at the plots, it can be seen that alarms are able to isolate most of the
faulty turbines, that being said, there are also cases in which a low number, or no alarms are raised,
but nonetheless, the turbine was found to be faulty. WT08 problems are detected mainly by the alarm
counter, whereas WT13 is purely diagnosed by the anomaly count, the rest of the faults are found by a
mix of the two information sources. Ultimately, merging the information from alarms and SCADA
data proved a rewarding strategy able to better separate turbines according to their health status,
making use of available and easily accessible data.
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5. Conclusions

A hybrid fault detection system based on SCADA alarm logs and an anomaly detection
autoencoder were presented and validated on a fleet of more than 100 wind turbines, from four
different manufacturers, located in different parts of Europe. Real operating data has been used
and most of the raised alarms corresponded to problems related to the generator that required the
substitution of the component or some parts of it (bearings, brushes).

A detailed explanation of the most critical windfarm was presented to show how the methodology
can be applied in practice and the kind of analyses that were carried out to corroborate the results.

It has been observed that the alarm counter is a valid tool to distinguish faulty turbines from
healthy ones. That being said, the alarm counter alone cannot anticipate all failures. The fusion
of anomalies and alarms information complements the individual approaches, providing a more
reliable system.

All five failures that occurred during the test phase were correctly detected. Of the two “false
positive” predictions that were obtained, detailed analyses suggested that they are likely early fault
detections, rather than errors. Ultimately, this methodology provides windfarm operators a reliable
tool to assess the health of generators and improve operation and maintenance of the turbines.

The results of the autoencoder as an anomaly detector were compared with other common
algorithms in the literature, such as isolation forest and one-class support vector machine. The results
showed that while the other two algorithms provide acceptable results, autoencoders are more
confident in their predictions in cases where alarm information cannot help so much with separating
faulty from healthy turbines. Autoencoders, having more tunable parameters and allowing for more
elaborated structures, are capable to better interpret non-linear data, such as that of a turbines generator.
Additionally, the overall methodology was tested against a normality model, and the results clearly
showed that the proposed solution ranks better for all the tracked statistics.

This research contributes to present a novel methodology that makes use of data analysis
techniques for anomaly detection and consolidates the results, merging the anomaly predictions with
information from the alarm system. The large size of the datasets and its diversity contribute to prove
the approach as a general solution that can work well in real-life conditions and is not only applicable
to a niche of turbines.

Different network architecture, including temporal information and denoising autoencoders,
should be explored in future research to boost the accuracy of the system. Interpretability of results is a
key aspect that requires further improvements to ensure acceptance of this methodology in the market.
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